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Overview

Model Overview

Processes have access to local read-only physical clocks, which are
subject to a very small rate of drift.

I A process’ local time is obtained by adding the value of the physical
clock to the value of a local “correction” variable.

The communication network is fully connected, so that every process
can send a message directly to every other process.

Processes are able to broadcast a message to all the processes at the
same time.

All messages are delivered within a fixed amount of time plus or
minus some uncertainty.
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Overview

Protocol Outline

The protocol runs in rounds, resynchronizing every so often to correct
for the clock drift.

At every round, each process obtains a value for each of the other
processes’ clocks, and sets its clock to an average of those values
computed with a fault-tolerant averaging function.

This function is designed to be immune to some fixed maximum
number, f , of faults.

From a practical point-of-view, two capabilities are important:

1. The reintegration of repaired processes so that they can synchronize
their clocks

2. The establishing of a synchronization among the clocks
F The algorithm can be seen as a way to maintain the clocks

synchronized. But, how do they get synchronized? I.e., how is the
initial synchronization performed in the face of clock drift, uncertainty
in the message delivery time, and arbitrary process faults?
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Model

Model: Processes (1/2)

This is a paper before I/O Automata, but the main ideas are there.

Processes communicate by sending messages to each other.

Each process has a physical clock that is not under its control.

Processes are interrupt-driven. Events are modeled as messages. E.g.:

I A start message might signal initial system start-up.
I A timer message might signal that the physical clock has reached a

designated time.

The processing time of an arriving message is considered
instantaneous.

A process is an automaton with a set of states and a transition
function.
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Model

Model: Processes (2/2)

A transition function describes:

1. The new state the process enters;
2. The messages it sends;
3. The timers it sets.

as a function of

1. The process’ current state;
2. The messages it received;
3. The physical clock time.

At a process step the process:

1. Receives a message;
2. Changes state;
3. Sends out some messages.

If a process is nonfaulty, the new state and the messages sent obey
the transition function. Otherwise the process is faulty.

I Arbitrary (or Byzantine ) faults can be modelled by not restricting the
state changes or messages sent by faulty processes.
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Model

Model: Clocks
A clock is a monotonicallly increasing, everywhere differentiable
function from R to R, interpreted as being a function from real times
to clock times, or vice-versa.

Clock-Time vs. Real-time

Lower-case letters denote real times;

Upper-case letters denote clock times.

Likewise:

A clock from real time to clock times
is denoted with upper case

And its inverse is denoted by the same
name in lower case.

t

Real-time

Clock-time

T

t1

C(t1)

T2

c(T2)

C(t)

Sytem (Definition) Consists of a set of processes and a set of clocks, the
physical clocks, from real times to clock times, one clock per process.

The physical clock for process p will be denoted Php.
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Model

Model: Communication system

Each process can communicate directly with all processes, including
itself.

The communication system is modeled by a global message buffer.
I When a process sends a message at real time t to another process, the

message is placed in the message buffer together with a time t ′ greater
than t.

I At real time t ′, the message is received by the proper recipient and is
deleted from the buffer..

I The value t ′ − t is the message delay.

In its initial state, the message buffer contains no messages except for
start messages, exactly one for each process, together with their
scheduled delivery times.

When a process p sets a timer, say for time T , a TIMER message
with recipient p and delivery time Ph−1

p (T ) is placed in the message
buffer, provided that the latter is greater than the current real time.
If it is not, no message is placed in the buffer.
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Bounded Clocks

ρ-Bounded Clocks
ρ-bounded Clock (Def) A clock C is ρ− bounded provided that for all t

1/(1 + ρ) ≤ dC (t)/dt ≤ 1 + ρ

where ρ > 0 is a very small constant.
I.e. a ρ-bounded clock is clock whose drift is small: the amount of
clock time elapsed in a rho-bounded clock during some real time
interval is close to the amount of real time that has elapsed.

Corollary (Because 0 < ρ < 1.)

1− ρ ≤ dC (t)/dt ≤ 1/(1− ρ)

Note For a small ρ the lower bounds
1/(1 + ρ) and 1− ρ are very close.
Similarly the upper bounds.

t

C(t)

1

1− ρ

1

1 + ρ

1/(1 + ρ)

ρ-bounded (Real time) Clock (Def) A clock c is ρ− bounded provided
that for all T

1/(1 + ρ) ≤ dc(T )/dT ≤ 1 + ρ
where ρ > 0 is a very small constant.Pedro F. Souto (FEUP) Clock Synchronization 12 / 61



Bounded Clocks

ρ-Bounded Clocks Properties (1/2)
Note By definition, the inverse of a ρ-bounded clock is itself a ρ-bounded

clock.
Lemma 1 Let C be any (ρ− bounded) clock. If t1 ≤ t2, then

(t2 − t1)/(1 + ρ) ≤ C (t2)− C (t1) ≤ (1 + ρ)(t2 − t1)

Proof: Straightforward by the mean value theorem.
Lemma 2 Let C and D be clocks. Then for any t1 and t2:

(a) |(C (t2)− t2)− (C (t1)− t1)| ≤ ρ|t2 − t1|
(b) |(C (t2)− D(t2))− (C (t1)− D(t1))| ≤ 2ρ|t2 − t1|

Proof: (a) Note that
|(C (t2)− t2)− (C (t1)− t1)| = |(C (t2)− C (t1))− (t2 − t1)|.
Suppose t2 ≥ t1 and C (t2)− C (t1) ≥ t2 − t1. (One of 4 cases) Then:

|(C (t2)− C (t1))− (t2 − t1)| = (C (t2)− C (t1))− (t2 − t1)

≤ (1 + ρ)(t2 − t1)− (t2 − t1), by Lemma 1

= ρ|t2 − t1|
Pedro F. Souto (FEUP) Clock Synchronization 13 / 61



Bounded Clocks

ρ-Bounded Clocks Properties (2/2)

Lemma 2 Proof of part (b)

|(C (t2)− D(t2))− (C (t1)− D(t1))|
= |((C (t2)− t2)− (C (t1)− t1))− ((D(t2))− t2)− (D(t1))− t1))|
≤ |(C (t2)− t2)− (C (t1)− t1))|+ |(D(t2))− t2)− (D(t1))− t1)|
≤ 2ρ|t2 − t1|, by part (a).

Lemma 3 Let C and D be clocks, and T1 ≤ T2.
Assume that |c(T )− d(T )| ≤ α for all T ,T1 ≤ T ≤ T2.
Let t1 = min{c(T1), d(T1)} and t2 = max{c(T2), d(T2)}.
Then, for all t, t1 ≤ t ≤ t2,

|C (t)− D(t)| ≤ (1 + ρ)α

Proof: By case analysis on the values of the inverse clocks:

1. c(T1) ≤ t ≤ c(T2)

2. d(T1) ≤ t ≤ d(T2)

3. c(T2) < t < d(T1)

4. d(T2) < t < c(T1)
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Problem Definition

Problem Definition: Assumptions (1/2)
Each process p has a local variable CORR, which provides a correction to
its physical clock to yield the local time.

During an execution, p’s local variable CORR takes on different
values.

Let CORRp(t) be a function that returns the value of p’s local
variable CORR at real time t.

For a particular execution, we define the local time for p to be
function Lp = Php + CORRp.
A logical clock of p is Php plus the value of CORRp at some time.

I Let C 0
p denote the initial logical clock of p, given by Php plus the

value, in p’s initial state, of CORRp. Let c0
p denote the inverse function

of C 0
p

Each time p adjusts CORRp, it can be thought of as changing to a
new logical clock.

The local time can be thought of as a piecewise continuous function,
each of whose pieces is part of a logical clock.

Pedro F. Souto (FEUP) Clock Synchronization 16 / 61



Problem Definition

Problem Definition: Assumptions (2/2)
(A1) All clocks are ρ-bounded, including those of faulty processes, for some

small constant ρ.
I Since faulty processes are permitted to take arbitrary steps, faulty

clocks would not increase their power to affect the behavior of
nonfaulty processes.

(A2) There are at most f faulty processes, for a fixed constant f , and the
total number of processes in the system, n, is at least 3f + 1.

(A3) The delay for every message is in the range of [δ − ε, δ + ε], for
nonnegative constants δ and ε, with δ > ε.

(A4) A start message arrives at each process at time T 0 on its logical
clock C 0

p . Furthermore, for all nonfaulty processes p and q,

|c0
p(TO)− c0

q(T 0)| ≤ β
I I.e. all the nonfaulty processes wake up within an interval of length β

when their logical clocks reach T 0.

We denote the real time c0
p(T 0) by t0

p .
We let tmax0 = max{t0

p , such that p is nonfaulty}, and analogously
for tmin0. These are respectively the latest and earliest real times
when start messages arrive at nonfaulty processes.
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Problem Definition

Problem Definition: Properties

γ-agreement: For all t ≥ tmin0 and all non-faulty p and q:

|Lp(t)− Lq(t)| ≤ γ

I.e., at any real time, all the nonfaulty process’s (logical) clocks
differ by at most γ.

(α1, α2, α3)-validity: For all t ≥ t0
p and all nonfaulty p:

α1(t − tmax0)− α3 ≤ Lp(t)− T 0 ≤ α2(t − tmin0) + α3

I.e. the local time of a nonfaulty process increases in some linear
relation to real time.
When α1 and α2 are close to 1, and α3 close to 0, then Lp(t)− T 0

is close to t − t0
p . I.e. the amount of elapsed clock time is close to

the amount of elapsed real time.
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Synchronization Maintenance Algorithm Outline

Algorithm: Outline (1/2)

The algorithm is round based.

In each round resynchronization occurs at a fixed local time.

The ith round for process p is triggered by its ith logical clock
reaching some value T i .

When p’s ith logical clock reaches T i , p broadcasts a T i message.

Meanwhile, p collects T i messages from as many processes as it can,
within a particular bounded amount of time, measured on its logical
clock.

The bounded amount of time is of length (1 + ρ)(β + δ + ε), and is
chosen to be just large enough to ensure that p receives T i messages
from all the nonfaulty processes.

After waiting for this amount of time, p averages the arrival times of
all the T i messages received, using a particular fault-tolerant
averaging function.
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Synchronization Maintenance Algorithm Outline

Algorithm: Outline (2/2)

The resulting average is used to calculate an adjustment to p’s
correction variable, CORR thereby switching p to its (i + 1)st logical
clock.

The process p then waits until its (i + 1)st logical clock reaches time
T i+1 = T i + P, by setting a timer, and repeats the procedure. P is
the length of a round in local time.

T i
p T i+1

pU i
p

ith local clock
i + 1st local clock

P

Cp(t)

t

U0
p

U1
p

U2
p

U3
p

C3
p

C2
p

C1
p

C4
p
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Synchronization Maintenance Algorithm Outline

Algorithm: Averaging Function

The fault-tolerant averaging function is derived from those used in
the paper on approximate agreement that will be presented later.

The function is designed to be immune to some fixed maximum
number, f , of faults.

1. It throws the f highest and the f lowest values.
2. It then applies some ordinary averaging function to the remaining

values.
3. In the paper, the authors have chosen the midpoint of the range of the

remaing values, which causes the error to be halved at each round.

It is possible for the clock to be set backwards in this algorithm.
However, there are known techniques for stretching a negative
adjustment out over the resynchronization interval.
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Synchronization Maintenance Algorithm TIOA

TIOA For Clock Synchronization: Signature
automaton ClockSyncWL (n , f : Nat , ρ , β , δ , ε , P : Real ,

i : Nat )
s i gna tu re

input s t a r t ( t : Rea l )
i nput r e c e i v e (m: Real , j : Nat , con s t i : Nat ) where j 6= i
output b roadca s t (m: Real , con s t i : Nat )
i n t e r n a l update

ClockSyncWL is the specification for a single process in the protocol,
each of which has a non-negative integer identifier

n, f , ρ, β, δ, ε, P are the protocol parameters as defined above

We model the broadcast channel by n × n bounded channels
I For each process i there is a channel to process j
I Each channel from process i to process j has a broadcast(m,i) input

(instead of a send(m,i , j ) input)
I By TIOA composition, a single broadcast(m,i) action by the

ClockSyncWL automaton will put message m in each of the channels
connecting process i to the remaining processes
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Synchronization Maintenance Algorithm TIOA

TIOA For Clock Synchronization: States

s t a t e s
T: d i s c r e t e AugmentedReal := ∞
U: d i s c r e t e Rea l := 0
CORR: d i s c r e t e Rea l := 0
ARR: Array [ Nat , d i s c r e t e Rea l ] := constant (0 )
Ph : Rea l :=

der i ved v a r i a b l e s
Loca l := Ph + CORR

T Local time for beginning of next round

U Local time for beginning of next logical clock

CORR Correction value for computing local time from local physical clock

ARR Arrival times array: one element per process with the local arrival
time of the most recent message received from that process.

Ph Local physical clock

Local Local clock time, this is derived from the state variables

Pedro F. Souto (FEUP) Clock Synchronization 26 / 61



Synchronization Maintenance Algorithm TIOA

TIOA For Clock Synchronization: Initial States

The protocol assumes that the local clocks are initially synchronized

Because we assume that CORR is initially 0, this imposes some
constraints on the values of Ph of all processes

The initially clause can only express a predicate that relates the
automaton’s initial state and parameters

A workaround might be to include the initial values of the different
physical clocks as a parameter of the automaton
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Synchronization Maintenance Algorithm TIOA

TIOA For Clock Synchronization: Transitions (1/2)

input s t a r t (T0 )
e f f

T := T0

The protocol assumes that at T0, the local clocks are synchronized

We assume that T0 is not in the past, i.e. T0 ≥ Local

These assumption and the start () input ensure that all correct
processes receive the messages broadcast by correct processes in the
first round

An alternative would be to do away with the start () action and
initialize T with T0

I But we would need also to assume explicitly that no correct process
misses any message broadcast by correct processes in the first round
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Synchronization Maintenance Algorithm TIOA

TIOA For Clock Synchronization: Transitions (2/2)
i nput r e c e i v e (m, j , i )

e f f
ARR[ j ] := Loca l

output b roadca s t (m, i )
pre

m = T ∧ Loca l = T ∧ Loca l > U
e f f

U := Loca l + (1+ρ ) (β + δ + ε)

i n t e r n a l update
l o c a l AV, ADJ : d i s c r e t e Rea l
pre

Loca l = U ∧ Loca l > T
e f f

AV := mid ( r educe (ARR) )
ADJ := T + δ − AV
CORR := CORR + ADJ
T := T + P

AV and ADJ are local auxiliary variables, they are not part of the state

Procedures

mid(M): applied to a multiset M of real numbers, returns the midpoint
of the set of values in the multiset. (The midpoint is the arithmetic
mean of the smallest and the largest elements in the multiset.)

reduce(A): applied to an array A, returns the multiset consisting of the
elements of the array, with the f largest and the f smallest elements
removed.
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Synchronization Maintenance Algorithm TIOA

TIOA For Clock Synchronization: Trajectories

t r a j e c t o r i e s
stop when

( Loca l = T ∧ Loca l > U) ∨ ( Loca l = U ∧ Loca l > T)
evo lve

1/(1+ρ) ≤ d (Ph) ≤ 1 + ρ

Until the start transition, the physical clock is allowed to increase in
an unconstrained way

The occurrence of start forces the process to execute a broadcast
action

After that, the broadcast and update transitions will be enabled
alternately

I It might be more explicit to add a variable named e.g. phase (which
might be a derived variable)

I The last term in the the preconditions for broadcast and update
ensures that each of them is executed only once when the first
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Synchronization Maintenance Algorithm Analysis Summary

Notation (1/2)

Let T i = T 0 + iP and U i = T i + (1 + ρ)(β + δ + ε)

For each i ∈ N0, every process p broadcasts Ti when its ith logical
clock C i

p reaches time T i , i.e. at real time t i
p.

When its ith logical clock reaches U i , i.e. at real time ui
p, process p

resets its CORR variable, thereby switching to a new logical clock,
denoted C i+1

p .

The process moves through an infinite sequence of clocks: C 0
p ,C

1
p , . . .

where C 0
p is in force in the interval of real time (−∞, u0

p), and each

C i
p, i ≥ 1, is in force in the interval of realtime [ui−1

p , ui
p)

The (real-time) interval [t i
p, t

i+1
p ) constitutes round i for process p

Let tmini = min{t i
p : for all p nonfaulty}, and similarly for tmax i ,

umini and umax i .
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Synchronization Maintenance Algorithm Analysis Summary

Notation (2/2)

For p and q nonfaulty, let ARR i
p(q) denote the time of arrival,

measured on p’s logical clock C i
p, of a T i message from q to p, sent

when q’s ith logical clock C i
q reaches time T i

I The authors claim, and prove, that C i
p is in force by the time this

message arrives.

Let ARR i
p denote the multiset of value ARR i

p(q) for all q.

Let AV i
p denote the value of AV calculated by p using the values in

ARR i
p, i.e. the value computed by throwing out the f earliest and the

f latest values and taking the midpoint of the remainder

Let ADJ i
p denote the corresponding value of ADJ calculated by p,

i.e., the “adjustment” calculated by subtracting the average from the
“expected” arrival time (T i + δ). Thus, Cpi+1 = C i

p + ADJ i
p
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Synchronization Maintenance Algorithm Analysis Summary

Parameters (1/2)

Parameter ρ (drift rate), δ (media message delay) and ε (uncertainty
in the delay) are determined by the hardware and low-level
communication protocols employed.

The parameters P (round length) and β (how closely in real time
processes reach the same bound) are design parameters

The smaller β more closely synchronized the clocks will be

However, the smaller β the smaller P must be, i.e. the more often
processes will need to synchronize.
However, P cannot be arbitrarily small. In order for the algorithm to
work correctly P must be sufficiently large to ensure that:

1. After a nonfaulty process p resets its clock, the local time at which p
schedules its next broadcast is greater than the local time on the new
clock, at the moment of reset.

2. The message sent by a nonfaulty process p at round i , which will be
used to set the i + 1st logical clock, arrives at a nonfaulty process q
after q sets its ith logical clock (otherwise it will overwrite its
previously sent value and be used to set p’s ith logical clock.)
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Synchronization Maintenance Algorithm Analysis Summary

Parameters (2/2)

It can be shown that sufficient conditions relating the parameters are:

P >2(1 + ρ)(β + ε) + (1 + ρ)max{δ, β + ε}+ ρδ (1)

P ≤β/(4ρ)− ε/ρ− ρ(β + δ + ε)− 2β − δ − 2ε (2)

It follows that:

β ≥4ε+ 4ρ(4β + δ + 4ε+ max{δ, β + ε})
+ 4ρ2(3β + 2δ + 3ε+ max{δ, β + ε})

If P is fixed, then β is roughly 4ε+ 4ρP.
I This value can be obtained by solving the upper bound on P, (2)

above, for beta and neglecting terms of order ρ or higher.
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Synchronization Maintenance Algorithm Analysis Summary

Theorem 4

Let p and q be nonfaulty processes and i ≥ 0

(1) If i ≥ 1, then |ADJ i−1
p | ≤ (1 + ρ)(β + ε) + ρδ

(2) If i ≥ 1, then U i−1 + ADJ i
p < T i

(3) |t i
p − t i

q| ≤ β
(4) If i ≥ 1, then t i

p + δ − ε > ui−1
q

1. The adjustment ADJ i−1
p used for p’s ith logical clock is bounded.

2. The time to broadcast i messages is still in the future when p’s ith
logical clock is started.

3. p begins round i within β real time of any other nonfaulty process
4. p’s round i messages arrives at q after q has already set its ith logical

clock.

Note that (2) and (4) are the conditions that impose a lower bound
on the value of P.
The proof is by induction on i .
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Synchronization Maintenance Algorithm Analysis Summary

γ-Agreement

Theorem 16

The algorithm guarantees γ-agreement, where

γ = β + ε+ ρ(7β + 3δ + 7ε) + 8ρ2(β + δ + ε) + 4ρ3(β + δ + ε)

Proof Must show that |Lp(t)− Lq(t)| ≤ γ, for all nonfaulty p and q, and
all t ≥ tmin0.

Case analysis, depending on whether or not p and q use logical
clocks with the same index. Result must hold in both cases.

In practice ρ < 1E−6, thus γ is determined mostly by β and ε.
Essentially, if we need a synchronization within ms (µs, ns), β and ε
need to be of the same order of magnitude (or smaller).

I As stated above β ≥ 4ε+ 4ρP, thus even if the second term is
negligible wrt ε, β is bounded by ε, i.e. the uncertainty of the
communication channel delay

Pedro F. Souto (FEUP) Clock Synchronization 37 / 61



Synchronization Maintenance Algorithm Analysis Summary

(α1, α2, α3)-Validity

Theorem 19

The algorithm preserves (α1, α2, α3)-validity, where

α1 = 1− ρ− ε/λ, α2 = 1 + ρ+ ε/λ, α3 = ε

where λ = (P − (1 + ρ)(β + ε)− ρδ)/(1 + ρ).

Note: λ is the length of the shortest round in real time. (This is at least P
minus the maximum adjustment.)

Proof: Must show for all, t ≥ t0
p and all nonfaulty p that

α1(t − tmax0)− α3 ≤ Lp(t)− T 0 ≤ α2(t − tmin0) + α3

Proof relies on two lemmas, which are prooved by induction.

To keep the clocks close to real time, we want α1 ≈ 1, and similarly
for α2. Because, ρ << 1, we have λ ≈ P − (β + ε). Thus we’d like
P >> ε. However, as we have seen, increasing P increases β.
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Reintegration of Repaired Processes

Reintegration of a Repaired Process (1/3)

Let p be the process to be reintegrated into the system.

During some round i , p will gather messages from the other processes
and perform the same averaging procedure as that described
previoulsy to obtain a value for its correction variable such that its
clock becomes synchronized.

Since p’s clock is now synchronized, it will reach T i+1 within β of
every other nonfaulty process.

At that point p is no longer faulty and rejoins the main algorithm,
sending out T i+1 messages.
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Reintegration of Repaired Processes

Reintegration of a Repaired Process (2/3)

Note that p can recover at an arbitrary time during an execution.

As soon as it recovers, it begins collecting T i messages for all
plausible values of T i .

It is necessary that p identify an appropriate round i at which it is
able to obtain all the T i messages from nonfaulty processes.

Since p might recover during the middle of a round, p must first
observe the arriving messages, allowing part of a round to pass before
it begins to collect messages.

After p has determined that it should use T i messages to update its
clock, it continues to collect T i messages.

It must wait a certain length of time, as measured on its clock, in
order to guarantee that it has received T i messages from all nonfaulty
processes. Immediately after p determines it was waited long enough,
it carries out the averaging procedure and determines a value for its
correction variable.
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Reintegration of Repaired Processes

Reintegration of a Repaired Process (3/3)

Claim: p reaches T i+1 on its new clock within β of every other nonfaulty
process.

1. It does not matter that p’s clock begins initially unsynchronized
with all the other clocks: the arbitrary value will be compensated
for in the subtraction of the average arrival time.

2. It does not matter that p is not broadcasting a T i message; p is
being counted as one of the faulty processes, which could always
fail to send a message. Furthermore, processes do not treat
themselves specially, so it does not matter that p fails to receive a
message from itself.

3. It does not matter that p adjusts its correction variable whenever it
is ready (rather that at the time specified for correct processes).
The adjustment is only the addition of a constant so the (additive)
effect of the change is the same in either case.
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Establishing Synchronization Overview

Establishing Synchronization: Overview
The algorithm establishes synchronization of clocks that initially may
have arbitrary values.
It handles Byzantine failures of the processes, uncertainty in the
message delivery time and clock drift.
To achieve this it relies on a combination of:

I elapsed physical time, and
I one additional message type

rather than on the local/logical times.
The algorithm runs in rounds.
During each round, the processes exchange clock values and use the
same fault-tolerant averaging function as before to calculate the
corrections to their clocks.
Each round contains an additional phase in which the processes
exchange messages to signal that they are ready to begin the next
round.
The algorithm guarantees that nonfaulty processes begin each round
within δ + 3ε of each other.
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Establishing Synchronization Overview

Establishing Synchronization: Informal Description (1/2)

At the beginning of each round, each nonfaulty process p broadcasts
its local time.

Then p waits for an interval of length (1 + ρ)(2δ + 4ε), which is long
enough for p to receive a similar message from each nonfaulty
process.

I The algorithm guarantees that nonfaulty processes begin each round
within δ + 3ε of each other.

At the end of this interval, p calculates the adjustment that it will
make to its clock at the current round,

I But the adjustment is made only at the end of the round

Then p waits a second time interval of length
(1 + ρ)(4ε+ 4ρ(δ + 2ε) + 2ρ2(δ + 4ε)) before sending out additional
messages,

I This ensures that these messages are not received while the other
nonfaulty processes are in their first waiting intervals.

Pedro F. Souto (FEUP) Clock Synchronization 46 / 61



Establishing Synchronization Overview

Establishing Synchronization: Informal Description (2/2)

At the end of its second waiting interval, p broadcasts a READY
message indicating that it is ready to begin the next round.

I However, if p receives f + 1 READY messages during its second
waiting interval, it terminates its second interval early, and goes ahead
and broadcasts READY .

As soon as p receives n − f READY messages,
I it updates the clock according to the adjustment calculated earlier,
I and begins its next round by broadcasting its new clock value.

T i
p T i+1

pU i
p V i

p

T

READY

T

T

READY

READY

p’s round i
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Establishing Synchronization TIOA

TIOA For Clock Synchronization: Signature

type Phase enumeration of ASLEEP , TIME , READY
automaton ClockSyncWLEst (n , f : Nat , ρ , β , δ , ε , P : Real ,

i : Nat )
s i gna tu re

input s t a r t
i nput r e c e i v e (m: Rea l ∪ {RDY} , j : Nat , con s t i : Nat )

where j 6= i
output b roadca s t (m: Rea l ∪ {RDY} , c on s t i : Nat )
i n t e r n a l update

Phase is an enumerated type for the phase of the protocol

ClockSyncWLEst is the specification for a single process in the
protocol, each of which has a non-negative integer identifier

Messages exchanged may be:
I Either the time (a real)
I Or the RDY message
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Establishing Synchronization TIOA

TIOA For Clock Synchronization: States
s t a t e s

T : d i s c r e t e AugmentedReal := ∞ , // Loca l t ime f o r nex t round
U: d i s c r e t e Rea l := −1, // Loca l t ime f o r computing the ad jus tment
V : d i s c r e t e Rea l := −1, // Loca l t ime f o r b r o a d c a s t i n g RDY message
CORR: d i s c r e t e Rea l := 0 ,
Ph : Real ,
AV: Rea l := 0 ,
DIFF : Ar ray [ Nat , d i s c r e t e Rea l ] := constant ( 0 ) ,
phase : Phase := ASLEEP ,
RCVD RDY : Set [ Nat ] := ∅ ,
i n i t i a l l y Ph ≥ 0

de r i v ed v a r i a b l e s
L o c a l := Ph + CORR

CORR Correction value for computing local time from local physical clock

Ph, Local As in the clock maintenance algorithm

DIFF Estimated local time differences array, one element per process

AV Fault tolerant time average

phase Protocol’s phase (type of last message sent)

RCVD RDY Set with ids of processes from which a RDY was received
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Establishing Synchronization TIOA

TIOA For Clock Synchronization: Initial States

The protocol does NOT assume that the local clocks are initially
synchronized

The initially clause just forces local clocks to be positive values

The initial values for variables T, U, V ensure that the time triggered
transitions will not be enabled or even scheduled in the initial states

While phase = ASLEEP the automaton does not send any messages
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Establishing Synchronization TIOA

TIOA For Clock Synchronization: Transitions (1/4)

input s t a r t
e f f

T := L o c a l
phase := READY

The start action changes the automaton from a passive state, in
which it does not send messages, to an active state

Immediately after, it will broadcast a time message
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Establishing Synchronization TIOA

TIOA For Clock Synchronization: Transitions (2/4)

i nput r e c e i v e (m, j , i )
e f f

i f ( m = RDY ) then
RCVD RDY := RCVD RDY ∪ { j }
i f ( |RCVD RDY | = n − f ) then

f o r k : Nat where k < n do
DIFF [ k ] := DIFF [ k ] − A

od
CORR := CORR + A
T := Loca l

end i f
e l s e // Time message , w i th the l o c a l t ime at s ende r

DIFF [ j ] = m + δ − Loca l
i f ( phase = ASLEEP ) then

T := Loca l
phase := READY

end i f
end i f
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Establishing Synchronization TIOA

TIOA For Clock Synchronization: Transitions (3/4)

output b roadca s t (m, i )
pre

( ( Loca l = T ∧ phase = READY) ⇒ m = T)
∧ ( ( ( Loca l = V ∨ |RCVD−RDY | = ( f + 1) ) ∧ phase = TIME )
⇒ m = RDY)

e f f
i f ( phase = READY ) then // TIME b roadca s t : s t a r t new round

U := Loca l + (1+ρ ) (2δ + 4ε)
RCVD RDY := ∅
phase := TIME

e l s e // RDY broadca s t
phase := READY

end i f

The phase = XXX in the premises of the implications on the
preconditions ensure that a process does not send more than one
message of the same type at a given time
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Establishing Synchronization TIOA

TIOA For Clock Synchronization: Transitions (4/4)

i n t e r n a l update
pre

Loca l = U ∧ Loca l > V
e f f

AV := mid ( r educe (DIFF ) )

V := Loca l + (1 + ρ ) (4 ε+4ρ(8+2ε)+2ρ2 (δ + 2 ε ) )

AV is now part of state, because it is computed at one time instant
and applied at another

AV is applied to the estimated local time differences rather than on
the local time of the arrival of time messages

The procedures mid() and reduce() are the same as in the clock
synchronization maintenance algorithm
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Establishing Synchronization TIOA

TIOA For Clock Synchronization: Trajectories

t r a j e c t o r i e s
stop when

( Loca l = T ∧ phase = READY) ∨ ( Loca l = U ∧ Loca l > V)
∨ ( Loca l = V ∧ phase = TIME)

evo lve
1/(1+ρ) ≤ d (Ph) ≤ 1 + ρ

Each of the terms in the stop when clause specifies a precondition
of a transition that is time triggered

Until the start transition, the physical clock is allowed to increase in
an unconstrained way

The occurrence of start forces the process to begin the first round

In each round, the protocol will execute successively:

1. the broadcast of a time message
2. the update of its estimate of the correction value
1. the broadcast of a RDY message
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Establishing Synchronization TIOA

Synchronization Establishment Algorithm: Main Results
Let B i be the maximum difference between nonfaulty clock values at
the latest real time when a nonfaulty process begins round i , i.e.
when it broadcasts its clock value.
As for the maintenance algorithm, the fault-tolerant averaging
function used in the algorithm causes the difference to be
approximately halved at each round

Lemma 20

For i ≥ 0,B i+1 ≤ B i/2 + 2ε+ 2ρ(11δ + 39ε)

Thus the limit of B i as the round number increases without bound is
4ε+ 4ρ(11δ + 39ε), i.e. the algorithm achieves a closeness of
synchronization of about 4ε.
This protocol has two operation modes:

1. To run it indefinitely
2. To run it just until the desired closeness of synchronization is achieved

and then to switch to the maintenance algorithm.
F In this case, we need for a protocol to switch between the two

algorithms.
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Discussion

Practice

This algorithm has been adopted by FlexRay, the next-generation
communications network protocol for the automotive domain.
FlexRay uses a TDMA scheme in a broadcast medium.

I Clock synchronization is used at a low-level to define the boundaries of
the TDMA slots.

I The protocol is supposed to support real-time applications, with rather
small deadlines. I estimate that the synchronization of the clocks has
to be in the range of µs.

The authors report a problem with the protocols implementation on a
broadcast medium:

I If all nodes are very tightly synchronized, all of them may attempt to
broadcast their time simultaneously causing collisions.

I To avoid it, they propose staggering the broadcast times, so that
process j broadcasts its i round times at its local clock time T i + jσ,
where σ is just big enough so that collisions are sufficiently infrequent
that they can be attributed to faulty processors.

I A worst-case analysis shows that the modified algorithm behaves very
similarly to the original one.
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Further Reading

Further Reading

Jennifer Welch and Nancy Lynch, “A New Fault-Tolerant Algorithm
for Clock Synchronization”, Information and Computation 77, 1-36
(1988) (Available from Nancy Lynch’s publications page on the Web.)

Jennifer Lundelius, “Synchronizing Clocks in a Distributed System”,
S. M. thesis, MIT, MIT/LCS/TR-335 (Available on the Web. Use
google to find it.)
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