

TituloDistributed Computing

José Orlando Pereira

Grupo de Sistemas Distribuídos
Departamento de Informática

Universidade do Minho

2009/2010

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Asynchronous systems

Assume no bounds on:

clock drift

processing time

message passing time

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Goals

How do we make sure that algorithms are
correct?

Why are algorithms correct?

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Synchronous System

With synchronous
rounds:

Simple proofs by
induction

Local state easily
reflects global state

delta

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Synchronous System

Are solutions obtained with the synchronous
system applicable?

Not really...

The practitioner's argument

The theoretician's argument

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

In practice

Tight synchronous limits are
dangerous:

Round time proportional to
mean delay

Low coverage or expensive
systems

Large synchronous limits are not useful:

Round time proportional to high percentile delay

Taking advantage of synchrony causes a very
large performance penalty

Typical delay distribution

high
percentile

mean

time

fr
eq

ue
nc

y

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

In practice

Solutions for asynchronous systems might
have better performance:

Round time proportional to mean delay

Even if more
message exchanges
are necessary

Typical delay distribution

high
percentile

mean

time
fr

eq
ue

nc
y

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

In theory

Start with a synchronous reliable fully
connected network

Relax the system model:

Unbounded message loss

Large/unknown graph diameter

Dynamic graph

Example: Leader election

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Leader election

Static known
participants

Can loose all messages

Synchronous
Unreliable clique

Asynchronous
Reliable clique

Synchronous
Reliable clique

Disconnected

Synchronous
Reliable connected
Unknown diameter

Synchronous
Reliable dynamic

Synchronous
Reliable static

Synchronous
Bounded unreliable

Clique

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Leader election

Static known
participants

Can loose all messages

Synchronous
Unreliable clique

Asynchronous
Reliable clique

Synchronous
Reliable clique

Disconnected

Synchronous
Reliable connected
Unknown diameter

Trivial Possible Possible
(eventually)

Impossible

Synchronous
Reliable dynamic

ro
utin

g

routin
g

stronger than

re
tra

nsm
iss

ion

Synchronous
Reliable static

ro
utin

g

Synchronous
Bounded unreliable

Clique

retra
nsm

iss
ion

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

In theory

Asynchronism subsumes:

Heterogeneity

Dynamics

Uncertainty

Much simpler than handling them explicitly

Often considered an Universal model:

Widely applicable solutions

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Sample computation

An alarm clock program:

main: // line 1

cnt:=3 // line 2

while cnt>0: // line 3

sleep 1s // line 4
cnt := cnt-1 // line 5

ring // line 6

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Observation

Select model variables and periodically
observe the system:

1 2 3 41 5 3 4 5 3 4 5 3 6

cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=? vcnt:=2 vcnt:=0

line:=1 line:=5line:=4 line:=3 line:=4 line:=3 ...

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Abstraction

Choose observation that allows reasoning on
the desired properties:

1 2 3 41 5 3 4 5 3 4 5 3 6cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Behaviors/Executions

Consider all possible sequences of chosen
atomic actions:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Safety properties

Nothing bad ever happens:

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

OK!

OK!

OK!

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Liveness properties

Something good eventually(*) happens:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

(*) eventually = inevitavelmente ≠ eventualmente

OK!

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Specification

Specification is a set of allowable behaviors:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

timeout timeout timeout ring

S=

Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Goal 1: Is it correct?

Is there a convenient representation for
specification sets?

Compact

Practical

How to prove safety and liveness properties?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

