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Distributed Computing Asynchronous Systems

Asynchronous systems

@ Assume no bounds on:
» clock drift
* processing time
°* message passing time
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* How do we make sure that algorithms are
correct?

@ \WWhy are algorithms correct?
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Synchronous System

@ With synchronous
rounds:

» Simple proofs by
iInduction

» Local state easily

@ How do we make sure that algorithms are

reﬂeCtS g IObaI State correct?

@ \Why are algorithms correct?
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Synchronous System

@ Are solutions obtained with the synchronous
system applicable?

@ Not really...

» The practitioner's argument
» The theoretician's argument
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In practice

Typical delay distribution

@ Tight synchronous limits are
dangerous: 5
» Round time proportional to E_?
mean delay |
s Low coverage or expensive o tme hiz )
SyStemS percentile

@ Large synchronous limits are not useful:

» Round time proportional to high percentile delay

» Taking advantage of synchrony causes a very
large performance penalty
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In practice

@ Solutions for asynchronous systems might
have better performance:

» Round time proportional to mean delay

» Even if more Typical delay distribution
message eXChangeS

dre necessary 9)
()
3
f time F
mean high
percentile
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In theory

@ Start with a synchronous reliable fully
connected network

@ Relax the system model:

» Unbounded message loss
» Large/unknown graph diameter
» Dynamic graph

» Example: Leader election
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Example: Leader election

participants Reliable static Synchronous
Reliable dynamic
Synchronous

Reliable clique
d Synchronous

Unreliable clique

Synchronous
Bounded unreliable
Clique Asynchronous
Reliable clique

Disconnected

Synchronous Can loose all messages

Reliable connected
Unknown diameter
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Example: Leader election

Possible
(eventually)

Trivial Possible

Static known

o Synchronous
participants
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Synchronous ©
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Synchronous
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Impossible

& Synchronous
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Synchronous Age\ Disconnected
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Synchronous
Reliable connected
Unknown diameter

Can loose all messages
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In theory

@ Asynchronism subsumes:

» Heterogeneity
» Dynamics
» Uncertainty
@ Much simpler than handling them explicitly

@ Often considered an Universal model:

» Widely applicable solutions
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Sample computation

@ An alarm clock program:

main: /[l line 1
cnt:=3 I/ line 2
while cnt>0: //'line 3

sleep 1s /l line 4
cnt := cnt-1 /l line 5
ring // line 6
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Observation

@ Select model variables and periodically
observe the system:

3

2 )
1 (hl ‘F ? T
1 2 £ 3 4 € 3 4 £ 3 5 € 3 6
(&} (&} (&} (&}
: : r: ‘ : : T : : >
line:41 line:=4 line:=3 line:=4line:=5 lipe:=3] ...
vent:;=? vent:;=2 vicnt:=0
vent:=3 vent:=2 vent:=1 vent:=0 END
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Abstraction

@ Choose observation that allows reasoning on
the desired properties:

= N
cnt:=3
<
- W
I N
= U1
cnt:=2
= W
N
o
cnt:=1
w
= 1
cnt:=0
= W
6

vent:=3 vent:=2 vent:=1 vent:=0 END

~— "7 U \J V
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@ Consider all possible sequences of chosen
atomic actions:

vent:=3 vent:=2 vent:=1 vent:=0 END
vent:=3 vent:=2 vent:=1
vent:=3 vent:=4 vent:=2 vent:=1 vent:=0 END

NN NZEV;
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Safety properties

@ Nothing bad ever happens:

OK! vent:=3 vent:=2 vent:=1 vent:=0 END
~ 7 UV SV
OK! vent:=3 vent:=2 vent:=1
~— "7 UV
i%j:g vent:=4 vent:=2 vent:=1 vent:=0 END
VNV VNV
OK! vent:=3 vent:=2 vent:=1 vent:=1 vent:=1

VAV AV ARV,
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Liveness properties

» Something good eventually"” happens:

OK! vent:=3 vent:=2 vent:=1 vent:=0 END

o M.V
i%tv tZ\/ vont=1

vent:=2 vent:=1 vent:=1 vent:=1

VAV AV ARV,

O eventually = inevitavelmente # eventualmente

-
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Specification

@ Specification is a set of allowable behaviors:

r \
vent:=3 vent:=2 vent:=1 vent:=0 END
5=< \_/ \/4 \/ \j >

~ timeout timeout timeout ring
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Goal 1: Is it correct?

@ |s there a convenient representation for
specification sets?

» Compact
* Practical

» How to prove safety and liveness properties?
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