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Asynchronous systems

Assume no bounds on:

clock drift

processing time

message passing time



Distributed Computing Asynchronous Systems

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Goals

How do we make sure that algorithms are 
correct?

Why are algorithms correct?
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Synchronous System

With synchronous 
rounds:

Simple proofs by 
induction

Local state easily 
reflects global state

delta
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Synchronous System

Are solutions obtained with the synchronous 
system applicable?

Not really...

The practitioner's argument

The theoretician's argument
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In practice

Tight synchronous limits are
dangerous:

Round time proportional to
mean delay

Low coverage or expensive
systems

Large synchronous limits are not useful:

Round time proportional to high percentile delay

Taking advantage of synchrony causes a very 
large performance penalty

Typical delay distribution
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In practice

Solutions for asynchronous systems might 
have better performance:

Round time proportional to mean delay

Even if more
message exchanges
are necessary

Typical delay distribution
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In theory

Start with a synchronous reliable fully 
connected network 

Relax the system model:

Unbounded message loss

Large/unknown graph diameter

Dynamic graph

Example: Leader election
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Example: Leader election

Static known
participants

Can loose all messages

Synchronous
Unreliable clique

Asynchronous
Reliable clique

Synchronous
Reliable clique

Disconnected

Synchronous
Reliable connected
Unknown diameter

Synchronous
Reliable dynamic

Synchronous
Reliable static

Synchronous
Bounded unreliable

Clique
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Example: Leader election

Static known
participants

Can loose all messages

Synchronous
Unreliable clique

Asynchronous
Reliable clique

Synchronous
Reliable clique

Disconnected

Synchronous
Reliable connected
Unknown diameter

Trivial Possible Possible
(eventually)

Impossible
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In theory

Asynchronism subsumes:

Heterogeneity

Dynamics

Uncertainty

Much simpler than handling them explicitly

Often considered an Universal model:

Widely applicable solutions
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Sample computation

An alarm clock program:

main: // line 1

cnt:=3 // line 2

while cnt>0: // line 3

sleep 1s // line 4
cnt := cnt-1 // line 5

ring // line 6
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Observation

Select model variables and periodically 
observe the system:

1 2 3 41 5 3 4 5 3 4 5 3 6

cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=? vcnt:=2 vcnt:=0

line:=1 line:=5line:=4 line:=3 line:=4 line:=3 ...

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2
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Abstraction

Choose observation that allows reasoning on 
the desired properties:

1 2 3 41 5 3 4 5 3 4 5 3 6cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2
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Behaviors/Executions

Consider all possible sequences of chosen 
atomic actions:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...
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Safety properties

Nothing bad ever happens:

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

OK!

OK!

OK!

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4
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Liveness properties

Something good eventually(*) happens:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

(*) eventually = inevitavelmente ≠ eventualmente

OK!
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Specification

Specification is a set of allowable behaviors:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

timeout timeout timeout ring

S=
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Goal 1: Is it correct?

Is there a convenient representation for 
specification sets?

Compact

Practical

How to prove safety and liveness properties?
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