
Synchronous Network Model

Paulo Sérgio Almeida

Distributed Systems Group
Departamento de Informática

Universidade do Minho

2007/2008

c©2007 Paulo Sérgio Almeida Synchronous Network Model 1

Synchronous network model Synchronous network systems

Synchronous network system

Collection of processes at nodes of a directed graph;
Start with some initial state;
Can send message to neighbors along edges (channels);
Can receive messages from neighbors;
Proceed in lockstep doing rounds;

c©2007 Paulo Sérgio Almeida Synchronous Network Model 2

Synchronous network model Synchronous network systems

Notation

Directed graph G = (V , E);
n = |V |: size of network;
outi : outgoing neighbors;
ini : incoming neighbors;
nbrsi : neighbors; under bidirectional edges (undirected graph);
distance(i , j): lenght of shortest directed path;
diam: network diameter – maximum distance(i , j) for all i , j ;
M: message alphabet; null = no message;

c©2007 Paulo Sérgio Almeida Synchronous Network Model 3

Synchronous network model Synchronous network systems

Processes

Components of a process i ∈ V :
statesi : set of states (possibly infinite);
starti : set of possible starting states (non-empty);
msgsi : message-generating function

statesi × outi → M ∪ {null}

transi : state-transition function

statesi × (M ∪ {null})|ini | → statesi

c©2007 Paulo Sérgio Almeida Synchronous Network Model 4

Synchronous network model Synchronous network systems

Rounds and execution

Execution starts with:
processes in some start state;
channels empty;

Processes repeat rounds in lockstep, consisting of two steps:
1 apply message-generating function to compute messages to all

neighbors; put them in channels;
2 apply state-transition function to state and incoming messages to

compute new state; remove messages from channels;

Model is deterministic; starting states determine all execution;

c©2007 Paulo Sérgio Almeida Synchronous Network Model 5

Synchronous network model Synchronous network systems

Halting

A process halting can be modeled by having halting states;
A process in a halting state:

does not send messages;
transits to the same state;

Here we have node-specific halting states; not the system wide
halting state of traditional finite-state automata;

c©2007 Paulo Sérgio Almeida Synchronous Network Model 6

Synchronous network model Synchronous network systems

Different start times

It can be useful to have processes start at different times;
Can be modeled by:

adding an extra environment node, with edges to normal nodes;
environment process sends wakeup messages when desired;
processes start in quiescent states; do not send messages;
they change state when receiving some wakeup or other message;

c©2007 Paulo Sérgio Almeida Synchronous Network Model 7

Synchronous network model Synchronous network systems

Failures

Types of failure: process failure and channel failure;
Process stopping failure:

a process can stop somewhere in its execution;
can stop after sending a subset of the messages it was supposed
to;

Process Byzantine failure:
can start sending next messages in arbitrary ways, not following its
specification;

Channel failures:
channels can fail by losing messages (some message placed in a
channel in step 1 of a round are cleared before step 2);

c©2007 Paulo Sérgio Almeida Synchronous Network Model 8

Synchronous network model Synchronous network systems

Inputs and outputs

Inputs are just possible values in designated input variables;
Outputs are values in output variables:

these are write-once variables, recording the first write operation;
can be read multiple times;

c©2007 Paulo Sérgio Almeida Synchronous Network Model 9

Synchronous network model Synchronous network systems

Executions

State assignment: assignment of a state to each process;
Message assignment: assignment of a message (or null) to each
channel;
Execution: infinite sequence C0, M1, N1, C1, M2, N2, C2, . . .

Ci state assignment after round i ;
Mi message assignment; messages sent in round i ;
Ni message assignment; messages received in round i ;
Mi 6= Ni if there is message loss;

Executions e and e′ are indistinguishable to process i , denoted
e i∼e′, if i has the same sequence of states, outgoing and
incoming messages in e and e′;
Executions can also be said to be indistinguishable to process i
up to r rounds.

c©2007 Paulo Sérgio Almeida Synchronous Network Model 10

Synchronous network model Synchronous network systems

Proof methods

Invariant assertions:
property of the system state that is true in every execution, after
every round;
can involve the number of completed rounds;
can be proven by induction on the number of completed rounds;

Simulations:
correspondence between algorithm A and B;
A produces the same input/output behavior as B;
expressed by an assertion relating states of A and B (when both
are started with same inputs and run with same failure pattern);

c©2007 Paulo Sérgio Almeida Synchronous Network Model 11

Synchronous network model Synchronous network systems

Complexity measures

Time complexity:
number of round until output produced or processes halt;

Communication complexity:
total number of (non null) messages sent;
eventually also number of bits in messages;

Time is more important in practice;

c©2007 Paulo Sérgio Almeida Synchronous Network Model 12

Synchronous network model Synchronous network systems

Randomization

It can be useful to allow random choices;
Model is augmented with random function:

randi is added for each node i ;
randi(s), for state s, is a probability distribution over a subset of
statesi ;

Each round starts now by a random choice of new a state;
Executions become C0, D1, M1, N1, C1, D2, M2, N2, C2, . . .

where Dr represents state assignment after random choices in
round r ;

In randomized systems, claims become probabilistic;

c©2007 Paulo Sérgio Almeida Synchronous Network Model 13

	Synchronous network model
	Synchronous network systems

