Distributed Computing I/O Automata

Trace properties

@ A trace is the externally visible sequence of
actions

@ A trace property is a set of traces
» Proof strategy:

» Add the trace as a variable to the state

» Safety trace properties are then invariant
assertions

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Reliable channel

Send(m Receive(m)
» Reliable channel:
» Unordered

: FIFO

Why Receive(m) and
not m .= Receive()?

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Reliable channel

* State: * Receive(m), meM:
* transit, bag of M, » Pre-condition:
initially {} > m Iin transit
* Send(m), meM: » Effect:
» Pre-condition: * transit := transit - {m}
* True
* Effect:

* transit :=transit + {m}

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Behaviors of a channel

receive(.
{m1,m3}
0 » {m1} {m1} <
{m1,m2} {m2,m3} — » ...
send(...) {m1.m2,m3) <
{m1,m2,m3,m4}

@ Concurrency is modeled by alternative
enabled transitions:

» Sender and receiver
» Within the channel (reordering)

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Liveness and fairness

recelve

{m2} {m1 m2}
{3 » {m1} {m1} im1.ms} < o {m1, mn%
{m1,m2} {m2,m3} ——» -

send(. {m1,m2,m3}

{m1,m2,m3 m4}
e M1 m2,..., miﬁ%}

@ Some behaviors do not satisfy liveness:
* If mis sent, eventually m is received

@ Some transitions don't get a fair chance to
run:

» receive(m1) and receive(m®)

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Fairness

@ Partition transitions in tasks:

» Tasks:

» For all m: {receive(m)}

@ Assume that no task can be forever
prevented to take a step

@ \What about a FIFO reliable channel?

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Liveness and fairness

receive(...) {}
o (v
{} » {m1} \
{m1,m2} DR {11721 1%) J——

send(...) {m1 ,m2,m3}< <
{m1,m2,m3,m4}

@ FIFO order excludes a number of behaviors

» Only executions with a finite number of
receive(m) steps are unfair

@ Fairness ensured by a single task:

» {For all m: receive(m)}

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: FIFO channel

* State: * Receive(m), meM:
» transit, seq. of M, » Pre-condition:
initially <> » m=head(transit)
* Send(m), meM: » Effect:
s Pre-condition: * transit := tail(transit)
» True * Tasks:
» Effect: » {For all m:
s transit :=transit+<m> receive(m)}

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring

@ Rotating token algorithm:

@ Mutual exclusion?
@ Deadlock freedom?

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring

e State:

* nis the number of nodes
» token[0]=1
» tokenli]=0, for O<i<n
@ Move(i):
» Pre-condition:
 token[i]=1
* Effect:

» tokenli]:=0
» token[(i+1) mod n]:=1

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring

@ Mutual exclusion:

» There is at most one token in the ring (i.e. sum
of token[i]<1)

@ Proof by induction:

» Base step:
» Ytokenli]=1 trivially true
» |nduction step:

* Ytoken-before[i]l<1=) token-after[i]<1

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring

@ No starvation:
» Eventually i gets the token at least k times
@ Proof with a progress function:

» Function from state to a well-founded set
» Helper actions decrease the value

» QOther actions do not increase the value

» Helper actions are taken until goal is met

(i.e. enabled and in separate tasks)

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing
Progress function

I/O Automata

@ Define progress function f as:

» Target is non-negative integers

move(...)

*» Value is ((k-1) xn +i-1) - length(trace)
e Example with n=3, k=2, and I=3:

[1,0,00 —» [0,1,0] — 7 [0,0;,’I] [1,0,0]

[0,1,0] [0,0,1]
3

© 2007 José Orlando Pereira

GSD/DI/U.Minho

Distributed Computing I/O Automata

Summary

* |/O Automata definition
» Safety specification
» Fairness specification
» Proof strategies for:

* |nvariants

* Trace properties
* Safety
* Liveness

» How to apply to large and complex
specifications?

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring with channels

@ Refine the specification to include channels:

@ Mutual exclusion?
@ Deadlock freedom?

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring with channels

@ Initially: » Effect:
> nis the number of » token([i]:=0
nodes o transit[i]:={1}
» token[0]=1 @ Recelve:
* token(i]=0, for O<i<n » Pre-condition:
> transit[i]={}, for all i s 1 in transit]i]
s Send: » Effect:

* token[(i+1)mod n]:=1
* transit[i]:={}

* Pre-condition:
 token[i]=1

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring with channels

@ Proof of mutual exclusion?

@ Seems to be true. But...
» >token[i]<1, with token=[1,0,0,...] and transit[0]={1}
» after receive,) token[i]=2!

@ Solution is to strengthen the invariant:

» Prove by induction: token[i]+> elems(transit[i])<1

@ Then conclude) token[i]<1
(assuming that transit[i] not negative, easy to prove)

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring with channels

£

pﬁ@ receive(...)

(1,001 [000] ,[010 _[000 ,[001 _[000 .,
[{}.{}.{}] [{1}3.4}{}] [{}.{h.{}] [{}.{1}.{}] [{}.{}.{}] [{3.{{1}]

send(...)

@ One can observe valid executions of reliable
channels embedded in the ring

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Composition

@ Compatible automata:

* Internal actions do not overlap with any other
actions

» Qutput actions are disjoint

» No action is contained in infinitely many
automata

@ This allows:

» Several input actions to overlap

» Input actions to overlap with a single output
action

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Composition

@ A composition A with signature S from a set
of Al, with signature Si

@ The state of the composed automaton A is:
» state(A) = I state(Ai)
» start(A) = 'l start(Ai)
® The signature of S is as follows:
s out(S) = U out(Si)
s int(S) = U int(Si)
> in(S) = U in(Si) — out(S)
@ Transitions and tasks likewise

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: A process

* State: * Receive(m), meM:
» token, integer, » Pre-condition:
initially O s true
* Send(m), meM: » Effect:
» Pre-condition: * token := 1
* token = 1
* Effect:
» token :=0

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Composite token ring

@ send(m) is an input to a channel
» overlaps with receive(m) in a process
@ receive(m) is an input to a process

» overlaps with send(m) in a channel

receive(...)

[1,0,0] [0.0.0] 0,1,0] (0.0 0] 00,17 _[0,000
Qo0 KD {}1@ TR URiE o X}

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Compositional reasoning

@ A necessary condition for mutual exclusion in
a ring is that the token is not duplicated while
In transit

@ Consider the following trace property:

» For each receive(m) (i.e. lock), there is some
corresponding send(m) (i.e. unlock)

@ This property is true for each individual
reliable channel

@ Therefore it is true for the composed token
ring

© 2007 José Orlando Pereira GSD/DI/U.Minho

