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Trace properties

A trace is the externally visible sequence of 
actions

A trace property is a set of traces

Proof strategy:

Add the trace as a variable to the state

Safety trace properties are then invariant 
assertions



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Reliable channel

Send(m) Receive(m)

Reliable channel:

Unordered

FIFO

Why Receive(m) and
not m := Receive()?



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Reliable channel

State:

transit, bag of M,
initially {}

Send(m), mM:

Pre-condition:
True

Effect:
transit :=transit + {m}

Receive(m), mM:

Pre-condition:
m in transit

Effect:
transit := transit - {m}
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Behaviors of a channel

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

Concurrency is modeled by alternative 
enabled transitions:

Sender and receiver

Within the channel (reordering)

send(...)

receive(...)

{m1,m2}

...

...
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Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

Some behaviors do not satisfy liveness:

If m is sent, eventually m is received

Some transitions don't get a fair chance to 
run:

receive(m1) and receive(m*) 

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...
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Fairness

Partition transitions in tasks:

Tasks:
For all m: {receive(m)}

Assume that no task can be forever 
prevented to take a step

What about a FIFO reliable channel?
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Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

FIFO order excludes a number of behaviors

Only executions with a finite number of 
receive(m) steps are unfair

Fairness ensured by a single task:

{For all m: receive(m)}

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...
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Example: FIFO channel

State:

transit, seq. of M, 
initially <>

Send(m), mM:

Pre-condition:
True

Effect:
transit :=transit+<m>

Receive(m), mM:

Pre-condition:
m=head(transit)

Effect:
transit := tail(transit)

Tasks:

{For all m: 
receive(m)}
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Example: Token ring

Rotating token algorithm:

Mutual exclusion?

Deadlock freedom?
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Example: Token ring

State:

n is the number of nodes

token[0]=1

token[i]=0, for 0<i<n

Move(i):

Pre-condition:
token[i]=1

Effect:
token[i]:=0

token[(i+1) mod n]:=1
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Example: Token ring

Mutual exclusion:

There is at most one token in the ring (i.e. sum 
of token[i]≤1)

Proof by induction:

Base step:
∑token[i]=1 trivially true

Induction step:

∑token-before[i]≤1∑token-after[i]≤1
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Example: Token ring

No starvation:

Eventually i gets the token at least k times 

Proof with a progress function:

Function from state to a well-founded set

Helper actions decrease the value

Other actions do not increase the value

Helper actions are taken until goal is met
(i.e. enabled and in separate tasks)

Invariant assertion
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Progress function

[1,0,0] [0,1,0] [0,0,1]
move(...)

3

[1,0,0] [0,1,0] [0,0,1]

2 1 0

Define progress function f as:

Target is non-negative integers

Value is ((k-1) x n + i - 1) - length(trace)

Example with n=3, k=2, and i=3:
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Summary

I/O Automata definition

Safety specification

Fairness specification

Proof strategies for:

Invariants

Trace properties
Safety

Liveness

How to apply to large and complex 
specifications?
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Example: Token ring with channels

Refine the specification to include channels:

Mutual exclusion?

Deadlock freedom?
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Example: Token ring with channels

Initially:

n is the number of 
nodes

token[0]=1

token[i]=0, for 0<i<n

transit[i]={}, for all i

Send:

Pre-condition:
token[i]=1

Effect:
token[i]:=0

transit[i]:={1}

Receive:

Pre-condition:
1 in transit[i]

Effect:
token[(i+1)mod n]:=1

transit[i]:={}
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Example: Token ring with channels

Proof of mutual exclusion?

Seems to be true. But...
∑token[i]≤1, with token=[1,0,0,...] and transit[0]={1}

after receive, ∑token[i]=2!

Solution is to strengthen the invariant:

Prove by induction: ∑token[i]+∑elems(transit[i])≤1

Then conclude ∑token[i]≤1
(assuming that transit[i] not negative, easy to prove)
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Example: Token ring with channels

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

send(...)

receive(...)

One can observe valid executions of reliable 
channels embedded in the ring
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Composition

Compatible automata:

Internal actions do not overlap with any other 
actions

Output actions are disjoint

No action is contained in infinitely many 
automata

This allows:

Several input actions to overlap

Input actions to overlap with a single output 
action
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Composition

A composition A with signature S from a set 
of Ai, with signature Si 

The state of the composed automaton A is:

state(A) = Π state(Ai)

start(A) = Π start(Ai)

The signature of S is as follows:

out(S) = U out(Si)

int(S) = U int(Si)

in(S) = U in(Si) – out(S)

Transitions and tasks likewise
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Example: A process

State:

token, integer,
initially 0

Send(m), mM:

Pre-condition:
token = 1

Effect:
token := 0

Receive(m), mM:

Pre-condition:
true

Effect:
token := 1
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Example: Composite token ring

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

send(...)

receive(...)

send(m) is an input to a channel

overlaps with receive(m) in a process

receive(m) is an input to a process

overlaps with send(m) in a channel
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Compositional reasoning

A necessary condition for mutual exclusion in 
a ring is that the token is not duplicated while 
in transit

Consider the following trace property:

For each receive(m) (i.e. lock), there is some 
corresponding send(m) (i.e. unlock)

This property is true for each individual 
reliable channel

Therefore it is true for the composed token 
ring


