
Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Trace properties

A trace is the externally visible sequence of 
actions

A trace property is a set of traces

Proof strategy:

Add the trace as a variable to the state

Safety trace properties are then invariant 
assertions



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Reliable channel

Send(m) Receive(m)

Reliable channel:

Unordered

FIFO

Why Receive(m) and
not m := Receive()?



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Reliable channel

State:

transit, bag of M,
initially {}

Send(m), mM:

Pre-condition:
True

Effect:
transit :=transit + {m}

Receive(m), mM:

Pre-condition:
m in transit

Effect:
transit := transit - {m}



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Behaviors of a channel

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

Concurrency is modeled by alternative 
enabled transitions:

Sender and receiver

Within the channel (reordering)

send(...)

receive(...)

{m1,m2}

...

...



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

Some behaviors do not satisfy liveness:

If m is sent, eventually m is received

Some transitions don't get a fair chance to 
run:

receive(m1) and receive(m*) 

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Fairness

Partition transitions in tasks:

Tasks:
For all m: {receive(m)}

Assume that no task can be forever 
prevented to take a step

What about a FIFO reliable channel?



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

FIFO order excludes a number of behaviors

Only executions with a finite number of 
receive(m) steps are unfair

Fairness ensured by a single task:

{For all m: receive(m)}

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: FIFO channel

State:

transit, seq. of M, 
initially <>

Send(m), mM:

Pre-condition:
True

Effect:
transit :=transit+<m>

Receive(m), mM:

Pre-condition:
m=head(transit)

Effect:
transit := tail(transit)

Tasks:

{For all m: 
receive(m)}



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring

Rotating token algorithm:

Mutual exclusion?

Deadlock freedom?



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring

State:

n is the number of nodes

token[0]=1

token[i]=0, for 0<i<n

Move(i):

Pre-condition:
token[i]=1

Effect:
token[i]:=0

token[(i+1) mod n]:=1



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring

Mutual exclusion:

There is at most one token in the ring (i.e. sum 
of token[i]≤1)

Proof by induction:

Base step:
∑token[i]=1 trivially true

Induction step:

∑token-before[i]≤1∑token-after[i]≤1



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring

No starvation:

Eventually i gets the token at least k times 

Proof with a progress function:

Function from state to a well-founded set

Helper actions decrease the value

Other actions do not increase the value

Helper actions are taken until goal is met
(i.e. enabled and in separate tasks)

Invariant assertion



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Progress function

[1,0,0] [0,1,0] [0,0,1]
move(...)

3

[1,0,0] [0,1,0] [0,0,1]

2 1 0

Define progress function f as:

Target is non-negative integers

Value is ((k-1) x n + i - 1) - length(trace)

Example with n=3, k=2, and i=3:



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Summary

I/O Automata definition

Safety specification

Fairness specification

Proof strategies for:

Invariants

Trace properties
Safety

Liveness

How to apply to large and complex 
specifications?



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring with channels

Refine the specification to include channels:

Mutual exclusion?

Deadlock freedom?



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring with channels

Initially:

n is the number of 
nodes

token[0]=1

token[i]=0, for 0<i<n

transit[i]={}, for all i

Send:

Pre-condition:
token[i]=1

Effect:
token[i]:=0

transit[i]:={1}

Receive:

Pre-condition:
1 in transit[i]

Effect:
token[(i+1)mod n]:=1

transit[i]:={}



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring with channels

Proof of mutual exclusion?

Seems to be true. But...
∑token[i]≤1, with token=[1,0,0,...] and transit[0]={1}

after receive, ∑token[i]=2!

Solution is to strengthen the invariant:

Prove by induction: ∑token[i]+∑elems(transit[i])≤1

Then conclude ∑token[i]≤1
(assuming that transit[i] not negative, easy to prove)



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring with channels

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

send(...)

receive(...)

One can observe valid executions of reliable 
channels embedded in the ring



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Composition

Compatible automata:

Internal actions do not overlap with any other 
actions

Output actions are disjoint

No action is contained in infinitely many 
automata

This allows:

Several input actions to overlap

Input actions to overlap with a single output 
action



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Composition

A composition A with signature S from a set 
of Ai, with signature Si 

The state of the composed automaton A is:

state(A) = Π state(Ai)

start(A) = Π start(Ai)

The signature of S is as follows:

out(S) = U out(Si)

int(S) = U int(Si)

in(S) = U in(Si) – out(S)

Transitions and tasks likewise



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: A process

State:

token, integer,
initially 0

Send(m), mM:

Pre-condition:
token = 1

Effect:
token := 0

Receive(m), mM:

Pre-condition:
true

Effect:
token := 1



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Example: Composite token ring

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

send(...)

receive(...)

send(m) is an input to a channel

overlaps with receive(m) in a process

receive(m) is an input to a process

overlaps with send(m) in a channel



Distributed Computing I/O Automata

© 2007 José Orlando Pereira GSD/DI/U.Minho

Compositional reasoning

A necessary condition for mutual exclusion in 
a ring is that the token is not duplicated while 
in transit

Consider the following trace property:

For each receive(m) (i.e. lock), there is some 
corresponding send(m) (i.e. unlock)

This property is true for each individual 
reliable channel

Therefore it is true for the composed token 
ring


