Distributed Computing

José Orlando Pereira

Grupo de Sistemas Distribuidos
Departamento de Informatica
Universidade do Minho

2007/2008

Distributed Computing I/O Automata

Asynchronous systems

@ Assume no bounds on:
» clock drift
* processing time
* message passing time
@ Real world considerations:

» Load and processor scheduling
» Network delays

e Without loss of generality, assume a reliable
fully connected network

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Asynchronous systems

@ Relax the synchronous system:

» Unbounded message loss
» Large/unknown graph diameter
» Dynamic graph
@ Tight synchronous limits are dangerous:
» Low coverage, expensive systems
@ | arge synchronous limits are not useful:

» Taking advantage of synchrony causes a very
large penalty

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

/O Automata

@ Very general model:

» Describes also non-distributed and even non-
concurrent systems

o Powerful tools:

» Composable specifications
» Hierarchical specifications

@ Very widespread use in DS research

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Sample computation

@ An alarm clock program:

main: // line 1
cnt:=3 // line 2
while cnt>0: /[line 3

sleep 1s /l line 4
cnt := cnt-1 /l line 5
ring /['line 6

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Observation

@ Select model variables and periodically
observe the system:

= 1
cnt:=0

= W

e

= N
cnt:=3
= W
I N
— .g:
= U1
-_— cnt:=2
= W
D
o
cnt:=1
w

I rl ‘ 1 1 1 T : : : | -9 i r—>
line:q41 line:=4 line:=3line:=4line:=5 lipe:=3] ...
vent:=? vent:=2 vient:=0
vent:=3 vent:=2 vent:=1 vent:=0 END

© 2007 José Orlando Pereira

GSD/DI/U.Minho

Distributed Computing I/O Automata

Abstraction

@ Choose observation that conveys interface,
not implementation:

= N
cnt:=3

<

- W
I N
= U1
cnt:=2
= W

- N
o
cnt:=1
w

= 1
cnt:=0

= W

6

vent:=3 vent;=2 vent:=1 vent:=0 END

~—_ " VUV V

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Behaviors/Executions

@ Consider all possible sequences of chosen
atomic actions:

vent:=3 vent:=2 vent:=1 vent:=0 END
vent:=3 vent:=2 vent:=1
~—_7
vent:=3 vent:=4 vent:=2 vent:=1 vent:=0 END
NV
vent:=3 vent:i=2 vent:=1 vent:=1 vent:=1

ARV RN Y,

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Safety properties

@ Nothing bad ever happens:

OK! vent:=3 vent:=2 vent:=1 vent:=0 END
OK! vent:=3 vent:=2 vent:=1
~—_7
% vent:=4 vent:=2 vent:=1 vent:=0 END
NN NN Y
OK! vent:=3 vent:=2 vent:=1 vent:=1 vent:=1

A A AN Y

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Liveness properties

» Something good eventually” happens:

OK! vcnt:=3 vent:=2 vent:=1 vent:=0 END

nt:=3 vent:=2 vent:=1

L S

vent:=2 vent:=1 vent:=1 vent:=1

N U U

O eventually = inevitavelmente # eventualmente

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Specification

@ Specification is a set of allowable behaviors:

r \
vent:=3 vent:=2 vent:=1 vent:=0 END
° v \/ \/ \/ >
~ timeout timeout timeout ring s

@ An automaton provides a compact and
practical representation

» Infinite sets of behaviors

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Automaton definition

@ An automaton A has five components:

* sig(A), a triplet S of disjoint sets of actions:
* in(S), the input actions
* out(S), the output actions
 int(S), the internal actions

» states(A), a (possibly infinite) set of states
» start(A), a non-empty subset of states(A)

» trans(A), a subset of
states(A) x acts(sig(A)) x states(A)

» tasks(A), a partition off local(sig(A))

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Automaton definition

* Additional definitions:

* ext(S) =in(S) U out(S)

* |ocal(S) = out(S) U int(S)

o extsig(S) = (in(S), out(S), {})
@ Short-hands:

> ext(A) for ext(sig(A))

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Transitions

@ A transition is enabled in state s if there is
some T1,S' such that (s,1,s') € trans(A)

@ |Input transitions are required to be enabled
in all reachable states of A

@ A state in which only input transitions are
enabled is said to be quiescent

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Signature and State

@ |nput: » States:
> Timeout » vcnt, integer,
» Output: initially 3

» END, boolean,

* Ring initially false

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Transitions

@ Timeout: @ Ring:
* Pre-condition: * Pre-condition:
» 7"END and vcnt>0 * "END and vent =0
» Effect: » Effect:
» vent :=vent - 1 * END :=True

This is an equation,
not an attribution!

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Effects

» Effect equation:
» yvcnt :=vent - 1
@ Read this as:

» “yvent-after = vent-before — 1 and the state
otherwise unchanged”

@ Could be written as:

» ycnt-after + 1 = vent-before
» vcnt-before - vent-after = 1

© 2007 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Invariants

@ Goal: Prove that always vent < 4 (safety!).
@ Proof by induction:

» Base step: True for all initial states?
» 3<4: Yes!
» Induction step: True for any next step?

* Timeout transition:

- vent-after = vent-before - 1

- vent-before < 4
vcent-after+1 < 4
vent-after < 3 < 4: Done

» Ring transition:
- always vcnt-after = vent-before = 0
- 0<4: Done

© 2007 José Orlando Pereira GSD/DI/U.Minho

