Distributed Consensus with Process Failures

Paulo Sérgio Aimeida

Distributed Systems Group
Departamento de Informatica
Universidade do Minho

2007/2008

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures The problem

Distributed consensus with process failures

@ Here we still consider consensus in a synchronous system;
@ Instead of link failures, here we consider process failures;
@ Two failure models: stopping failures and Byzantine failures;

@ Stopping failure model:

@ processes may stop without warning;
o useful to model crashes;
@ Byzantine failure model:
o faulty processes may exibit completely unconstrained behavior;
e useful to model arbitrary processor malfunction (e.g. cosmic rays
that change bits of memory);
e term introduced by Lamport in The Byzantine Generals Problem;

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures The problem

The agreement problem with process failures

@ Consider n processes, 1, ..., nin arbitrary undirected graph;
@ Each process knows entire graph, including indices;

@ One start state for each process with input variable in a set V;
@ Processes make deterministic choices;

@ At most f processes may fail;

@ Goal: all processes decide value in V, subjectto ...

(©2007 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures The problem

The agreement problem with process failures

@ Stopping agreement:
@ agreement: no two processes decide different values;
o validity: if all processes start with the same v € V, then the
decision must be v;
e termination: all nonfaulty processes eventually decide;

@ Byzantine agreement:
e agreement: no two nonfaulty processes decide different values;
o validity: if all nonfaulty processes start with the same v € V, then
the decision of a nonfaulty proces must be v;
e termination: all nonfaulty processes eventually decide;

(©2007 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures The problem

Relationship between stopping and Byzantine agreement

@ Does an algorithm for Byzantine agreement also solves stopping
agreement?

@ Nol!

@ In the stopping case, processes must decide the same value,
even some faulty one that fails after deciding;

@ In the Byzantine case, we allow faulty processes to decide some
arbitrary value;

(©2007 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures The problem

Alternative stronger validity condition

@ An alternative validaty condition can be (for stopping failures):
e validity: a decision must be the initial value of some process;

@ This condition is stronger as it implies the previous one;

@ The use of the previous one:

e strengthens impossibility results, but
e weakens claims about algorithms;

(©2007 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

Algorithms for stopping failures

@ We consider complete n-node graphs;
@ Will present some algorithms:
e Basic algorithm: processes repeatedly broadcast set of known

values;
e Improvements on basic algorithm;
e Algorithms with an exponential information gathering strategy;

@ Some conventions:
@ Vp is some prespecified default value in V;
e bis an upper bound on bits needed to represent a value in V;

07 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

Basic algorithm — FloodSet, informally

@ Each process maintains a set W C V;
@ Initially W contains initial value;

@ In each round processes broadcast W and merges received sets
to W;

@ Inround f+ 1, if W = {v}, decide v, else decide vp;

07 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

Basic algorithm — FloodSet, formally

@ Process state, state; = (r, W, d) where:

e r € N —rounds, initially 0;
e W C V,initially i’s initial value;
e d € V U {unknown} — decision;

@ Message-generating function: msg;((r, W, d),j) = W;
@ Let M represent the set of messages delivered;
@ State transition function: trans;(r, W,d), M) = (r', W', d’) where:

r= r+1
w = wulm
v ifrr=f+1A3v.W ={v}

Vo otherwise andif r' = f + 1
d otherwise

B
I

(©2007 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

Some notation

@ Let Wi(r) be variable W of process i after r rounds;

@ A process is active after r rounds if it has not failed until the end
of round r;
@ Let A(r) denote the set of processes active after r rounds for a
given failure pattern; any A satisfies:
e A(0)={1,...,n};
e if r' > r,then A(r') C A(r);
e A(r) = A(r — 1) if no process has failed during round r;

(©2007 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

Some lemmas

If no process fails in some round r, Wi(r) = W(r) for all i,j € A(r).

It Wi(r) = Wj(r) foralli,j € A(r) and r' > r, then W;(r') = W(r") for
alli,j e A(r').

(©2007 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

Some lemmas

Ifi,j € A(f+ 1), then Wi(f + 1) = Wi(f + 1).

Since at most f processes are faulty, there must be some round
r < f+ 1 at which no process fails. Combine two previous
lemmas. O

07 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

FloodSet correctness

FloodSet solves agreement for stopping failures.

Proof.
@ Termination: at round f + 1 all nonfaulty processes decide;

@ Agreement: suppose any i,j € A(f + 1) that decide; from
previous lemma, W;(f + 1) = W;(f + 1) and they must decide the
same value;

@ Validity: if all processes start with v, then W;(0) = {v}, for all
processes, only {v} travels in messages, and W;(r) C {v} for
any process i and round r; therefore W;(f + 1) = {v} and the
decision must be v;

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

FloodSet complexity analysis

@ Rounds: f + 1 until nonfaulty processes decide;
@ Total number of messages: O((f + 1)n?);

@ Each messages contains set with at most n elements: bits per
message O(nb);

@ Bits of communication: O((f + 1)n®b);

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

Alternative decision rules

@ The essence of FloodSet is that all nonfaulty processes have the
same W after f + 1 rounds;

@ The decision rule does not matter much as long as it is a function
of W that decides on the element in case of a singleton;
@ Deciding a default vy looks artificial;

@ We can make the algorithm guarantee the stronger validity
condition and decide on the initial value of some process by
assuming a total order on V and deciding min(W);

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet — an algorithm with less communication

@ Improvement on FloodSet;
@ Insight: a process only needs to know

o the value of W when it has one element, or
e that W has more than one element;

@ Algorithm broadcasts at most two values:

@ at round 1 broadcasts initial value;
o after the first round when it has received some new value, it
broadcasts one of the new values received;

@ Decision is either v when W = {v} or vp;

(©2007 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet complexity analysis

@ Rounds: f + 1 until nonfaulty processes decide;
@ Total number of messages: at most 2n?;

@ Bits per message at most b;

@ Bits of communication: at most 2rb;

07 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet correctness

@ Could prove from scratch as before;
@ Instead, will use simulation: prove a formal relationship between
both algorithms;

@ Must obtain simulation relation: an invariant that relates the
states of both algorithms after any number of rounds when
starting with same inputs and subject to same failure pattern;

@ Let's use OW;(r) for W; after r rounds in OptFloodSet and W;(r)
for FloodSet as before;

@ Let's use i — j to denote process i sending a message in round
r to a process j active after round r;

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet correctness

Lemma (OFS1)

In FloodSet, if i ™ j, then Wi(r) € W(r + 1).

\

Lemma (OFS2)

In OptFloodSet, if i r, | is possible in failure pattern, then:

@ if [OWi(r)| = 1, then OW;(r) C OW,(r + 1),
o if|OWj(r)| > 1, then |OW,(r + 1)| > 1;

After any round r:
@ OW,(r) C W(r);
o if|Wi(r)| =1, then OW,(r) = W(r);

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet correctness

Lemma (OFS4)
After any round r, if (W;(r)| > 1, then |OW;(r)| > 1.

By induction; base case vacuous; assume lemma holds for r; assume
|Wi(r +1)| > 1; we have two cases:
@ [Wi(r)| > 1: by L.H. |OW;(r)| > 1, which implies |OW;(r + 1)| > 1;
@ |Wi(r)| = 1: by lemma OFS3, OW;(r) = W(r); two cases:
o Vj | j =2 iin FloodSet. | Wj(r)| = 1: for all such j, lemma OFS3
implies OW;(r) = Wj(r), lemma OFS2 implies
OW(r) C OW;(r + 1); therefore OWi(r + 1) = Wi(r +1);

o 3j|j2 iin FloodSet. |W(r)| > 1: by LH. |OW(r)| > 1 and lemma
OFS2 implies [OWi(r +1)| > 1;

O
<O

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet correctness

After any round k, state variables r and d have the same values in
FloodSet and OptFloodSet.

Trivial for r. Variable d only changes at round f + 1; it follows from
applying lemmas OFS3 and OFS4 at round f + 1. O

OptFloodSet solves agreement for stopping failures.

By previous lemma and correctness of FloodSet. O

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

Sketch of another algorithm

@ Based on alternative version of FloodSet with stronger validity;
@ Assumes total order on V, decides on minimum of W;

@ Algorithm stores and relays just the minimum known so far;

@ Uses O((f + 1)n?b) bits of communication;

@ Can be proven correct by a simulation relating it to the FloodSet
version with the alternative decision.

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

Exponential information gathering algorithms

@ Send and relay intitial values in several rounds;

@ Record values received along various communication paths in a
EIG tree;

@ Use a decision rule based on values in their trees;

@ Are overly costly for stopping failures;

@ EIG trees useful for solving Byzantine agreement;

@ Presented for stopping failures to introduce EIG trees;

@ Algorithms can be adapted to authenticated Byzantine failure
model.

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

EIG trees

@ AnEIG tree T has f+ 2 levels from O to f + 1;

@ Nodes at level 0 < k < f have n — k children;

@ Nodes at level k are labelled by a string of k distinct indices;
@ The root is labelled by the null string ¢;

@ Children of node iy ... ik have label i . .. ixj with

je {1,...7n}\{i1,...,ik};
@ We can represent EIG trees by mappings from labels to values;

@ Itis convenient to store only mappings to non-null values; a label
not in the mapping means the corresponding node contains null;

@ For an EIG tree T, let T!¥ denote T restricted to level k:
TR ={(l,v)e T ||l =k}
@ Labels are partially ordered using prefix order:

rc s<=risaprefixof s

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

Algorithm EIGStop — sketch

@ Each process maintains own EIG tree;
@ Root is decorated with input value;

@ At round k, processes:
@ broadcast values at level k — 1 to all, including itself;
e decorate level k according to messages received;
@ Paths from the root represent chains of distinct processes along
which values are propagated;
@ Ti(iy...ik) = v € V means that i knows input value of i; to be v
due to chain of communication iy —— i, —2 ... =1 K. .

. 1 . 2 k—1 . k .
@ Otherwise, the chain of communication iy — b — ... — ix — i

was broken by a failure;
@ Atround f + 1, processes decide as a function of the tree;

)2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

EIGStop formally

@ Process state, state; = (r, T, d) where:
e r € N —rounds, initially 0;
e T —EIG tree, initially {e — /’s initial value};
e d € V U {unknown} — decision;

@ Message-generating function:
mSg,'((r, T7 d)a/) = {(/7 V) € T|’ | I¢ /}

@ Let M = {(j, M;)} be messages delivered, including when j = i;
@ We wil use the range of a mapping: ran(T) = {v | (/,v) € T};
@ State transition function: trans;(r, T,d), M) = (', T',d") where:

/

r= r+1

T = T[li—=v|(Lv)eM]|(M)eM]
v ifr=f+1A3v.ran(T') = {v}

d = (v otherwiseandifr’ =f+1

d otherwise

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

EIGStop correctness

Lemma

After f +1 rounds:
@ Ti(e) is i’s input value;
@ ifTi(xj) = v, then Tj(x) = v;

|x]+1
® if(xj,v) & Ti, then (x,v') & Tj orj /— i;

v
Lemma

After f + 1 rounds:
e ifTi(y) =vandxjCy, then Ti(x) = v;
@ ifv eran(T;), then3j. Tj(e) = v;
@ ifveran(T;), then3s.i ¢ s A Ti(s) = v;

\

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

EIGStop correctness

Ifi,j € A(f+ 1), thenran(T;) = ran(T;).

Proof.

It is enough to show that if / # j, then ran(T;) C ran(7;); suppose
v € ran(T;); by previous lemma 3s.i € s A T;(s) = v; two cases:

@ |s| < f: then |si| < f+ 1;since i ¢ s, then iﬂjcontaining
(s, v); therefore T;(si) = v;

@ |s| = f + 1: then there must be a nonfaulty process p € s;
consider prefix rp C s; by previous lemma, Tp(r) = v; then

Pﬂj containing (r, v); therefore T;(rp) = v;

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

EIGStop correctness

EIGStop solves agreement for stopping failures.

@ termination: obvious;

@ validity: if all initial values are v, then ran(T) C {v};as T
contains initial value, ran(T) 2 {v}; therefore ran(T) = {v} and
decision must be v;

@ agreement: from previous lemma, the decision by nonfaulty
processes, at round f + 1, must be the same for all;

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for stopping failures

EIGStop complexity analysis

@ Number of rounds: f+1;
@ Number of messages: O((f + 1)n?);
@ Bits of communication exponential on failures: O(n*'b);

007 Paulo Sérgio Aimeida Distributed Consensus with Process Failures

Distributed Consensus with Process Failures Algorithms for Byzantine failures

EIGByz — an EIG Algorithm for Byzantine agreement

@ Assumption: n > 3f;

@ Similar to EIGStop, with some modifications;

@ If a process receives malformed messages, it discards them;

@ After f + 1 rounds, each process modifies tree to have v in
unassigned (null) nodes;

@ The decision is obtained by the value at the root of a new tree
constructed bottom-up;

@ The leaves have the corresponding values in the original tree;

@ The value at a node is:

e the value in a strict majority of children, it such value exists;
@ \p otherwise;

(©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures

	Distributed Consensus with Process Failures
	The problem
	Algorithms for stopping failures
	Algorithms for Byzantine failures

