Distributed Consensus with Process Failures

Paulo Sérgio Almeida

Distributed Systems Group Departamento de Informática Universidade do Minho

2007/2008

Distributed consensus with process failures

- Here we still consider consensus in a synchronous system;
- Instead of link failures, here we consider process failures;
- Two failure models: stopping failures and Byzantine failures;
- Stopping failure model:
 - processes may stop without warning;
 - useful to model crashes:
- Byzantine failure model:
 - faulty processes may exibit completely unconstrained behavior;
 - useful to model arbitrary processor malfunction (e.g. cosmic rays) that change bits of memory);
 - term introduced by Lamport in The Byzantine Generals Problem;

The agreement problem with process failures

- Consider *n* processes, 1, ..., *n* in arbitrary undirected graph;
- Each process knows entire graph, including indices;
- One start state for each process with input variable in a set V;
- Processes make deterministic choices;
- At most f processes may fail;
- Goal: all processes decide value in V, subject to ...

The agreement problem with process failures

Stopping agreement:

- agreement: no two processes decide different values;
- validity: if all processes start with the same v ∈ V, then the decision must be v;
- termination: all nonfaulty processes eventually decide;
- Byzantine agreement:
 - agreement: no two nonfaulty processes decide different values;
 - validity: if all nonfaulty processes start with the same v ∈ V, then the decision of a nonfaulty proces must be v;
 - termination: all nonfaulty processes eventually decide;

Relationship between stopping and Byzantine agreement

- Does an algorithm for Byzantine agreement also solves stopping agreement?
- No!
- In the stopping case, processes must decide the same value, even some faulty one that fails after deciding;
- In the Byzantine case, we allow faulty processes to decide some arbitrary value;

Alternative stronger validity condition

- An alternative validaty condition can be (for stopping failures):
 - validity: a decision must be the initial value of some process;
- This condition is stronger as it implies the previous one;
- The use of the previous one:
 - strengthens impossibility results, but
 - weakens claims about algorithms;

Algorithms for stopping failures

- We consider complete n-node graphs;
- Will present some algorithms:
 - Basic algorithm: processes repeatedly broadcast set of known values;
 - Improvements on basic algorithm;
 - Algorithms with an exponential information gathering strategy;
- Some conventions:
 - *v*₀ is some prespecified default value in *V*;
 - b is an upper bound on bits needed to represent a value in V;

Basic algorithm - FloodSet, informally

- Each process maintains a set $W \subseteq V$;
- Initially W contains initial value;
- In each round processes broadcast W and merges received sets to W;
- In round f + 1, if $W = \{v\}$, decide v, else decide v_0 ;

Basic algorithm - FloodSet, formally

- Process state, $state_i = (r, W, d)$ where:
 - $r \in \mathcal{N}$ rounds, initially 0;
 - $W \subseteq V$, initially i's initial value;
 - $d \in V \cup \{unknown\} decision;$
- Message-generating function: msg_i((r, W, d), j) = W;
- Let *M* represent the set of messages delivered;
- State transition function: $trans_i(r, W, d), M) = (r', W', d')$ where:

$$\begin{array}{lll} r' &=& r+1 \\ W' &=& W \cup \bigcup M \\ d' &=& \begin{cases} v & \text{if } r' = f+1 \land \exists v. \ W' = \{v\} \\ v_0 & \text{otherwise and if } r' = f+1 \\ d & \text{otherwise} \end{cases}$$

- Let W_i(r) be variable W of process i after r rounds;
- A process is *active after r rounds* if it has not failed until the end of round *r*;
- Let *A*(*r*) denote the set of processes *active after r rounds* for a given failure pattern; any *A* satisfies:

•
$$A(0) = \{1, \ldots, n\};$$

• if
$$r' \ge r$$
, then $A(r') \subseteq A(r)$;

• A(r) = A(r - 1) if no process has failed during round r;

Some lemmas

Lemma

If no process fails in some round r, $W_i(r) = W_i(r)$ for all $i, j \in A(r)$.

Lemma

If $W_i(r) = W_j(r)$ for all $i, j \in A(r)$ and $r' \ge r$, then $W_i(r') = W_j(r')$ for all $i, j \in A(r')$.

Some lemmas

Lemma

If
$$i, j \in A(f + 1)$$
, then $W_i(f + 1) = W_j(f + 1)$.

Proof.

Since at most *f* processes are faulty, there must be some round $r \le f + 1$ at which no process fails. Combine two previous lemmas.

Theorem

FloodSet solves agreement for stopping failures.

Proof.

- Termination: at round f + 1 all nonfaulty processes decide;
- Agreement: suppose any *i*, *j* ∈ *A*(*f* + 1) that decide; from previous lemma, *W_i*(*f* + 1) = *W_j*(*f* + 1) and they must decide the same value;
- Validity: if all processes start with *v*, then *W_i*(0) = {*v*}, for all processes, only {*v*} travels in messages, and *W_i*(*r*) ⊆ {*v*} for any process *i* and round *r*; therefore *W_i*(*f* + 1) = {*v*} and the decision must be *v*;

FloodSet complexity analysis

- Rounds: *f* + 1 until nonfaulty processes decide;
- Total number of messages: $O((f + 1)n^2)$;
- Each messages contains set with at most *n* elements: bits per message O(nb);
- Bits of communication: $O((f + 1)n^3b)$;

Alternative decision rules

- The essence of FloodSet is that all nonfaulty processes have the same W after f + 1 rounds;
- The decision rule does not matter much as long as it is a function of *W* that decides on the element in case of a singleton;
- Deciding a default *v*₀ looks artificial;
- We can make the algorithm guarantee the stronger validity condition and decide on the initial value of some process by assuming a total order on *V* and deciding min(*W*);

OptFloodSet - an algorithm with less communication

- Improvement on FloodSet;
- Insight: a process only needs to know
 - the value of W when it has one element, or
 - that W has more than one element;
- Algorithm broadcasts at most two values:
 - at round 1 broadcasts initial value;
 - after the first round when it has received some new value, it broadcasts one of the new values received;
- Decision is either v when $W = \{v\}$ or v_0 ;

OptFloodSet complexity analysis

- Rounds: *f* + 1 until nonfaulty processes decide;
- Total number of messages: at most 2n²;
- Bits per message at most b;
- Bits of communication: at most 2n²b;

- Could prove from scratch as before;
- Instead, will use *simulation*: prove a formal relationship between both algorithms;
- Must obtain *simulation relation*: an invariant that relates the states of both algorithms after any number of rounds when starting with same inputs and subject to same failure pattern;
- Let's use OW_i(r) for W_i after r rounds in OptFloodSet and W_i(r) for FloodSet as before;
- Let's use i → j to denote process i sending a message in round r to a process j active after round r;

Lemma (OFS1)

In FloodSet, if
$$i \xrightarrow{r+1} j$$
, then $W_i(r) \subseteq W_j(r+1)$.

Lemma (OFS2)

In OptFloodSet, if $i \xrightarrow{r+1} j$ is possible in failure pattern, then:

- if $|OW_i(r)| = 1$, then $OW_i(r) \subseteq OW_j(r+1)$;
- if $|OW_i(r)| > 1$, then $|OW_j(r+1)| > 1$;

Lemma (OFS3)

After any round r:

• $OW_i(r) \subseteq W_i(r);$

• *if*
$$|W_i(r)| = 1$$
, *then* $OW_i(r) = W_i(r)$;

 \mathbb{R}

Lemma (OFS4)

After any round r, if $|W_i(r)| > 1$, then $|OW_i(r)| > 1$.

Proof.

By induction; base case vacuous; assume lemma holds for *r*; assume $|W_i(r + 1)| > 1$; we have two cases:

- |W_i(r)| > 1: by I.H. |OW_i(r)| > 1, which implies |OW_i(r + 1)| > 1;
- $|W_i(r)| = 1$: by lemma OFS3, $OW_i(r) = W_i(r)$; two cases:
 - $\forall j \mid j \xrightarrow{r+1} i$ in FloodSet. $|W_j(r)| = 1$: for all such *j*, lemma OFS3 implies $OW_j(r) = W_j(r)$, lemma OFS2 implies $OW_j(r) \subseteq OW_i(r+1)$; therefore $OW_i(r+1) = W_i(r+1)$;
 - $\exists j \mid j \xrightarrow{r+1} i$ in FloodSet. $|W_j(r)| > 1$: by I.H. $|OW_j(r)| > 1$ and lemma OFS2 implies $|OW_i(r+1)| > 1$;

岕

Lemma

After any round k, state variables r and d have the same values in FloodSet and OptFloodSet.

Proof.

Trivial for *r*. Variable *d* only changes at round f + 1; it follows from applying lemmas OFS3 and OFS4 at round f + 1.

Theorem

OptFloodSet solves agreement for stopping failures.

Proof.

By previous lemma and correctness of FloodSet.

Sketch of another algorithm

- Based on alternative version of FloodSet with stronger validity;
- Assumes total order on V, decides on minimum of W;
- Algorithm stores and relays just the minimum known so far;
- Uses $O((f+1)n^2b)$ bits of communication;
- Can be proven correct by a simulation relating it to the FloodSet version with the alternative decision.

Exponential information gathering algorithms

- Send and relay intitial values in several rounds;
- Record values received along various communication paths in a EIG tree;
- Use a decision rule based on values in their trees;
- Are overly costly for stopping failures;
- EIG trees useful for solving Byzantine agreement;
- Presented for stopping failures to introduce EIG trees;
- Algorithms can be adapted to *authenticated Byzantine failure model*.

EIG trees

- An EIG tree $T_{n,f}$ has f + 2 levels from 0 to f + 1;
- Nodes at level $0 \le k \le f$ have n k children;
- Nodes at level k are labelled by a string of k distinct indices;
- The root is labelled by the null string ϵ ;
- Children of node $i_1 \dots i_k$ have label $i_1 \dots i_k j$ with $j \in \{1, \dots, n\} \setminus \{i_1, \dots, i_k\};$
- We can represent EIG trees by mappings from labels to values;
- It is convenient to store only mappings to non-null values; a label not in the mapping means the corresponding node contains null;
- For an EIG tree T, let $T^{|k}$ denote T restricted to level k:

$$T^{|k} = \{(l, v) \in T \mid |l| = k\}$$

• Labels are partially ordered using prefix order:

$$r \sqsubseteq s \iff r$$
 is a prefix of s

Algorithm EIGStop – sketch

- Each process maintains own EIG tree;
- Root is decorated with input value;
- At round k, processes:
 - broadcast values at level k 1 to all, including itself;
 - decorate level k according to messages received;
- Paths from the root represent chains of distinct processes along which values are propagated;
- $T_i(i_1 \dots i_k) = v \in V$ means that *i* knows input value of i_1 to be *v* due to chain of communication $i_1 \xrightarrow{1} i_2 \xrightarrow{2} \dots \xrightarrow{k-1} i_k \xrightarrow{k} i$;
- Otherwise, the chain of communication $i_1 \xrightarrow{1} i_2 \xrightarrow{2} \dots \xrightarrow{k-1} i_k \xrightarrow{k} i$ was broken by a failure;
- At round f + 1, processes decide as a function of the tree;

EIGStop formally

- Process state, $state_i = (r, T, d)$ where:
 - $r \in \mathcal{N}$ rounds, initially 0;
 - T EIG tree, initially { $\epsilon \mapsto i$'s initial value};
 - $d \in V \cup \{unknown\} decision;$
- Message-generating function:

$$msg_i((r, T, d), j) = \{(l, v) \in T^{|r} \mid i \notin l\}$$

- Let $M = \{(j, M_j)\}$ be messages delivered, including when j = i;
- We will use the range of a mapping: $ran(T) = \{v \mid (l, v) \in T\};\$
- State transition function: $trans_i(r, T, d), M) = (r', T', d')$ where:

$$\begin{array}{rcl} r' &=& r+1 \\ T' &=& T \left[[lj \mapsto v \mid (l,v) \in M_j] \mid (j,M_j) \in M \right] \\ d' &=& \begin{cases} v & \text{if } r' = f+1 \land \exists v. \operatorname{ran}(T') = \{v\} \\ v_0 & \text{otherwise and if } r' = f+1 \\ d & \text{otherwise} \end{cases}$$

EIGStop correctness

Lemma

After f + 1 rounds:

• $T_i(\epsilon)$ is i's input value;

• if
$$T_i(xj) = v$$
, then $T_j(x) = v$;

• if
$$(xj, v) \notin T_i$$
, then $(x, v') \notin T_j$ or $j \not\xrightarrow{|x|+1} i$;

Lemma

After f + 1 rounds:

- if $T_i(y) = v$ and $xj \sqsubseteq y$, then $T_j(x) = v$;
- if $v \in \operatorname{ran}(T_i)$, then $\exists j. T_j(\epsilon) = v$;
- if $v \in \operatorname{ran}(T_i)$, then $\exists s. i \notin s \land T_i(s) = v$;

EIGStop correctness

Lemma

If
$$i, j \in A(f + 1)$$
, then $\operatorname{ran}(T_i) = \operatorname{ran}(T_j)$.

Proof.

It is enough to show that if $i \neq j$, then ran(T_i) \subseteq ran(T_j); suppose $v \in ran(T_i)$; by previous lemma $\exists s. i \notin s \land T_i(s) = v$; two cases:

- $|s| \le f$: then $|si| \le f + 1$; since $i \notin s$, then $i \xrightarrow{|si|} j$ containing (s, v); therefore $T_i(si) = v$;
- |s| = f + 1: then there must be a nonfaulty process $p \in s$; consider prefix $rp \sqsubseteq s$; by previous lemma, $T_p(r) = v$; then $p \stackrel{|rp|}{\longrightarrow} j$ containing (r, v); therefore $T_j(rp) = v$;

EIGStop correctness

Theorem

EIGStop solves agreement for stopping failures.

Proof.

- termination: obvious;
- validity: if all initial values are v, then ran(T) ⊆ {v}; as T contains initial value, ran(T) ⊇ {v}; therefore ran(T) = {v} and decision must be v;
- agreement: from previous lemma, the decision by nonfaulty processes, at round *f* + 1, must be the same for all;

EIGStop complexity analysis

- Number of rounds: f+1;
- Number of messages: $O((f + 1)n^2)$;
- Bits of communication exponential on failures: O(n^{f+1}b);

EIGByz - an EIG Algorithm for Byzantine agreement

- Assumption: *n* > 3*f*;
- Similar to EIGStop, with some modifications;
- If a process receives malformed messages, it discards them;
- After *f* + 1 rounds, each process modifies tree to have *v*₀ in unassigned (null) nodes;
- The decision is obtained by the value at the root of a new tree constructed bottom-up;
- The leaves have the corresponding values in the original tree;
- The value at a node is:
 - the value in a strict majority of children, it such value exists;
 - v₀ otherwise;

