
Distributed Consensus with Process Failures

Paulo Sérgio Almeida

Distributed Systems Group
Departamento de Informática

Universidade do Minho

2007/2008

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 1



Distributed Consensus with Process Failures The problem

Distributed consensus with process failures

Here we still consider consensus in a synchronous system;
Instead of link failures, here we consider process failures;
Two failure models: stopping failures and Byzantine failures;
Stopping failure model:

processes may stop without warning;
useful to model crashes;

Byzantine failure model:
faulty processes may exibit completely unconstrained behavior;
useful to model arbitrary processor malfunction (e.g. cosmic rays
that change bits of memory);
term introduced by Lamport in The Byzantine Generals Problem;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 2



Distributed Consensus with Process Failures The problem

The agreement problem with process failures

Consider n processes, 1, . . . , n in arbitrary undirected graph;
Each process knows entire graph, including indices;
One start state for each process with input variable in a set V ;
Processes make deterministic choices;
At most f processes may fail;
Goal: all processes decide value in V , subject to . . .

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 3



Distributed Consensus with Process Failures The problem

The agreement problem with process failures

Stopping agreement:
agreement: no two processes decide different values;
validity: if all processes start with the same v ∈ V , then the
decision must be v ;
termination: all nonfaulty processes eventually decide;

Byzantine agreement:
agreement: no two nonfaulty processes decide different values;
validity: if all nonfaulty processes start with the same v ∈ V , then
the decision of a nonfaulty proces must be v ;
termination: all nonfaulty processes eventually decide;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 4



Distributed Consensus with Process Failures The problem

Relationship between stopping and Byzantine agreement

Does an algorithm for Byzantine agreement also solves stopping
agreement?
No!
In the stopping case, processes must decide the same value,
even some faulty one that fails after deciding;
In the Byzantine case, we allow faulty processes to decide some
arbitrary value;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 5



Distributed Consensus with Process Failures The problem

Alternative stronger validity condition

An alternative validaty condition can be (for stopping failures):
validity: a decision must be the initial value of some process;

This condition is stronger as it implies the previous one;
The use of the previous one:

strengthens impossibility results, but
weakens claims about algorithms;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 6



Distributed Consensus with Process Failures Algorithms for stopping failures

Algorithms for stopping failures

We consider complete n-node graphs;
Will present some algorithms:

Basic algorithm: processes repeatedly broadcast set of known
values;
Improvements on basic algorithm;
Algorithms with an exponential information gathering strategy;

Some conventions:
v0 is some prespecified default value in V ;
b is an upper bound on bits needed to represent a value in V ;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 7



Distributed Consensus with Process Failures Algorithms for stopping failures

Basic algorithm – FloodSet, informally

Each process maintains a set W ⊆ V ;
Initially W contains initial value;
In each round processes broadcast W and merges received sets
to W ;
In round f + 1, if W = {v}, decide v , else decide v0;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 8



Distributed Consensus with Process Failures Algorithms for stopping failures

Basic algorithm – FloodSet, formally

Process state, statei = (r , W , d) where:
r ∈ N – rounds, initially 0;
W ⊆ V , initially i’s initial value;
d ∈ V ∪ {unknown} – decision;

Message-generating function: msgi((r , W , d), j) = W ;
Let M represent the set of messages delivered;
State transition function: transi(r , W , d), M) = (r ′, W ′, d ′) where:

r ′ = r + 1
W ′ = W ∪

⋃
M

d ′ =


v if r ′ = f + 1 ∧ ∃v . W ′ = {v}
v0 otherwise and if r ′ = f + 1
d otherwise

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 9



Distributed Consensus with Process Failures Algorithms for stopping failures

Some notation

Let Wi(r) be variable W of process i after r rounds;
A process is active after r rounds if it has not failed until the end
of round r ;
Let A(r) denote the set of processes active after r rounds for a
given failure pattern; any A satisfies:

A(0) = {1, . . . , n};
if r ′ ≥ r , then A(r ′) ⊆ A(r);
A(r) = A(r − 1) if no process has failed during round r ;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 10



Distributed Consensus with Process Failures Algorithms for stopping failures

Some lemmas

Lemma

If no process fails in some round r , Wi(r) = Wj(r) for all i , j ∈ A(r).

Lemma

If Wi(r) = Wj(r) for all i , j ∈ A(r) and r ′ ≥ r , then Wi(r ′) = Wj(r ′) for
all i , j ∈ A(r ′).

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 11



Distributed Consensus with Process Failures Algorithms for stopping failures

Some lemmas

Lemma

If i , j ∈ A(f + 1), then Wi(f + 1) = Wj(f + 1).

Proof.
Since at most f processes are faulty, there must be some round
r ≤ f + 1 at which no process fails. Combine two previous
lemmas.

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 12



Distributed Consensus with Process Failures Algorithms for stopping failures

FloodSet correctness

Theorem
FloodSet solves agreement for stopping failures.

Proof.
Termination: at round f + 1 all nonfaulty processes decide;
Agreement: suppose any i , j ∈ A(f + 1) that decide; from
previous lemma, Wi(f + 1) = Wj(f + 1) and they must decide the
same value;
Validity: if all processes start with v , then Wi(0) = {v}, for all
processes, only {v} travels in messages, and Wi(r) ⊆ {v} for
any process i and round r ; therefore Wi(f + 1) = {v} and the
decision must be v ;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 13



Distributed Consensus with Process Failures Algorithms for stopping failures

FloodSet complexity analysis

Rounds: f + 1 until nonfaulty processes decide;
Total number of messages: O((f + 1)n2);
Each messages contains set with at most n elements: bits per
message O(nb);
Bits of communication: O((f + 1)n3b);

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 14



Distributed Consensus with Process Failures Algorithms for stopping failures

Alternative decision rules

The essence of FloodSet is that all nonfaulty processes have the
same W after f + 1 rounds;
The decision rule does not matter much as long as it is a function
of W that decides on the element in case of a singleton;
Deciding a default v0 looks artificial;
We can make the algorithm guarantee the stronger validity
condition and decide on the initial value of some process by
assuming a total order on V and deciding min(W );

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 15



Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet – an algorithm with less communication

Improvement on FloodSet;
Insight: a process only needs to know

the value of W when it has one element, or
that W has more than one element;

Algorithm broadcasts at most two values:
at round 1 broadcasts initial value;
after the first round when it has received some new value, it
broadcasts one of the new values received;

Decision is either v when W = {v} or v0;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 16



Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet complexity analysis

Rounds: f + 1 until nonfaulty processes decide;
Total number of messages: at most 2n2;
Bits per message at most b;
Bits of communication: at most 2n2b;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 17



Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet correctness

Could prove from scratch as before;
Instead, will use simulation: prove a formal relationship between
both algorithms;
Must obtain simulation relation: an invariant that relates the
states of both algorithms after any number of rounds when
starting with same inputs and subject to same failure pattern;
Let’s use OWi(r) for Wi after r rounds in OptFloodSet and Wi(r)
for FloodSet as before;
Let’s use i r−→ j to denote process i sending a message in round
r to a process j active after round r ;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 18



Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet correctness

Lemma (OFS1)

In FloodSet, if i r+1−→ j , then Wi(r) ⊆ Wj(r + 1).

Lemma (OFS2)

In OptFloodSet, if i r+1−→ j is possible in failure pattern, then:
if |OWi(r)| = 1, then OWi(r) ⊆ OWj(r + 1);
if |OWi(r)| > 1, then

∣∣OWj(r + 1)
∣∣ > 1;

Lemma (OFS3)

After any round r :
OWi(r) ⊆ Wi(r);
if |Wi(r)| = 1, then OWi(r) = Wi(r);

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 19



Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet correctness

Lemma (OFS4)

After any round r , if |Wi(r)| > 1, then |OWi(r)| > 1.

Proof.
By induction; base case vacuous; assume lemma holds for r ; assume
|Wi(r + 1)| > 1; we have two cases:

|Wi(r)| > 1: by I.H. |OWi(r)| > 1, which implies |OWi(r + 1)| > 1;
|Wi(r)| = 1: by lemma OFS3, OWi(r) = Wi(r); two cases:

∀j | j r+1−→ i in FloodSet. |Wj(r)| = 1: for all such j , lemma OFS3
implies OWj(r) = Wj(r), lemma OFS2 implies
OWj(r) ⊆ OWi(r + 1); therefore OWi(r + 1) = Wi(r + 1);
∃j | j r+1−→ i in FloodSet. |Wj(r)| > 1: by I.H. |OWj(r)| > 1 and lemma
OFS2 implies |OWi(r + 1)| > 1;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 20



Distributed Consensus with Process Failures Algorithms for stopping failures

OptFloodSet correctness

Lemma
After any round k, state variables r and d have the same values in
FloodSet and OptFloodSet.

Proof.
Trivial for r . Variable d only changes at round f + 1; it follows from
applying lemmas OFS3 and OFS4 at round f + 1.

Theorem
OptFloodSet solves agreement for stopping failures.

Proof.
By previous lemma and correctness of FloodSet.

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 21



Distributed Consensus with Process Failures Algorithms for stopping failures

Sketch of another algorithm

Based on alternative version of FloodSet with stronger validity;
Assumes total order on V , decides on minimum of W ;
Algorithm stores and relays just the minimum known so far;
Uses O((f + 1)n2b) bits of communication;
Can be proven correct by a simulation relating it to the FloodSet
version with the alternative decision.

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 22



Distributed Consensus with Process Failures Algorithms for stopping failures

Exponential information gathering algorithms

Send and relay intitial values in several rounds;
Record values received along various communication paths in a
EIG tree;
Use a decision rule based on values in their trees;
Are overly costly for stopping failures;
EIG trees useful for solving Byzantine agreement;
Presented for stopping failures to introduce EIG trees;
Algorithms can be adapted to authenticated Byzantine failure
model.

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 23



Distributed Consensus with Process Failures Algorithms for stopping failures

EIG trees

An EIG tree Tn,f has f + 2 levels from 0 to f + 1;
Nodes at level 0 ≤ k ≤ f have n − k children;
Nodes at level k are labelled by a string of k distinct indices;
The root is labelled by the null string ε;
Children of node i1 . . . ik have label i1 . . . ik j with
j ∈ {1, . . . , n} \ {i1, . . . , ik};
We can represent EIG trees by mappings from labels to values;
It is convenient to store only mappings to non-null values; a label
not in the mapping means the corresponding node contains null ;
For an EIG tree T , let T |k denote T restricted to level k :

T |k = {(l , v) ∈ T | |l | = k}

Labels are partially ordered using prefix order:

r v s ⇐⇒ r is a prefix of s

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 24



Distributed Consensus with Process Failures Algorithms for stopping failures

Algorithm EIGStop – sketch

Each process maintains own EIG tree;
Root is decorated with input value;
At round k , processes:

broadcast values at level k − 1 to all, including itself;
decorate level k according to messages received;

Paths from the root represent chains of distinct processes along
which values are propagated;
Ti(i1 . . . ik ) = v ∈ V means that i knows input value of i1 to be v
due to chain of communication i1

1−→ i2
2−→ . . .

k−1−→ ik
k−→ i ;

Otherwise, the chain of communication i1
1−→ i2

2−→ . . .
k−1−→ ik

k−→ i
was broken by a failure;
At round f + 1, processes decide as a function of the tree;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 25



Distributed Consensus with Process Failures Algorithms for stopping failures

EIGStop formally

Process state, statei = (r , T , d) where:
r ∈ N – rounds, initially 0;
T – EIG tree, initially {ε 7→ i’s initial value};
d ∈ V ∪ {unknown} – decision;

Message-generating function:

msgi((r , T , d), j) = {(l , v) ∈ T |r | i 6∈ l}

Let M = {(j , Mj)} be messages delivered, including when j = i ;
We wil use the range of a mapping: ran(T ) = {v | (l , v) ∈ T};
State transition function: transi(r , T , d), M) = (r ′, T ′, d ′) where:

r ′ = r + 1
T ′ = T

[
[lj 7→ v | (l , v) ∈ Mj ] | (j , Mj) ∈ M

]
d ′ =


v if r ′ = f + 1 ∧ ∃v . ran(T ′) = {v}
v0 otherwise and if r ′ = f + 1
d otherwise

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 26



Distributed Consensus with Process Failures Algorithms for stopping failures

EIGStop correctness

Lemma
After f + 1 rounds:

Ti(ε) is i’s input value;
if Ti(xj) = v, then Tj(x) = v;

if (xj , v) 6∈ Ti , then (x , v ′) 6∈ Tj or j
|x|+1
6−→ i ;

Lemma
After f + 1 rounds:

if Ti(y) = v and xj v y, then Tj(x) = v;
if v ∈ ran(Ti), then ∃j . Tj(ε) = v;
if v ∈ ran(Ti), then ∃s. i 6∈ s ∧ Ti(s) = v;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 27



Distributed Consensus with Process Failures Algorithms for stopping failures

EIGStop correctness

Lemma

If i , j ∈ A(f + 1), then ran(Ti) = ran(Tj).

Proof.

It is enough to show that if i 6= j , then ran(Ti) ⊆ ran(Tj); suppose
v ∈ ran(Ti); by previous lemma ∃s. i 6∈ s ∧ Ti(s) = v ; two cases:

|s| ≤ f : then |si | ≤ f + 1; since i 6∈ s, then i
|si|−→ j containing

(s, v); therefore Tj(si) = v ;
|s| = f + 1: then there must be a nonfaulty process p ∈ s;
consider prefix rp v s; by previous lemma, Tp(r) = v ; then

p
|rp|−→ j containing (r , v); therefore Tj(rp) = v ;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 28



Distributed Consensus with Process Failures Algorithms for stopping failures

EIGStop correctness

Theorem
EIGStop solves agreement for stopping failures.

Proof.
termination: obvious;
validity: if all initial values are v , then ran(T ) ⊆ {v}; as T
contains initial value, ran(T ) ⊇ {v}; therefore ran(T ) = {v} and
decision must be v ;
agreement: from previous lemma, the decision by nonfaulty
processes, at round f + 1, must be the same for all;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 29



Distributed Consensus with Process Failures Algorithms for stopping failures

EIGStop complexity analysis

Number of rounds: f+1;
Number of messages: O((f + 1)n2);
Bits of communication exponential on failures: O(nf+1b);

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 30



Distributed Consensus with Process Failures Algorithms for Byzantine failures

EIGByz – an EIG Algorithm for Byzantine agreement

Assumption: n > 3f ;
Similar to EIGStop, with some modifications;
If a process receives malformed messages, it discards them;
After f + 1 rounds, each process modifies tree to have v0 in
unassigned (null) nodes;
The decision is obtained by the value at the root of a new tree
constructed bottom-up;
The leaves have the corresponding values in the original tree;
The value at a node is:

the value in a strict majority of children, it such value exists;
v0 otherwise;

c©2007 Paulo Sérgio Almeida Distributed Consensus with Process Failures 31


	Distributed Consensus with Process Failures
	The problem
	Algorithms for stopping failures
	Algorithms for Byzantine failures


