
Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho Basic Asynchronous Network Algorithms

Carlos Baquero
Distributed Systems Group

Universidade do Minho

MAPI 2007

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Plan

Study a selection of algorithms tailored for synchronous or
asynchronous networks:

Leader Election in an Arbitrary Network (no longer a ring)

Construction of a Spanning Tree.

First we start with the synchronous versions.
Then we introduce a particular asynchronous network model and
adapt the algorithms for the new (harder) setting.
This should highlight the important diferences between the two
models.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Leader Election in an Arbitrary Network
Synchronous Algorithm

Problem

Eventually one process should change its status to leader and all
other processes to nonleader.

Assumptions

Processes have unique UIDs.

Network Diameter d is known by all processes. Diameter as the
largest of the shortest paths across all nodes

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Leader Election in an Arbitrary Network
Synchronous FloodMax Algorithm

Initial state in node i

uidi // Globally unique

maxuid := uidi

status ∈ {nil , leader , nonleader} := nil

rounds := 0 // Integer

Informal Algorithm

In each round:

Increment rounds

maxuid := max(maxuid ,maxuidn1, . . . ,maxuidnk)

send maxuid to all neighbours {n1,nk}.
When rounds = d do if maxuid = uid then status := leader else
status := nonleader

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Leader Election in an Arbitrary Network
Synchronous FloodMax Algorithm

Let imax be the process with maximum uid and uidmax that uid .

Rounds are consistent

For every r and j , after r rounds, roundsj = r .

umax is an upper bound

For every r and j , after r rounds, maxuidj ≤ umax .

umax makes its way to each maxuid

For 0 ≤ r ≤ diam and j , after r rounds, if the distance from imax to j
is at most r , then maxuidj = umax .

Leading to Theorem

In FloodMax process imax outputs leader and each other process
nonleader within diam rounds.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Leader Election in an Arbitrary Network
Synchronous FloodMax Algorithm

Graph G = (V ,E) with diam diameter.

Complexity

Time: Election (and termination) in diam rounds.

Message: diam× |E |. In the first diam rounds messages are sent
across all edges E .

Upper Bound on Diameter

If only an upper bound d on diameter, d ≥ diam is known the
algorithm also works. Account for added Time and Message
complexity.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Leader Election in an Arbitrary Network
Synchronous OptFloodMax Algorithm

Reducing communication complexity

FloodMax modification into OptFloodMax

In round r only send maxuid to neighbours if maxuid changed.
Bookkeeping is done in a new boolean state variable newinfo.

Proof is based on equivalence between relevant state components
after a given number of rounds.

Simulation Relation proof

For any r , 0 ≤ r ≤ diam, after r rounds, the values of the u, maxuid ,
status and rounds components are the same in the states of both
algorithms.

Notice that round counting can be done even is messages are not
received. Messages not received upon timeout are perceived as null
messages.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
Synchronous SyncBFS Algorithm

Definitions:

A directed graph is called strongly connected if for every pair of
vertices u and v there is a path from u to v and a path from v
to u.

Distance from u to v is the lenght of the shortest path from u to
v .

A directed spanning tree with root node i is breadth first
provided that each node at distance d from i in the graph
appears at depth d in the tree.

Every strongly connected graph has a breadth-first directed
spanning tree.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
Synchronous SyncBFS Algorithm

Processes communicate over directed edges. Unique UIDs are
available, but network diameter and size is unknown.

Initial state in SyncBFS

parent = nil

marked = False (True in root node i0)

SyncBFS algorithm

Process i0 sends a search message in round 1.

Unmarked processes receiving a search message from x do
marked = True and set parent = x , in the next round search
messages are sent from these processes.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
Synchronous SyncBFS Algorithm

Complexity

Time: At most diam rounds (depending on i0 eccentricity).

Message: |E |. Messages are sent across all edges E .

Child Pointers

If parents need to know their offspring, processes must reply to
search messages with either parent or nonparent. This is only easy if
the graph is undirected, but is achievable in general strongly
connected graphs.

Termination: Making i0 know that the tree is constructed

All processes respond with parent or nonparent. Parent terminates
when all children terminate. Responses are collected from leaves to
tree root.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
Synchronous SyncBFS Algorithm

Applications of Breath First Spanning Trees.

Aggregation (Global Computation)

Input values in each process can be aggregated towards a sync node.
Each value only contributes once, many functions can be used:
Sums, Averages, Max, Voting.

Leader Election

Largest UID wins. All process become root of their own tree and
aggregate a Max(UID). Each decide by comparing their own UID
with Max(UID).

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
Synchronous SyncBFS Algorithm

Applications of Breath First Spanning Trees.

Broadcast

Message payload m can be attached to SyncBFS construction (m |E |
message load) or broadcasted once tree is formed (m |V | message
load).

Computing Diameter

Each process constructs a SyncBFS. Then determines maxdist,
longest tree path. Afterwards, all processes use their trees to
aggregate max(maxdist) from all roots/nodes.
Complexity: Time O(diam) and messages O(diam × |E |).

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Asynchronous setup

We will now work on a “bare asynchronous network model, avoiding,
for now, usefull abstractions like logical time and global snapshots.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

System Model

The lack of helping tools is compensated by a “generous” system
model:

Faults

No faults.

Channels

Reliable FIFO send/receive channels.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Reliable FIFO send/receive channels
Automaton

Signature:
Input: send(m)i,j ,m ∈ M
Output: receive(m)i,j ,m ∈ M
States:
queue = 〈〉
Transitions:
send(m)i,j

Effect:
queue := queue + 〈m〉

receive(m)i,j

Precondition:
queue.head = m

Effect:
queue.pophead()

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Reliable FIFO send/receive channels
Allowed trace behaviour

Let β be a sequence of actions, and cause() a function mapping each
receive event e ∈ β |receive to a preceeding send event s ∈ β |send such
that:

1 ∀receive(x) ∈ β |receive : cause(receive(x)) = send(y)⇒ x = y .
Messages dont come out of the blue.

2 cause() is surjective. For every send there is a mapped receive.
Messages are not lost.

3 cause() is injective. For every receive there is a distinct send.
Messages are not duplicated.

4 receive <β receive′ ⇒ cause(receive) <β cause(receive′). Order
is preserved.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Leader Election in an Arbitrary Network
Asynchronous FloodMax Algorithm

Assumptions

Undirected graph.

Unique UIDs.

Known diam.

Round simulation for FloodMax

Each process sends a round r message with a r tag. Recipients only
execute a round when all neighbour messages are received from the
previous round.

Q&A

Q: Do we really need a r tag in messages?
A: Nope. It suffices to wait for all neighbour messages and the
network operates in lock step. But this is as slow as the slowest link.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Leader Election in an Arbitrary Network
Asynchronous OptFloodMax Algorithm

In OptFloodMax messages are only sent if maxuid changes. Even if
rounds are tagged how to decide if one can proceed to the next
round?
If we keep waiting for all neighbours then dummy messages need to
be always exchanged and the optimization is lost.
Clearly the way seems to be propagating a maxuid each times it
changes, in a purelly asynchronous way that ignores rounds in lock
step.
But now, how do we know when to stop?

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Leader Election in an Arbitrary Network
Asynchronous OptFloodMax Algorithm

Termination of an asynchronous OptFloodMax can be achived by a
consistent global snapshot algorithm (covered later). All processes
must be terminated and no messages in transit that can activate
them.
Another option for Leader Election is to build a Spanning Tree for
Broadcasting and Convergecasting.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
AsynchSpanningTree automaton for node i

Signature:
Input: receive(”search”)i,j j ∈ nbrs
Output: send(”search”)i,j j ∈ nbrs
Output: parent(j)i j ∈ nbrs
States:
parent := null parent ∈ nbrs ∪ {null}
reported := false reported ∈ {false, true}
for all j ∈ nbrs:

sendto(j) :=

{
yes i = i0

no otherwise
sendto(j) ∈ {yes, no}

Transitions:
parent(j)i

Precondition:
parent = j
reported = false

Effect:
reported := true

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
AsynchSpanningTree automaton for node i

Signature:
Input: receive(”search”)i,j j ∈ nbrs
Output: send(”search”)i,j j ∈ nbrs
Output: parent(j)i j ∈ nbrs
Transitions:
send(”search”)i,j

Precondition: sendto(j) = yes
Effect: sendto(j) := no
receive(”search”)j,i

Effect:
if i 6= i0 and parent = null then
parent := j
for all k ∈ nbrs \ {j} do
sendto(k) := yes

Channel automaton

Consumes send(”search”)f ,t and produces receive(”search”)f ,t in
reliable FIFO order.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
AsynchSpanningTree vs SynchBFS

While AsynchSpanningTree looks like an asynchronous translation of
SynchBFS, the former does not necessarely produce a breadth first
spanning tree.
Faster longer paths will win over a slower direct path when setting up
parent.
One can however show that a spanning tree is constructed.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
AsynchSpanningTree

Invariant: A tree is gradually formed

In any reachable stat, the edges defined by all parent variables form a
spanning tree of a subgraph of G , containing i0; moreover, if there is
a message in any channel Ci,j the i is in this spanning tree.

Invariant: All contacts are searched

In any reachable state, if i = i0 or parent 6= null , and if
j ∈ nbrsi \ {i0}, then either parentk 6= null or Ci,j contains a search
message or sendto(j)i is yes.

Leading to:

Theorem

The AsynchSpanningTree algorithm constructs a spanning tree in the
undirected graph G .

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
AsynchSpanningTree

In asynchronous systems altough time is unbounded its is pratical to
assume a upper bound on time taken to execute a process effect,
time l , and time taken to deliver a message in channel, time d .

Complexity

Messages are O(|E |).

Time is O(diam(l + d)).

Altough a tree with height h, such that h > diam, can occur it only
occurs if it does not take more time than a tree with h = diam.
Faster long paths must be faster!

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
AsynchSpanningTree

Child pointers and Broadcast

If nodes report parent or nonparente one can build a tree that
broadcasts.
Is the time complexity of this tree still O(diam(l + d))?
No, because a fast path is not always fast. Complexity is
O(h(l + d)), at most O(n(l + d)), where n = |V |.

Broadcast with Acks

Its is possible to build a AsynchBcastAck algorithm that collects
acknowledgmenets as the tree is constructed. Upon incoming
broadcast messages each node Acks if they already know the
broadcast and Acks to parent once when all neighbours Ack to them.

Leader Election with AsynchBcastAck

This algorithm includes termination and if all nodes initiate it and
report their UIDs it can be used for Leader Election with unknown
diameter and number of nodes.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
AsynchBFS

It would be nice to have a breadth first spanning tree. In particular if
each edge/link can be expected to have similar delays in the long run.
Once constructed, broadcasts could expect time complexity of
O(diam(l + d)) and no longer depend on the particular timming of
the constructing run.
The key to this is to modify AsynchSpanningTree in order to keep
updating parent designations.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
AsynchBFS

Signature:
Input: receive(m)i,j m ∈ N, j ∈ nbrs
Output: send(m)i,j m ∈ N, j ∈ nbrs
States:
parent := null parent ∈ nbrs ∪ {null}

dist :=

{
0 i = i0

∞ otherwise
dist ∈ N ∪ {∞}

for all j ∈ nbrs:

sendto(j) :=

{
〈0〉 i = i0

〈〉 otherwise
sendto(j) ∈ N∗(FIFO)

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
AsynchBFS

Signature:
Input: receive(m)i,j m ∈ N, j ∈ nbrs
Output: send(m)i,j m ∈ N, j ∈ nbrs
Transitions:
send(m)i,j

Precondition: m first in sendto(j)
Effect: remove first in sendto(j)
receive(m)j,i

Effect:
if m + 1 < dist then
dist := m + 1
parent := j
for all k ∈ nbrs \ {j} do
add dist to sendto(k)

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
AsynchBFS

Assertion: Each process has info on some path

In any reachable state:

For every i 6= i0, if disti 6=∞ then disti is the lenght of some
path p from i0 to i in G where predecessor of i is parenti .

For every message m in channel Ci,j , m is the lenght of some
path p from i0 to i .

Assertion: Information on shortest paths is eventually propagated

In any reachable state. For every pair of neighbours i and j , either
distj ≤ disti + 1, or else either sento(j)i or Ci,j contains the value
disti .

Ultimately this will lead to:

Theorem

In any fair execution of AsyncBFS the system eventually stabilizes to
a state in which parent variables form a breadth first spanning tree.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
AsynchBFS

But, there is a caveat to AsynchBFS . . .

Termination

Notice that AsynchBFS did not produce the output report parent. It
is not trivial to detect when the system stabilizes in the desired
solution. It is however possible to devise a solution by accounting
Acks for all messages, in the style of AsynchBcastAck.

If one needs termination its best to use a LayeredBFS algorithm (and
pay a price in time complexity).

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Spanning Trees
LayeredBFS

Synopsis:

i0 coordinates layer construction.

Layer 1 will include level 1 nodes of the tree. Thus, 1 hop
neighbours of i0.

Layer k + 1 only starts construction after layer k is constructed
and reported by convergecast back to i0.

When layer k is constructed, i0 asks level k nodes to try a k + 1
layer with their neighbours.

Algorithm stops when no new nodes are found for a potential
k + 1 layer.

Basic
Asynchronous

Network
Algorithms

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Bibliography

For details on the algorithms and access to the references of the
original research that lead to them, consult the relevant Bibliographic
Notes in Distributed Algorithms book by Nancy Lynch.

