
Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Cuts, Global Snapshots and Termination

Carlos Baquero
Distributed Systems Group

Universidade do Minho

MAPI 2007

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Plan

Cuts and Global States

Global Snapshot algorithms

Termination detection

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Cuts

Cuts and Global States

σk
i is the local state of pi right after event ek

i .

The global state is a n-tupple of local states. Σ = 〈σ1, . . . , σn〉.
A cut is a subset C of global history H containing an initial
prefix of each local history.

C = hc1
1 ∪ · · · ∪ hcn

n

The cut frontier is the set of last events {ec1
1 , . . . , e

cn
n } included

in the cut 〈c1, . . . , cn〉. The corresponding global state is
〈σc1

1 , . . . , σ
cn
n 〉.

A run is a total order on the events H that is consistent with
each local history.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Cuts

Consider a system with blocking remote procedure calls (or call it
remote object invocations). Such a system is prone to deadlocks if a
wait-for graph of dependencies is formed. This can be detected by
collecting and inspecting the global state Σ looking for cycles.
An omniscent observer can check that the following execution has no
such cycles.

Execution with blocking RPCs

pa e1
a

ask

��.
..............
e2
a

//e3
a e4

a

ret

��>>>>>>> e5
a

ask

��.
..............
e6
a

pb e1
b

ask

@@�������
e2
b e3

b

pc e1
c e2

c
// e3

c

ret

GG���������������
e4
c

ask

@@�������
e5
c e6

c

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Cuts

Execution with blocking RPCs

pa e1
a

ask

��.
..............
e2
a

//e3
a e4

a

ret

��>>>>>>> e5
a

ask

��.
..............
e6
a

pb e1
b

ask

@@�������
e2
b e3

b

pc e1
c e2

c
// e3

c

ret

GG���������������
e4
c

ask

@@�������
e5
c e6

c

Consider an extra monitoring process pm that asks each process for
its state. pm can collect a cut with frontier:
{e3

a , e
2
b , e

6
c }

processes respond with indication of received calls waiting response.
{b waitsfor a, c waitsfor b, a waitsfor c}
here we witness a ghost deadlock that is fictitious.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Cuts

Execution with blocking RPCs

pa e1
a

ask

��.
..............
e2
a

//e3
a e4

a

ret

��>>>>>>> e5
a

ask

��.
..............
e6
a

pb e1
b

ask

@@�������
e2
b e3

b

pc e1
c e2

c
// e3

c

ret

GG���������������
e4
c

ask

@@�������
e5
c e6

c

A cut with frontier {e3
a , e

2
b , e

6
c } makes no sense and could never occur

since it includes a message received in e6
c that is not sent up to e3

a .
This cut is inconsistent (check rubber lines analogy).

Consistent Cut

A cut C is consistent if for all events e, e′:
e ∈ C and e′ → e implies e′ ∈ C .

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Cuts

Execution with blocking RPCs

pa
[1,0,0]

e1
a

ask

��,
,,,,,,,,,,,,,,,

[2,1,0]
e2
a

//[3,0,3]
e3
a

[4,0,3]
e4
a

ret

��:::::::

[5,0,3]
e5
a

ask

��,
,,,,,,,,,,,,,,,

[6,0,3]
e6
a

pb
[0,1,0]

e1
b

ask

BB�������
[1,2,4]

e2
b

[4,3,4]
e3
b

pc
[0,0,1]

e1
c

[1,0,2]
e2
c

// [1,0,3]
e3
c

ret

HH����������������
[1,0,4]

e4
c

ask

BB�������
[1,0,5]

e5
c

[5,0,6]
e6
c

Inconsistent cut {e3
a , e

2
b , e

6
c } has clocks 〈[3, 0, 3], [1, 2, 4], [5, 0, 6]〉.

Where process pc knowns that pa is at event 5 while pa only knowns
up to event 3.

Consistent Cut

A cut 〈c1, . . . , cn〉 is consistent iff: ∀i , j : V(eci

i)[i] ≥ V(e
cj

j)[i].

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Cuts

Consistent Cut

A cut 〈c1, . . . , cn〉 is consistent iff: ∀i , j : V(eci

i)[i] ≥ V(e
cj

j)[i].

One approach to find a consistent cut would be pm asking in cycle for
snapshots, tagged with vector clocks, until eventually a consistent
cut is found. Such cut would not include channel state.
Next we consider distributed snapshot algorithms that take into
account channel state and derive consistent cuts. For simplicity they
assume reliable FIFO channels but can be addapted for non FIFO
settings.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Snapshot Protocols

Set o processes {p1, . . . , pn}.
Process pi :

INi depicts the processes that have channels to pi .
OUTi depicts the processes to which pi has channels.

In each snapshot execution pi records local state σi and the
state of incoming channels, χj,i , for all pj ∈ INi .

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Snapshot Protocols
With global real time clock T

All messages are tagged with the time of the send event.

Process pm sends take snapshot at time t message to all
processes. (t should be far enough in the future.)

When clock reaches t each pi :

Records σi .
Sends sweep message on all OUTi (these messages have
timestamp greather than t).
Starts recording messages from each process in INi .

When a message with timestamp greather than t is received
from process pj , stop recording messages for this channel and
produce χj,i .

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Snapshot Protocols
With global real time clock T

Since we have FIFO, all messages in χj,i collected by pi contains
the messages sent by pj before time t and received by pi after t.
The protocol sweeps the channel.

The sweep message enshures liveness, since this messages is
eventually delivered and will carry a timestamp greather than t
that concludes the recording for the respective channel.

The protocol collects a consistent snapshot that did occur; a
nice property of real time.

To collect a consistent snapshot it suffices a timestamp
mechanism consistent with causality. Real time is just one
realization of this.

One can try to substitute real time for a logical clock.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Snapshot Protocols
With logical time

We consider that pm can establish a logical time ω that is far
enough in the future.

Process pm sends take snapshot at time ω message to all
processes.

When clock reaches ω each pi :

Records σi .
Sends sweep message on all OUTi (these messages have
timestamp greather than ω).
Starts recording messages from each process in INi .

When a message with timestamp greather than ω is received
from process pj , stop recording messages for this channel and
produce χj,i .

Now we will try to avoid the explicit logical time.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Snapshot Protocols
Chandy-Lamport

Process pm sends a take snapshot message to itself.

When pi receives the first take snapshot message and pj is the
sender:

Record σi .
Relay take snapshot to all OUTi .
Set χj,i to 〈〉 and start recording all INi channels.

When pi receives the a subsequent take snapshot message and
ps is the sender. Stop recording messages from ps and establish
χs,i as the recorded messages.

Notice that take snapshot traverses each channel exactly once. When
a process receives the message in all channels its snapshot is
complete and it can send it to the initiator.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Termination Detection
Dijkstra Scholten Algorithm

A diffusing algorithm is one where activity starts at a node (e.g. after
an external input) and diffuses along the network. Dijkstra Scholten
termination detection is suitable for these cases.
Termination can be formalized as:
If, sometime after an input occurs at some process pi , the monitored
algorithm ever reaches a quiescent global state, then eventually a
donei is produced at node pi .

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Termination Detection
Dijkstra Scholten Algorithm

We now consider the AsynchSpanningTree algorithm and add Ack
messages. search messages are used and each process (non root)
designates its first received contact as parent. Any subsequent search
messages receive Acks, but not the first contact.
Acks are only reported to the first contact (designated parent) once
the state of the process is quiescent and all outgoing messages have
been aknowledged. After reporting the node forgets all protocol
state, and can participate again in a tree construction.
The protocol allows the spanning tree to grow and shrink, until they
shrink into the root node and the whole algorithm terminates.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Termination Detection
Dijkstra Scholten Algorithm

Run

p3†

U ///o/o/o p1

>>}}}}}}}}

 AAAAAAAA p4†

p2†

User input asks p1 to form a tree. So p1 searches its neighbours.
Initially all process are quiescent †.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Termination Detection
Dijkstra Scholten Algorithm

Run

p3

�� !!BBBBBBBB

��

U p1 p4†

p2

WW ==||||||||

SS

p2 and p3 set p1 as parent (but dont ack) and search its neighbours.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Termination Detection
Dijkstra Scholten Algorithm

Run

p3

��
ack

��

U p1 p4

ack

``AAAAAAAA

vvp2

XX ack

SS

p2 search arrived first at p4, so it is set as parent and a ack is later
sent to p3 when its search arrives. The crossed searches between p2

and p3 produce acks as expected.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Termination Detection
Dijkstra Scholten Algorithm

Run

p3

��
U p1 p4

ww
p2†

XX

The processes can proceed a target computation sending and
aknowledging messages among them. Later on p2 becomes quiescent.
He cannot report it since its son p4 did not yet ack.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Termination Detection
Dijkstra Scholten Algorithm

Run

p3

��
U p1 p4†

ack

}}{{{{{{{{

p2†

XX

p4 becomes quiescent, acks and resets to initial conditions.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Termination Detection
Dijkstra Scholten Algorithm

Run

p3

��
U p1 p4†

p2†

ack

``AAAAAAAA

p2 acks and resets to initial conditions.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Termination Detection
Dijkstra Scholten Algorithm

Run

p3

��

��

!!DDDDDDDD

U p1 p4†

p2†

But p3, that was not terminated, continues running and messages its
neighbours.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Termination Detection
Dijkstra Scholten Algorithm

Run

p3

��
U p1 p4

hh

p2

OO

All processes are active again and form a new spanning tree. When
all processes become quiescent, eventually p1 will report done to the
user.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Termination Detection
Dijkstra Scholten Algorithm

Run

p3†

U p1†oo o/ o/ o/ p4†

p2†

Termination.

Cuts, Global
Snapshots and
Termination

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Bibliography

Consistent Global States of Distributed Systems: Fundamental
Concepts and Mechanisms. Özalp Babaoğlu, Keith Marzullo.

Distributed Algorithms. Nancy Lynch.

