Optimal Time Self Stabilization in Dynamic
Systems*

(Preliminary Version)

Shlomi Dolev

Dept. of Computer Science, Texas A&M University, College Station, Texas 77843,
e-mail: shlomi@cs.tamu.edu.

Abstract. A self-stabilizing system is a distributed system which can
tolerate any number and any type of faults in the history. After the last
fault occurs the system starts to converge to a legitimate behavior. The
self-stabilization property is very useful for systems in which processors
may malfunction for a while and then recover. When there is a long
enough period during which no processor malfunctions the system sta-
bilizes.

Dynamic systems are systems in which communication links and proces-
sors may fail and recover during normal operation. Such failures could
cause partitioning of the system communication graph. The application
of self-stabilizing protocols to dynamic systems is natural. Following the
last topology change each connected component of the system stabilizes
independently.

We present time optimal self-stabilizing dynamic protocols for a variety
of tasks including: routing, leader election and topology update. The
protocol for each of those tasks stabilizes in @(d) time, where d is the
actual diameter of the system.

1 Introduction

A self-stabilizing system 1s a distributed system that can be started in any possi-
ble global state. Once started the system regains its consistency by itself. Thus,
a self-stabilizing system can tolerate any number and any type of faults in the
history. After the last fault occurs the system starts to converge to legitimate
behavior. The self-stabilization property is very useful for systems in which pro-
cessors may malfunction for a while and then restart operation in an arbitrary
state. When there is a long enough period during which no processor malfunc-
tions the system stabilizes.

Dynamic systems are systems in which communication links and processors
may fail and come up during normal operation. One implication of such failure
pattern is partitioning of the system into some connected components. We are
interested in protocols that are resilient to such a partition. Thus, we would not

* This work was supported by NSF Presidential Young Investigator Award CCR-91-
58478 and funds from the Texas A&M University College of Engineering.

like our protocol to depend on the existence of a special processor as many self-
stabilizing protocols do. Similarly, we require a dynamic protocol not to depend
on a-priori knowledge either of the actual diameter or of the actual number of
the processors in the connected component. The only a-priori knowledge used is
an upper bound, NV, on the number of processors in the entire system.

Dynamic networks may be subject to frequent topology changes, hence it is
essential for a dynamic protocol to be #ime efficient. The time needed to transport
information from one side of a connected component to the other side is no less
than £2(d), where d is the actual diameter of the connected component. In this
paper we present self stabilizing protocols that stabilize in ©(d) time.

The main protocol discussed in this paper is the routing protocol. The task of
the routing protocol is to inform each processor P of the exact set of processors
in P’s connected component. In addition the protocol gives P the following in-
formation about each processor @ in P’s connected component: (1) The distance
(the minimal number of hops) from P to Q. (2) The identifier of a neighbor of
P that belongs to a shortest path from P to Q.

Although we stated the above as requirements for the routing task, they
could have other interpretations, e.g.: once every processor knows the exact set
of processors that belong to its connected component then there is a unique
leader for that component — the processor with the maximal? identifier.

The study of self-stabilizing systems started with the fundamental paper of
Dijkstra [Di-74]. Following the pioneering work of Dijkstra a great amount of
work has been done in this area; a partial list of those papers is: [Kr-79], [La-86],
[BGW-87], [BP-88], and [DIM-90]. Spinelli and Gallager [SG89] presented a dy-
namic self-stabilizing protocol for topology update that stabilizes within ©@(d)
time (as a version of their event-driven SPTA protocol). In their protocol each
processor P maintains information on the topology, including the distance of
every link from P, and communicates this information to all its neighbors. Con-
sequently, the memory that a processor should be equipped with is at least
O(k|E|), where k is the size of a processor identifier®, and |E|, the number of
links in the system (|E| is bounded from above by N?). Furthermore, O(k|E|)
bits are communicated through every communication link.

The memory size required by each processor for our routing protocol is
bounded by O(kN) bits. This improves the amount of memory needed for opti-
mal time self-stabilizing leader election, routing and many other tasks w.r.t. to
the solution of [SG8&9].

The protocols we present are memory adaptive as defined in [AEV-92]: at
some point after the system stabilizes the size of the memory used by each pro-
cessor, P, is O(kn) where n is the actual number of processors in P’s connected
component. Independently, in [AK+-93] a self stabilizing spanning tree protocol
that stabilizes in @(d) time is presented. For the leader election task the space
complexity of their protocol is often better than ours. They use O(k log D) bits
where D is a bound on the diameter. In case log D (in dynamic network the

2 Another convention could be the minimal identifier.
% In most cases a word of memory is sufficient to represent such an identifier

bound on the diameter D is theoretically identical to N) is greater than n our
adaptive protocol eventually uses less memory. Moreover, for the case of the
routing task our protocol achieves the optimal space complexity?.

Our protocol may also be used to improve the amount of communication
needed for topology update w.r.t. the protocol of [SG89]. Following O(d) rounds
the topology (i.e. O(k|E]) bits) is communicated only through links that be-
long to a (single) spanning tree (i.e. exactly n — 1 links) while O(kN) bits are
communicated through all other links.

In [AV-91] the following open question was stated: “The transformation adds
O(D) overhead to the time complexity of the protocol, where D is the bound
on the diameter of the network after arbitrary failures. Clearly D can be much
larger than the actual diameter of the final network. A natural open problem is
to obtain a compiler whose time overhead only depends on the actual diameter
of the final network.” We close this problem for the case that processors have
distinct identifiers by the use of our routing protocol (or the self-stabilizing
topology update protocol of [SG89]) that stabilizes in @(d) time and the use of
the fair protocols composition technique presented in [DIM-90]°. Independently,
in [AK+-93] this open question is closed too.

The rest of the paper is organized as follows. In Section 2 we describe the
requirements for a self-stabilizing dynamic distributed protocol. Section 3 con-
tains the self-stabilizing routing protocol which i1s a composition of a multiple
breadth-first search trees (abbreviated BFS trees) protocol and counting proto-
col. Concluding remarks are in Section 4.

2 Distributed System

A distributed system consists of N processors denoted by Py, Ps,---, Pny. The
processors have distinct identifier in the range 1 to 2F > N. ® The identity of
a processor P is denoted by i¢dp. Each processor can communicate with some
subset of the processors called its neighbors. Communication among neighboring
processors is carried out by communication registers. The atomic operations
that these registers support are read and write. A processor, P, communicates
with all its neighbors by using a single writer, multi-reader register in which
only P writes and from which all the neighbors of P read. The registers are
serializable with respect to read and write actions. The system’s communication
graph is the graph formed by representing each processor as a node and by
drawing an (undirected) edge between every two neighbors. In dynamic systems
the system’s communication graph is not necessarily connected. Since there is no
possible communication between two distinct connected components, we consider

* Qur protocol use the amount of memory a processor needs in order to store the
distances to every other processor.

® See [DIM-91b] for how to close this open question by the use of randomization in
the case that processors do not have distinct identifiers.

6 Usnally the range of the identifiers is much larger than the bound on the number of
Processors.

each connected component as an independent system that contains a subset of
the processors and edges of the original system (in the sequel we use the term
connected component and system interchangeably).

For ease of presentation we regard each processor as a C'PU whose program is
composed of atomic steps. An atomic step of a processor consists of an internal
computation followed by read or write. We assume that the state of a processor
fully describes its internal state and the value written in its register. Denote by
S; the set of states of P;. A configuration, ¢ € (S1 x Sz x ---Sy,) of the system
is a vector of states of all processors.

Processor activity is managed by a scheduler. In any given configuration the
scheduler activates a single processor which executes a single atomic step. To
ensure correctness of the protocols, we regard the scheduler as an adversary. A
run of the system is a finite or infinite sequence of configurations R = (¢1, ¢, -+ *)
such that for i = 1,2, ¢;41 is reached from ¢; by a single atomic step of some
processor. A fair run 1s an infinite run in which every processor executes atomic
steps infinitely often.

For ease of description, we assume that the computation of each processor P
is done in cycles. Each cycle consists of a sequence of steps in which P executes
the following in the specified order: (a) reads the values of the registers owned
by its neighbors and (b) writes into the register it owns. Note that by the nature
of self-stabilizing systems a processor could start its operation with any atomic
step of the above cycle. For instance a processor P could start operation by
reading from its second neighbor; however, after P writes in its own register, P
starts a new cycle.

In a distributed system each processor may execute atomic steps at any
constant or non-constant rate. Various processors might be slow in various parts
of the run. The following definition of round complexity captures the rate of
action of the slowest processor in any segment of the run. Given a run R the
first round of R is finished immediately after each processor has executed one
cycle; the second round is finished after each processor has executed one cycle
following the termination of the first round, and so on and so forth. For any
given run, R, the round complezity (which is sometimes called the run time) of
R is the number of rounds in R.

We proceed by defining the self-stabilization requirements for distributed
systems. A behavior of a system is specified by a set of runs. Define a task LR
to be a set of runs which are called legitimate runs. A configuration ¢ is safe
with respect to a task LR and a protocol PR if any fair execution of PR starting
from ¢ belongs to LR. Finally, a protocol PR is self-stabilizing for a task LR, if
starting with any system configuration and considering any fair scheduler, the
protocol reaches a safe configuration.

Although the description of the system is similar to [DIM-90] the protocols
we present work also in message passing systems by the use of a self-stabilizing
simulation of shared memory described in (the full version of) [DIM-91a].

3 The Routing Protocol

In this section we present a dynamic self-stabilizing routing protocol. First we
describe a multiple BF'S trees protocol that constructs n directed BFS trees;
for every processor P, the protocol constructs a directed BFS tree rooted at P.
A self stabilizing protocol that constructs a single BFS tree rooted at a special
processor was presented in [DIM-90]. In fact it is shown there that a similar algo-
rithm to the Bellman-Ford [Be-58] algorithm is self-stabilizing. Roughly speaking
our multiple BFS trees protocol uses n copies of the protocol that appears in
[DIM-90]. Following the description of the multiple BF'S trees protocol we present
a counting protocol that is integrated into the multiple BFS trees to form the
routing protocol.

Roughly speaking, after the multiple BFS trees protocol constructs all the
BFS trees (in O(d) rounds) the processors in the system might not be aware of the
fact that the BF'S trees are already fixed; activities that are related to previously
connected processors (or due to the arbitrary initial configuration) could still take
place. We use the counting protocol to eliminate the influence of these activities
within extra O(d) rounds. Each processor uses its (eventually) fixed tree to
count the number of processors in the system. The counting part results with
the right answer O(d) rounds after the BFS tree is already constructed. Then
every processor can distinguish the information that is related to processors in
the system from the total information the processor has.

3.1 Multiple BFS Trees Protocol

The multiple BFS trees protocol constructs the first BFS tree that is rooted at
each processor: a graph may have more than a single BFS tree rooted at the
same node. We define the first BFS tree (similarly to [DIM-90]) of G relative to
P to be a BFS tree, rooted at P. In case a node,), of distance j+ 1 from P, has
more than one neighbor of distance j from P, @ is connected to the neighbor
with the maximal identifier, among all its neighbors whose distance from P is

.7
{

J-

The task of the multiple BFS trees protocol is defined by a set LR of le-
gitimate runs during which every configuration of the system encodes for every
processor P the first BFS tree, rooted at P, of the connected component of P.

Data Structures: During the run of the protocol each processor, P, maintains
an array, tabp[l : N] with N entries, an entry for each (possible) processor
@ in the system. P communicates with any of its neighbors @@ by writing in
tabp and reading tabg. The #’th, 1 < i < N, entry of tabp, tabp[i], is a triple
(tabpli].id, tabpli].dis, tabp[i].f) (or in short (id, dis, f}), of the following ranges:
id and f are in the range 0 to 2¥ and dis in the range 0 to N. After the system
stabilizes it holds that:

" Other convention (like the last BFS tree could be used as well as long as the tree is

fixed.

(a) tabp[i].id is either an identifier of a processor, or 0. Whenever tabp[i].id # 0
then,
(b) tabpli].dis is the distance from P to the processor with the identifier tabp[i].id,
and
(c) tabpl[i].f is the identifier of the father of P in the first BFS tree of the
processor with the identifier tabp[i].id.

To compute the values in tabp P uses internal tables called new tab[l : N,
rtab[l : N] and update_tab[l : 2N]. Each entry of the above internal tables is a
triple (id, dis, f).

Transition Function: Each processor P builds the first BFS tree identified
with idp. This is accomplished by repeatedly writing in tabp[1] the tuple (idp, 0, 0).
In order to determine the other entries of tabp, P repeatedly reads the tables
tab of all its neighbors; in case P has é neighbors the number of tuples read by
PiséN.

From the 6N tuples P reads, P chooses the maximal number of tuples, up
to N — 1 tuples, that fulfill the following restrictions:

(a) There is no tuple with idp.

(b) For any identifier @, if Q is the set of tuples read with the identifier @, then
only a tuple with the smallest dis among Q could be chosen.

(c) Let R be the set of tuples left after deleting all tuples due to (a) and (b)
above. If the number of tuples in R is smaller than N — 1 then P chooses all of
them. Otherwise, P sorts the tuples in R by their dis values, where a tuple with
the smallest dis is the first. Then P chooses the first N — 1 tuples.

Once P chooses the appropriate tuples, P assigns tabp[2 : N] with the chosen
tuples. In case P chose less than N — 1 tuples, P fills the rest of the entries of
tabp with the tuple (0, N, 0), which is called the empty tuple.

The above description uses an array of size O(kN) to store the table read from
each neighbor before choosing the tuples. Thus, for a processor with § neighbors
O(6kN) space is required. To eliminate the é factor we choose candidate tuples
after each read operation instead of choosing tuples after reading all the tables
of the neighbors.

The description of the protocol for a processor P, that has § neighbors, ap-
pears in Fig. 1. During the execution of the protocol each processor, P, repeat-
edly reads the tables of its neighbors in a cyclic order. Whenever P begins a com-
putation cycle, P initializes the values of the local tables new_tab[l : N] by the
following assignments: new _tab[l] := (idp,0,0) and new_tab[2 : N] := (0, N, 0).
(This notation of assignment is a short-hand for the assignment new_tab[j] :=
(0, N, 0) for each entry in the range 2 < j < N. In the sequel we use this notation
for multiple assignment in an array). Following any read operation P assigns the
table it just read to r_tab[l : N] and updates new_tab[l : N].

Correctness and Complexity Proof: In this subsection we show that within
3d + 1 rounds a safe configuration is reached after which any configuration en-
codes n first BFS trees, as required.

1. do forever
2. Initialize:
(a) new_tab[1] := (idp,0,0)
(b) new_tab[2 : N]:= (0, N, 0)
3. fori=1to 6 do
4. Read tabg where @ is P’s 2’th neighbor:
(a) r_tab[1 : N]:= read(tabg[l: NJ)
5. Choose tuples:
(a) update_tab[l : N]:= new_tab[1: N

update_tab[N + 1 : 2N).(id, dis, f) := (r_tab[1 : N].id,r_tab[1 : N].dis + 1,1dg).

(b) P deletes every entry j of update_tab such that the value of its dis is equal
to N. (P deletes an entry in a table by the assignment of the triple
{0, N,0) to it.)

(c) For every id that appears in more than one entry of update_tab, say in the
set of entries I, P finds a subset I’ C I s.t. the values of their dis field are
minimal in /. P deletes all the entries that belong to I except the entry
with the largest f in I’.

(d) P sorts (the modified) update_tab by the value of the dis field of
its entries s.t. a tuple with the smallest dis is in update_tab[1].

(e) P assigns new_tab[l : N|:= update_tab[l : N].

(f) If : = & then P writes tabp[l: N]:= new_tab[1 : N].

6. enddo(3)
7. enddo(1)

Fig.1. Multiple BFS trees Protocol - P’s Program.

Lemma 1. Following the first round of any run it holds for any processor P
that:

(]) tabp[l] = (Z'dp,o,())‘

(2) For any 2 < j < N tabp[j].dis > 0.

Proof. During the first round a processor P assigns new tab[l] := (idp,0,0) (op-
eration 2(a)) assigns new_tab[2 : N] := (0, N,0) and then update_tab[l : N] :=
new_tab[l : N] (operation 5(a)) at least once. Let ¢ be the configuration that
immediately follows those operations. Following each time P executes these as-
signments P reads tabg (operation 4(a)) of every neighbor) and then writes in
tabp (operation 5(f)). We now show that new_tab[1] = update_tab[l] = (idp,0,0)
following ¢. new_tab is assigned only during operations 2(a)-2(b) and 5(e). Thus,
the only possibility of new_tab[1] to be changed is due to operation 5(e). There-
fore, we only have to prove that update_tab[1] is never changed. Assume towards
contradiction that update_tab[l] is changed following ¢. The first change is not
due to operation 5(b) since update_tab[l].dis = 0. Now we show that the first
change is also not due to 5(c)-5(d). First notice that by 2(a) and 5(a) following
¢ the dis field of every entry of updatetab but update_tab[1] has a value that is
greater than 0. Thus, update_tab[1] is the only tuple in the calculated I’ for idp
during 5(c) and it is the first tuple due to the sort operation of 5(d). |

Define a dangling id in some configuration ¢ to be an i¢d that appears in at
least one of the tables tab[l : N], newtab[l : N] or rtab[l : N] but there is
no processor with the same id in the same connected component of the system.
Notice that this definition does not consider tuples in update_tab. Those tuples
are assigned only to new_tab and only during operation 5(e). By the definition
of an atomic step if operation 5(e) is executed then operation 5(a) is executed
before and during the same atomic step. Hence, by operation 5(a) the source of
the tuples in update_tab is new_tab and r_tab of c.

To prove that the system stabilizes in O(d) rounds it is important to prove
first that the minimal dis value of a dangling id grows by at least 1 during every
round.

Lemma 2. In every run, following the first d + 1 rounds every dis field of an
entry of a dangling id in r_tab s at least d and every dis field of an entry of a
dangling id in tab or new_tab is greater than d.

Proof. Let idp(c) be a dangling id in, ¢, the first configuration of the run. Let
disp(c) be the minimal dis among the tuples in tab, new_tab or r_tab with idp
in ¢. Every processor executes at least one cycle during the first round. Hence,
every processor executes the operations 2(a), 2(b) and 5(a) during the first round.
Following the execution of those operation and till the first round is ended every
processor writes in rtab, new_tab and tab. A triple with a dangling id could be
written in r_tab, new_tab and tab only due to the following operations in the
specific order:
(1) read of dangling id during operation 4(a).
(2) assignment of a tuple of r_tab into update_tab (operation 5(a)).
(3) assignment into new_tab (operation 5(e)).
By operation 5(a) whenever a tuple is assigned to update_tab the dis field is set
to be greater by 1 than the dis read. Thus, for every dangling idp(c) when the
first round is ended there is no tuple with idp(¢) in r_tab s.t. its dis value is less
than disp(c) and there is no tuple in new_tab or tabp with idp(c) s.t. its dis
is less than or equal to disp(c). Moreover, after the first read operation that is
executed by every processor following the first round, it holds also that there is
no tuple with idp(e) in r_tab s.t. its dis value is less than or equal to disp(c).
The same arguments holds for a run that starts with the configuration ¢’
that is reached immediately after the first round. Since the minimal value of a
dis field is 0 and since disp is incremented by at least one in every round than
following d 4+ 1 rounds the value of disp in at least d in any entry with idp(c)
of r_tab and is at least d + 1 in any entry of new _tab and tab with idp(c). O

Lemma 3. Let R’ be the suffiz of a run R that immediately follows the first
(d+ 1) rounds of R. For any i, in every configuration of R' that follows the first
21 rounds of R’ it holds for any processor P, and for every processor) that:
(a) if Q is at distance greater than i from P, then any tuple in tabg with idp
has a dis that is greater than i.

(b) if Q is at distance less than or equal to 1 from P, then there ezists a single

tuple in tabg with idp. In case (idp,dis, f) exists in tabg then:
(1) dis is the distance of Q) from P and
(2) f is an identifier of the father of Q in the first BFS tree rooted at P.

Proof. The proof is by induction on i < d, the distance from P.

Base Case i = 1: By lemma 1 following the first round of R’ the only table
in which the tuple (idp,0,0) appears is tabp (every other tuple with idp has
dis greater than 0). During the second round of R’ any processor) at distance
greater than 1 reads the tables of all its neighbors and discovers that there is no
tuple with idp and dis = 0. Consequently,) does not assign a tuple with idp
and dis < 2 in tabg. This proves assertion (a). To prove assertion (b) we first
show that during the second round of R’, when any processor (), at distance 1
from P writes tabg[l : N] := new_tab[l : NJ, there is an entry with the values
(idp,1,idp) in newtab[l : N]. Then we show that at the end of any successive
computation cycle of @, @ assigns (idp, 1,idp) in tabp.

During the second round of R’, @) reads the table of each of its neighbors.
Following the read operation (4(a)) from P, Q) assigns (idp, 1,idp) in update_tab
(operation 5(a)). Since dis = 1, the tuple (idp,1,idp) is not removed during
5(b). (idp,1,idp) is not removed during operation 5(c) either, since by the above
argument following the first round of R’, @) may read the tuple (idp,0,0) only
from tabp. Thus, we have to consider operation 5(d). By lemma 2 during R’
all the dangling tuples have dis greater than d. Following operation 5(c) each
non-deleted entry in update_tab has a unique 7d. Since there are at most N non-
dangling tuples in update_tab it is guaranteed that the tuple (idp, 1,idp) appears
in one of the first N indices of update_tab and is assigned to new_tab[l : N] during
operation 5(e).

Now consider any further execution of the operations 4(a) and 5(a)-5(e) be-
fore the execution of 5(f). First the tuple (idp, 1, idp) is assigned to update_tab
during the assignment updatetab[l : N] := new_tab[l : N] of operation 5(a).
As before, this tuple is not deleted from update_tab and is assigned to new_tab
during operation 5(e). Thus, at the end of the first cycle of @) during the second
round of R/, @ assigns the tuple (idp, 1,idp) to tabp (operation 5(f)).

The above arguments hold for any cycle execution of) that follows the
first computation cycle of @ during the second round of R’. Hence, whenever @
executes operation 5(f) @ assigns the tuple (idp, 1,idp) to tabp. This completes
the proof of assertion (b).

Induction Step: We assume that following the first 2i rounds of R’ assertions
(a) and (b) hold for ;. We prove that after two additional rounds assertions (a)
and (b) hold for i + 1.

By the induction assumption, following the first 27 rounds of R’ any processor
@ that is at distance greater than i+1 from P cannot read a tuple s.t. its identifier
is tdp and its dis is less than ¢ 4+ 1. Thus, during the first cycle that follows the
first 27 rounds of R’ it holds for @) that a tuple with idp could appear only with
dis that is greater than i + 1. This proves assertion (a).

Let U be an arbitrary processor at distance ¢ + 1 from P and let @ be
the neighbor of U with the maximal identifier s.t. @) is at distance 7 from P.

During the 2i+ 2'nd round U initializes update_tab (operations 2(a)-2(c)). Then
U reads tabg (operation 4(a)) and assigns the tuple (idp, i+1,idg) to update_tab
(operation 5(a)). Since dis =i+ 1 < d < N, the tuple (idp,i + 1,idg) is not
removed during 5(b). (idp,i+1, idg) is not removed during operation 5(c) either
since following the first 27 + 1 rounds of R/, @ may read a tuple with idp and
dis = i only from tables of processors that are at distance i from P and @ has
the maximal identifier among them. Thus, we have to consider operation 5(d).
By lemma 2 during R’ all the dangling tuples have dis that is greater than d.
Following operation 5(c) each non-deleted entry in update tab has a unique id.
Since there are at most N non-dangling tuples in update_tab it is guaranteed
that the tuple (idp,i+1,idg) appears in one of the first N indices of update_tab
and is assigned to new_tab[l : N] during operation 5(e).

Now consider any further execution of the operations 4(a) and 5(a)-5(e) by
U before the execution of 5(f). First the tuple (idp,i + 1,idg) is assigned to
update_tab during the assignment update_tab[l : N]| := new_tab[l : N] of opera-
tion 5(a). As before, this tuple is not deleted from update_tab and is assigned to
new_tab during operation 5(e). The above arguments hold for any cycle execu-
tion of U that follows the first 2i + 1 rounds of R’. Hence, whenever U executes
operation 5(f) U assigns the tuple (idp,i+ 1,idg) in taby. |

Corollary 4. In any run any configuration that follows the first 3d 4+ 1 rounds
encodes a first BFS tree for any processor P.

Proof. The use of lemma 3 with i = d yields that for any processor P, following
3d + 1 rounds, a first BFS tree rooted in P is encoded in the tables tab of the
processors. a

Note that although following the first 3d + 1 rounds each processor is a root
of a first BFS tree there still might be dangling tuples. The value of the dis field
of those tuples is greater than 3d and less than N. Actually the dangling tuples
are removed by the regular execution of the protocol only after N rounds (this is
derived by arguments similar to the arguments of lemma 2). Thus, following 3d+
1 rounds a processor cannot know the exact number of processors in its connected
component and obviously can neither know the topology of the component nor
choose a leader.

In the following section we augment the protocol with a counting protocol
that informs each processor in the connected component of the number of pro-
cessors in its component. Once a processor P has the right knowledge on the
number of processors in P’s connected component, say I, P consider the closest
(due to the distance fields in tabp) [processors to be in its connected component.
The counting protocol is executed during the regular execution of the protocol
and converges in O(d) rounds after the first BFS trees of every processor is
constructed.

3.2 Counting Protocol

The counting protocol is an example of a self stabilizing convergecast scheme,
i.e., a scheme for collecting information in a self stabilizing fashion. It uses the

constructed directed spanning trees of the multiple first BFS trees as an input.
Given a first BFS tree, information is repeatedly collected starting from the
leaves towards the root. Since the information is collected in a fixed direction,
eventually the correct information reaches the root. Consequently, when it is
necessary, the collected information could be broadcast from the root to every
processor in the system by the use of an independent mechanism that repeatedly
sends information from any father to its sons. Using the self stabilizing converge-
cast technique, a self stabilizing topology update protocol that stabilizes within
O(d) rounds could be achieved. Since topology update is an over-kill when only
the number of processors is needed and since it requires larger amount of memory
we hereby present a protocol that collects only the information on the number
of processors in the spanning tree.

The task of the counting protocol is defined by a set LR of legitimate runs
during which the state of every processor P encodes the value n — the actual
number of processors in P’s connected component.

To integrate the counting protocol into the multiple BFS protocol we add
to any tuple a new field called count that contains an integer in the range 0 to
N. When the system stabilizes, the value of the count field in an entry of tabp,
(idg, dis, f, count), is the number of processors that are descendants of P in the
first BFS tree of).

For any processor P, following the construction of the first BFS tree of P
whenever a processor () reads a table of a neighbor U, @ can deduce by the
value of the father field of the entry (idp,dis, f, count) of taby whether U is a
son of @ in the first BFS tree of P. Using the above) sums up the values of the
count fields of its sons, adds to this result the number of its sons, and assigns
the final result to the count field of the entry (idp, dis, f, count) of tabg.

To implement the above we modify the multiple BFS trees protocol as follows:

2(c) sum[0:N]:=0
4(b) forj=1to N do
if r_tab[j].f = idp then
sum[r_tab[j].id] := min(sum[r_tab[j].id] + r_tab[j].count + 1, N).
5(f) if i = & then P writes (tabp[l : N].(id, dis, f, count) :=
(new_tab[l : N].id,newtab[l : N].dis,newtab[l : N|.f, sum[new tab[l : N].id])).

Figure 2: Incorporation of the Counting Protocol- P’s Program.

Correctness and Complexity Proof:

Lemma 5. In any run of the counting protocol, d rounds after all the first BFS
trees have been constructed the value of the count field of every tuple with dis = 0
isn— 1.

Proof. Let Tp be the first BFS tree rooted at P, as encoded by the system
configuration. Define the height of a processor) in Tp to be the maximal number
of processors 1n a path of Tp that starts at a leaf and ends at (). The correctness
and complexity proof of the counting protocol is by induction on the height of
the processors. The induction assumption is that if @ is in height less than or
equal to h then following h rounds the count field of the entry (idp, dis, f, count)
of tabg holds the number of processors that are descendants of () in Tp. The
induction base is by the fact that every processor that is at height 0 is a leaf. The
induction step is derived from the induction assumption for processors at height
h and the way processors at height h+ 1 calculate the number of processors that
are their descendants. Since the height of a processor in any first BFS tree is
bounded by d it holds that following O(d) rounds the count field of the root is
equal to n — 1. The above arguments are true for any tree in the system, hence
for any processor P, the tuple (idp,0,0,n — 1) appears in tabp. O

By the above lemma following O(d) rounds the knowledge of any processor,
P, is stabilized to include the following correct values:

(1) The set of processors that appears in tabp includes every processor in P’s
connected component.

(2) The value n — 1 appears in the single entry with id = idp in tabp —
(idp,0,0,n — 1).

(3) The first n entries of tabp include exactly the n identifiers of the processors
in P’s connected component (with their correct distance from P and the first
link in a shortest path to each of them).

By the nature of self-stabilizing protocols a processor can never know whether
the system is already stabilized. Roughly speaking, a processor could be awak-
ened (in a state that is) “knowing” wrong information which will eventually
stabilize to the correct information during the operation of the protocol. For
example, in our protocol a processor P could be started with a wrong value of
count in the tuple (idp, 0,0, count) and with arbitrary contents of tabp. However,
although P does not know when the system is stabilized, it holds that following
O(d) rounds the knowledge P has about its connected component reflects the
reality.

4 Concluding Remarks

We presented a dynamic self-stabilizing protocols that stabilize in ©(d) rounds.
The protocols presented here are easily modified to yield memory adaptive pro-
tocols by using connected-lists with bounded length (no more than N elements)
instead of arrays. The modification is straightforward: (1) Omit every entry with
the empty tuple, i.e. the tuple (0, N, 0} in update_tab and new_tab and the tuples
(0, N, 0, count) in the tables tab and r_tab. (2) Omit every entry in the count
array with value 0. As mentioned before the memory requirement is bounded by
O(kN) bits. Using the above, it is easy to see that following O(N) rounds the
memory required is only O(kn) bits.

We also described a convergecast broadcast technique which could be com-
posed with our routing protocol to yield other tasks such as topology update
within @(d) rounds. In the topology update protocol, the information that is
convergecast is the local topology (i.e. the identity of the neighbors) of each
descendant. To achieve better communication complexity than implied by the
protocol of Spinelli and Gallager [SG89] we repeatedly collect information on the
topology only through the links of the tree of the elected leader. We combine our
routing protocol with a convergecast broadcast mechanism using a fair protocol
composition, a technique presented in [DIM-90].

The convergecast broadcast mechanism assumes that every processor knows
its father and sons in T, the BFS tree of the leader. Note that this assumption is
valid after O(d) rounds. The convergecast uses for every processor P a variable
upp in which P writes to its father in 7. In case P is a leafin T', P writes its own
local topology in upp. Otherwise P concatenates the values of the up variables
of all its sons in 7" and its own local topology and writes the result in upp. At
the same time in order to inform every processor with the collected topology
we repeatedly broadcast the value of the up variable of the leader through T.
The broadcast uses for every processor P a variable downp in which P writes
to its sons. In case P is the leader then P repeatedly writes the value of upp
in downp. Otherwise P assigns the value of the down variable of its father to
downp.

Using the broadcast topology each processor can repeatedly calculate d, the
actual diameter of the network, and get the correct result in every such calcula-
tion that follows the first O(d) rounds. Another less memory expensive possibility
(i.e. O(kN) bits for a processor) is a protocol that estimates the diameter of the
communication graph. It uses the value of the maximal height of the BFS tree
of the leader in order to estimate the actual diameter. If the maximal height is
h then the diameter of the communication graph is bounded from above by 2h.
The leader has the right A following O(d) rounds of the routing protocol. The
leader repeatedly broadcasts the value of A and all the processors use 2h as a
bound on the diameter of the communication graph.

Once every processor has the right information for d any self-stabilizing pro-
tocol PR that assumes the knowledge of d or an upper bound on d (e.g. in
[AV-91] d or 2h may be used instead of D) could be composed with the topology
update protocol or the maximal diameter estimation protocol by a fair proto-
col composition. If the time complexity of PR is O(d) rounds then the time
complexity of the composition is also O(d) rounds.

Acknowledgments: Many thanks to Leslie Lamport for his discussion and to
Jennifer L. Welch and anonymous referees for reading a preliminary draft of this

paper.

References

[AEV-92] E. Anagnostou, R. El-Yaniv and Vassos Hadzilacos, “Memory Adaptive Self-
Stabilizing Protocols”, Proceedings of the 6th International Workshop on Dis-
tributed Algorithms, Haifa Israel, 1992.

[AK+-93] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir and
George Varghese, “Time Optimal Self-Stabilizing Synchronization”, To ap-
pear in STOC-93.

[AV-91] Baruch Awerbuch and George Varghese, “Distributed Program Checking: a
Paradigm for Building Self-stabilizing Distributed Protocols”, FOCS-91.

[Be-58] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87-90,1958.

[BGW-87] G.M. Brown, M.G. Gouda, and C.L. Wu, “Token System that Self-
Stabilize”, IEEFE Transactions on Computers, Vol. 38, No. 6, June 1989, pp.
845-852.

[BP-88] J.E. Burns and J. Pachl, “Uniform Self-Stabilizing Rings”, Aegean Workshop
On Computing, 1988, Lecture Notes in Computer Science 319, pp. 391-400.

[Di-74] E.W. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Control”,
Communications of the ACM 17,11 (1974), pp. 643-644.

[DIM-90] S. Dolev, A.Israeli and S. Moran, “Self Stabilization of Dynamic Systems As-
suming Only Read/Write Atomicity”, Proc. of the Ninth Annual ACM Sym-
posium on Principles of Distributed Computation, Montreal, August 1990,
pp. 103-117.

[DIM-91a] S. Dolev, A. Israeli and S. Moran, “Resource Bounds for Self Stabilizing
Message Driven Protocols”, Proc. of the Tenth Annual ACM Symposium on
Principles of Distributed Computation, Montreal, August 1991, pp. 281-294.

[DIM-91b] S. Dolev, A. TIsraeli and S. Moran, “Uniform Dynamic Self-Stabilizing
Leader Election”, in Lecture Notes in Computer Science 579: Distributed
Algorithms, (Proc. of the 5th International Workshop on Distributed Al-
gorithms, Delphi, Greece, October 1991), S. Toueg, P.G. Spirakis and L.
Kirousis, Editors, pp. 163-180, Springer Verlag, 1992.

[KP-89] S. Katz and K. J. Perry, “Self-stabilizing extensions for message-passing sys-
tems”, Proc. of the Ninth Annual ACM Symposium on Principles of Dis-
tributed Computation, Montreal, August 1990, pp. 91-101.

[Kr-79] H.S.M. Kruijer, “Self-stabilization (in spite of distributed control) in tree-
structured systems”, Information Processing Letters 8,2 (1979), pp. 91-95.

[La-86] L. Lamport, “The Mutual Exclusion Problem: Part IT - Statement and Solu-
tions”, Journal of the Association for Computing Machinery , Vol. 33 No. 2
(1986), pp. 327-348.

[SG89] J. Spinelli and R.G. Gallager, “Event Driven Topology Broadcast Without
Sequence Numbers”, TEEFE Transactions on Communication, Vol. 37, No. 5,
(1989) pp. 468-474.

This article was processed using the IATpX macro package with LLNCS style

