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1 Introduction

Software based replication is a highly competitive tech-
nique to improve the dependability of database systems.
However, the unavoidable trade-off between consistency
and performance causes some discredit among database
designers with respect to synchronous, strong consistent,
replication protocols. This is usually due to performance
and scalability problems as classic distributed locking based
protocols lead to high resource contention, high transac-
tion latency and high deadlock rates [12]. As a result, com-
mercial database products often privilege asynchronous (or
lazy) replication protocols in order to boost performance at
the expense of data consistency.

Asynchronous replication is not transparent for the
user and therefore cannot be generically applied. More-
over, while strong consistency criteria such as 1-copy-
serializability [5] is rigorously defined, relaxed criteria are
often ambiguous, hard to formalize, and based on the belief
of eventual replica convergence.

To overcome the above problems, a suite of group based
communication protocols has emerged and has been the fo-
cus of a considerable body of research [3, 21, 26, 14, 19, 11,
15, 22]. Basically, the main and common characteristics
of these protocols are the optimistic transaction execution
based on deferred updates [5] and the use of total ordered
broadcast primitives to enforce a unique sequence of com-
mitted transactions.

In some sense, these protocols avoid the efficiency issues
of classic distributed locking based protocols by not coor-
dinating the execution of (remote) concurrent transactions
and disallow replica divergence of asynchronous replication
protocols by aborting transactions that would otherwise vi-
olate serializability.

This paper reports our experience on the development
and evaluation of group communication based database
replication protocols in the ESCADA project, and points out
several open issues of current research.

We start the next section by describing the workbench we
use for the development and evaluation of database replica-
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tion protocols. In Section 3, we outline our base protocols
and point out their more relevant variations. Section 4 dis-
cusses design decisions and identifies open issues. Section 5
concludes the paper.

2 Workbench

2.1 Target System

Our target system is modelled as a distributed, reliably
connected set of database sites and client sites. All sites
communicate by message passing. The system is asyn-
chronous in that there is no bound on process relative
speeds, clock drifts, or communication delays.

Sites can fail by crashing. We assume the existence of a
failure detector oracle and limits for the number of sites that
may fail such that atomic broadcast is implementable [8].

Each database site manages a relational database [17].
Clients submit transactions to database sites in order to be
processed. A transaction is a sequence of read and write
operations over data items and finishes with a commit or an
abort operation. A transaction yields a read set, a write set
and the respective write values. The read set is composed
by the unique identifiers of the items read. The write set is
composed by the unique identifiers of the written items. The
write values are the values written to the write set items.

2.2 Simulation Model

From a research perspective, building a real system such
as the described for test and evaluation is not feasible. In-
deed, it either: (i) has too many components to develop that
are not the focus of the problem; (ii) its use on the eval-
uation process introduces uncontrollable variables; or (iii)
its necessary means are not easily available. A native sim-
ulation model, even well adjusted to the real one, does not
seem to be the best solution either, as there are some aspects
of the work that should be measured with a realism that can
only be obtained by real implementations. In fact, simula-
tion reveals itself most useful just to recreate components
that are not under study, using abstract simulation models.
To test and evaluate our protocols in our model, we adopted
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the centralized simulation technique [2], and the architec-
ture depicted in Figure 1.
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Figure 1. Simulation Architecture.

The network is simulated using the SSFNet network sim-
ulation tool [10]. The SSFNet model includes physical net-
work components, such as hosts, links and routers, as well
as protocol layers, such as IP, UDP and TCP.

The server component which can handle multiple clients
is composed by other components such as CPU and Storage
and a Locking policy. Upon receiving a transaction request
each operation is scheduled to execute on the corresponding
resource. During the simulation run, the usage and length
of queues for each resource can be logged and can be used
to examine in detail the status of the server.

The replication protocols, that is what we are actually
developing and evaluating, are real components.

2.3 Model Instantiation and Validation

In order to use the simulation framework, one needs to
perform a framework setup. This setup is based on a valida-
tion process to allow a correct model instantiation. In other
words, the framework validation enables the definition of a
setup which asserts that the simulated system responsive-
ness is comparable to the real one [25].

Validating the framework is a simple process. It starts by
setting up a simple and feasible test case, that is to be recre-
ated in the simulation and in real environments. Once it is
defined, real runs are performed on instrumented software.
The required instrumented software essentially has logging
capabilities that fit the needs imposed by the validation pro-
cess. In particular, for our work, we use our own customized
PostgreSQL database [1] version. The logs produced are
used to perform a thorough analysis, from which the correct
parameters values, that are needed to carry out the simula-
tion setup, are collected. Setup parameters that cannot be
determined using this method, such as for instance storage
throughput or latency, are obtained using purpose specific
software.

Finally, with the simulation framework already config-
ured, real and simulation runs are compared. The metrics
used to perform the comparison relate to performance. For
the simulation of database systems, examples of these met-

rics are: transactions per minute, abort rate and execution
latency. Hence, having the model correctly validated, one
may start to run simulations varying the intensity of the
workload or the replication architecture.

2.4 Application Model

For the application model the TPC benchmarks were
chosen. In particular, we use the TPC-C suite. It is the
industry standard on-line transaction processing (OLTP)
benchmark. It mimics a wholesale supplier with a num-
ber of geographically distributed sales districts and associ-
ated warehouses. The traffic is a mixture of read-only and
update intensive transactions. A client can request five dif-
ferent transaction types as follows: New Order, adding a
new order to the system (with 44% probability of occur-
rence); Payment, updating customer’s balance, district and
warehouse statistics (44%); Order Status, returning a given
customer latest order (4%); Delivery, recording the delivery
of products (4%); Stock Level, determining the number of
recently sold items that have a stock level below a specified
threshold (4%).

3 Database Replication Protocols

Our research on group communication based database
replication is rooted on the Database State Machine [19]
protocol (DBSM). The DBSM was designed with local area
networks in mind and applies to fully replicated databases.
It has been extended later on [23] to target wide area en-
vironments through the exploitation of partial replication
(PDBSM). Both DBSM and PDBSM are based on opti-
mistic transaction execution followed by the total ordering
of transactions. The differences are to be found in the trans-
action execution model and in the termination protocol.

3.1 DBSM

The DBSM [19] is a database replication protocol based
on group communication that uses the deferred update repli-
cation technique [5]. From a global point of view, the trans-
action execution is optimistic since there is no coordina-
tion with any other database site possibly executing some
concurrent transaction. Interaction with other database sites
on behalf of the transaction only occurs when the client re-
quests the transaction commit, i.e., the transaction enters
the committing state. At this point, a termination protocol
is started: (i) the transaction’s relevant information is atom-
ically propagated to all database sites, and (ii) each database
site certifies the transactions determining its fate: commit or
abort. Generally speaking, the certification procedure uses
the total order established by the atomic multicast to decide
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which transaction must abort when concurrent transactions
have conflicting operations,1 ensuring consistent results.

The design decisions performed when choosing the
termination protocol directly affect the overall perfor-
mance [22]. It is possible to distinguish two situations:
independent certification [18] and coordinated certifica-
tion [15]. In both cases, the protocol atomically multicasts
the committing transaction. The differences among the pro-
tocols reside in the information being multicast and in the
certification procedure executed afterwards.

In the case of independent certification, the exchanged
messages include the read and write sets as well as the write
values. This allows for each database site to independently
certify the transaction and decide whether it commits or
aborts.

In the case of the coordinated certification, the ex-
changed messages just include the write values. This im-
plies that only the database site where the transaction was
originated may certify it. Thus, it is responsible for a final
atomic commitment protocol.

3.2 Partial-DBSM

Considering database sites spread over a WAN, partial
replication can be an attractive solution. Roughly, it ex-
plores data locality and eliminates the overhead of trans-
mitting all data across the network. In order to implement
partial replication, one needs to determine how data is parti-
tioned and what decisions might affect this process. It might
be partitioned (i.e., fragmented) either horizontally or verti-
cally and the whole process is conditioned by: (i) the appli-
cation requirements on data availability, i.e., if data should
be available for read and write everywhere or only at some
replicas; (ii) the local transaction processing, i.e., whether
distributed execution is available or not. In the later case,
when the distributed execution mechanisms are not avail-
able it may be required, due to availability requirements, a
large fraction of the database to be fully replicated.

Releasing the assumption that each database site con-
tains a full copy of the database, directly impacts both the
execution and the termination protocol [23, 22]. Unlike the
DBSM, a given server in a partial replication setting may
not be able to locally complete the execution of a transac-
tion. In fact, it is possible that no single site can, if the
required fragments are nowhere held together. Therefore,
the execution of a transaction requires the server to coordi-
nate the distributed processing of the transaction among a
set of sites that together contain all the fragments accessed
by it. In the DBSM, the whole transaction is relevant to all
database sites. In contrast, in a fragmented database this is

1Two operations are said to conflict when they belong to concurrent
transactions, access the same item and at least one of them is a write oper-
ation.

no longer true. The fragmentation of the database is meant
to exploit data and operation locality and therefore the prop-
agation of write values should be restricted to the sites repli-
cating the involved fragments.

There are two termination protocols that can be envis-
aged: one with independent certification and another with
coordinated certification. The propagation of the read and
write sets determine which protocol must be used. The
choice directly influences the certification phase and estab-
lishes a trade-off between network usage and protocol la-
tency. If the whole read and write sets of the transaction
are fully propagated, then they will enable each site to in-
dependently certify the transaction. Otherwise, if each site
is provided with only the parts of the read and write sets re-
garding the site’s fragments, then it can only make a partial
judgement and the transaction certification requires a final
coordination among all sites [23, 22].

4 Experience, Trade-offs and Open Issues

4.1 In-core or Middleware Approaches

It is possible to implement the previous protocols using
either an in-core approach, which requires internal modifi-
cations to the database engine, or a middleware approach,
which attempts to replace some services that are not pro-
vided by the database engine. Roughly, the choice is a
trade-off between performance and non-intrusive modifica-
tions to the database engine.

For in-core solutions [15, 23], the database engine must
expose at least three interfaces which are not usually avail-
able. One that provides the write values, the read and write
sets produced by the transaction execution. Another one
that triggers the termination protocol when receiving the
commit request, instead of effectively commiting it. A third
one that allows to abort locally executing transactions due
to conflicts with a remote transaction.

The middleware solutions appear to avoid intrusive mod-
ifications to the database [4, 20, 7] or to circumvent the lack
of appropriate interfaces in the database engine. For in-
stance, considering the fact that the read and write sets may
not be provided by the database engine, it is necessary to
develop an alternative to detect conflicts that is not based
on them. In this case, conflicts can be detected by query
analysis or transaction’s annotations. Specifically, it would
be possible to extract the tables and define conflicts based
on them. Using such a coarse grain for conflict detection
would increase the number of aborts. Approaches based
on this model usually proceed as follows [20]:2 (i) atomi-
cally multicast the transaction; (ii) serialize the execution

2In fact, [20] defines conflict classes that might correspond to tables
or even lower grains such as data items. The definition of this classes is
however left to the developer.
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acquiring locks in the middleware according to the tables;
and (iii) process the transaction. It would also be possible
to extract the predicates available in the queries in order to
detect conflicts [13]. Furthermore, the lock acquisition be-
fore execution can also be seen as an approach to eliminate
the optimistic execution and therefore the aborts [15, 23].

Still based on the assumption that the read and write sets
are not provided by the database engine, consider also that
write values are not provided or that there is no access to
the whole transaction to atomically extract the tables (e.g.,
interactive transactions). In this scenario, it is necessary to
resort to an implementation that for each query guarantees
that all the databases with a replica of the referenced tables
process them [7, 6]. Unfortunately, the approach requires
pre-processing of the queries to extract the tables and the
replacement of functions or operations that do not guaran-
tee deterministic results (e.g., date and random functions).
Furthermore, since the locks are individually acquired for
each one of queries, the approach may generate deadlocks.

If these features are available, the implementation of the
termination protocol in middleware can be a good choice, as
it allows the combination of different database vendors in a
replication scenario. The drawback of the implementation
of these features in middleware is that some of the database
core functionalities such as the schedule mechanism (i.e.,
lock acquisition) or the evaluation of queries must be re-
done in middleware. Another point that discourages this ap-
proach is a strong believe that most functionalities required
for in-core implementation are internally available in most
databases´ core and only need to be exported.

4.2 Optimistic Execution

Upon being successfully certified, a transaction has the
guarantee that its outcome will be a commit and applies the
updates to the database. During the write process, it has pri-
ority over local optimistic transactions that may be execut-
ing. If a certified transaction conflicts with a local transac-
tion, the local transaction is aborted and the certified trans-
action commits. This results in long transactions having
higher probability of conflicting with certified transactions.

In TPC-C, as a consequence of its high locality, the num-
ber of aborts generated by the optimistic execution is usu-
ally not a concern. Indeed, at most 10% of the transactions
executed at a database site refer to warehouses stored else-
where. For that reason, the negative impact of the optimistic
execution on the overall performance can be disregarded.
However, it is important to notice that this fact is based on
the assumption that all the clients of the same warehouse
access the same database site and not distinct sites.

Specifically in the case that only read-only transactions
are aborted, it is possible to circumvent the problem post-
poning the updates or using a multiversion database. Unfor-

tunately, the former approach may introduce unpredictable
delays on the transactions and the latter approach may not
be available in all databases. These problems are identi-
fied in [9], which proposes to use the Epsilon Serializability
(ESR) in order to stretch the consistency model, improving
performance and also reducing the aborts. Generally speak-
ing, it allows results with bounded inconsistencies instead
of blocking or aborting the read-only transactions.

Other alternative to avoid aborts exploits the elimina-
tion of the optimistic execution. It consists, as explained
in Section 4.1, on a lock acquisition prior to execution of
the queries in order to serialize the transactions. This ap-
proach is divided in two distinct categories. The first allows
to atomically acquire the locks of all the tables referenced
in a transaction. The second allows to acquire the locks
by request. The first was proposed by [20] and preserves
the deferred updates. However, it is not clear if the solu-
tion is too restrictive due to the serialization prior to the
execution. Furthermore, to fully exploit the advantages of
this model it is necessary to have sites with distinct access
patterns, which means that the possibilities of conflicts are
localized in each site. Hence, two questions arise: (i) “In
this scenario, would not the optimistic execution produce
similar results?” — notice that the possibilities of conflicts
would be localized in each site and therefore a local strict
two-phase locking mechanism, for instance, could control
the concurrent transactions; (ii) “Is this proposal only suit-
able for clusters?”. The second approach seems to be a re-
gression to the original state machine since each site with a
replica of the referenced tables must process the queries.

4.3 Group Communication Protocols

The execution latency of a transaction directly correlates
to the probability of aborting it and has a negative impact on
the overall performance. In addition, the atomic multicast
protocol introduces an increase in latency, specially in wide
area networks. However, while it is not possible to reduce
this latency, it is possible to reduce its impact on the abort
rate and on the overall performance. On sequencer based
protocols, one may take advantage of the spontaneous order
observed by the sites. If all hosts observe this order with
a high degree of probability then they can start using the
messages delivered by the spontaneous order to optimisti-
cally certify transactions. The decision to commit transac-
tions optimistically certified can only be taken after the or-
der is established and if and only if it matches the optimistic
order. Replication protocols exploiting optimistic delivery
have been proposed in [16, 23], and an atomic multicast pro-
tocol specially tailored for WANs has been proposed in[24].

Recently, probabilistic protocols have emerged as effi-
cient multicast protocols. However, due to their epidemic
nature, they can not take advantage of spontaneous order-
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ing, rendering optimistic delivery almost useless. Since
database replication benefits from optimistic delivery, a hy-
brid solution is being planned in order to obtain high per-
centage of spontaneously ordered messages and at the same
time an efficient multicast primitive.

4.4 Overall Performance and Resource Usage

Focusing on resource usage, the Partial-DBSM aug-
mented with the distributed execution mechanisms seems
to be an attractive solution for WANs, as it presents sig-
nificant reductions in the required network bandwidth as
well as local storage capacity. Once again, a decision must
be made on whether it is preferable to send the read and
write sets to every replica or to pay the additional latency
of an atomic commitment protocol. Considering the fact
that on the TPC-C benchmark only 10% of the transac-
tions executed at a database site refer to warehouses stored
elsewhere, this strongly suggests the distributed execution
mechanism as an attractive solution.

On the other hand, partial replication does not seem to
be adequate to LANs and the DBSM is preferable. Re-
sults have shown that a replicated database system using
DBSM or Partial-DBSM scales, standing side-by-side with
an equivalent centralized database, suffering only from a
minor increase in CPU usage due to the processing needed
regarding communication and termination protocol opera-
tions. In addition, CPU usage due to protocol overhead is
negligible for a small number of clients, and increases lin-
early with the increase of the workload [25]. However, in
this case the storage bandwidth usage grows identically in
all database sites since each replica writes the same values.
This must be a concern when scaling up the system, which
means that sometimes it may not be sufficient to add an-
other commodity machine. It may also require the upgrade
of the storages. This is a delicate issue as costs in improv-
ing storage performance, tends to be more expensive than
improving the processing capacity.

In clustered environments having a high performance
storage per node plays an important role in the cost of the
solution. In such a scenario it seems practical to decou-
ple the database front-end, i.e., the processing unit from the
database back-end, i.e., the storage, electing some of the
replicas as the responsible for effectively commit the trans-
actions to the back-ends.

Having the front-end separated from the back-end, it is
easy to perform load balancing when storing information,
enabling also database front-ends hot-plugging. As it hap-
pens in storage bandwidth, the processing power may prove
itself a bottleneck. But then again, given the ability to hot-
plug a database front-end and with the help of a fair load-
balancing algorithm, this problem may be easily mitigated.

Given the loosely coupled relation between front-ends

and back-ends one can easily deploy a replicated system
consisting of NxM elements, where N stands for the number
of front-ends, and M stands for the number of back-ends.

4.5 Information Propagation

The replication protocols presented raise up an important
question about the size of the read sets and as a consequence
about the feasibility of transmitting them. Observing the
TPC-C specs, except for the Delivery transaction, all read
and write sets are relatively small, clearly inferior to 50 data
items [22]. However, the Delivery transaction exhibits large
read and write sets, around 11200 and 200 items, respec-
tively. The size of the data written by each of the read-write
transactions is also relatively small, being around 3.5KB
for New Order, 3KB for Payment and 18KB for Delivery,
for instance. Analyzing this workload information becomes
obvious that special care must be taken about the Delivery
transaction, as it may be responsible for some performance
problems, due mostly to its large read set size rather than
the amount of written data. Inspired by databases locking
procedures, which commonly alter the locking granularity
when the number of locked items per table exceeds a de-
termined threshold, item locks are upgraded to table locks
when a given threshold is reached. Hence, large read sets
are reduced to a small set of table locks. This technique
greatly reduces the Delivery’s read set size making it com-
parable to the other transactions. However, despite the per-
formance boost regarding latency, this decision should be
pondered against the increase on the abort rate caused by it,
which is induced by the larger lock granularity.

Other alternative to this problem would be to avoid the
transmission of the read set and as a consequence the use of
an additional step to propagate the outcome of the transac-
tion as outlined in Section 3.1.

5 Conclusion

The results obtained so far [25], make us strongly be-
lieve that group communication based database replication
protocols are serious alternatives in terms of performance
to commercial solutions based on asynchronous replication
and weak consistency models. Resting on rigorous consis-
tency criteria, these protocols not only provide the desired
high-availability but also ensure the system’s fault tolerance
and scale up to the equivalent centralized system.

In this paper we report our experience on the develop-
ment and evaluation of database replication protocols, dis-
cuss the involved trade-offs and present what we think are
the main open issues that require further investigation. Im-
plementation issues such as in-core or middleware should
be carefully addressed as it is not clear which one to choose
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or if a combination of both is the ideal choice. The perfor-
mance of group communication protocols plays an impor-
tant role in the overall performance, so efficient group com-
munication protocols for large scale systems would boost
the adoption of group based replicated databases in such
environments.
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