
Clouder: A Flexible Large Scale Decentralized Object Store

Architecture Overview

Ricardo Vilaça
Computer Science and Technology Center

University of Minho
rmvilaca@di.uminho.pt

Rui Oliveira
Computer Science and Technology Center

University of Minho
rco@di.uminho.pt

ABSTRACT
The current exponential growth of data calls for massive-
scale capabilities of storage and processing. Such large vol-
umes of data tend to disallow their centralized storage and
processing making extensive and flexible data partitioning
unavoidable. This is being acknowledged by several major
Internet players embracing the Cloud computing model and
offering first generation remote storage services with simple
processing capabilities.

In this position paper we present preliminary ideas for the
architecture of a flexible, efficient and dependable fully de-
centralized object store able to manage very large sets of
variable size objects and to coordinate in place processing.
Our target are local area large computing facilities composed
of tens of thousands of nodes under the same administrative
domain. The system should be capable of leveraging mas-
sive replication of data to balance read scalability and fault
tolerance.

1. INTRODUCTION
Massive-scale distributed computing is a challenge at our

doorstep. The volume of data quadruples every 18 months,
while the available performance per processor doubles in the
same time period [19]. Such large volumes of data tend
to disallow their centralized storage and processing making
extensive and flexible data partitioning unavoidable.

Relational Database Managements Systems (RDBMS) have
been the key technology for the management of structured
data. However, current systems are based on highly central-
ized, rigid architectures that fail to cope with the increasing
demand for scalability and dependability. Deployed high
performance RDBMS invariably rely on mainframe archi-
tectures, or clustering based on a centralized shared storage
infrastructure. These, although easy to setup and deploy,
often require large investments upfront and present severe
scalability limitations.

Eschewing these large centralized architectures is key to
provide elastic infrastructures capable of scaling-out and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WDDDM ’09, March 31, 2009, Nuremberg, Germany
Copyright 2009 ACM 978-1-60558-462-1/09/03 ...$5.00.

flexible enough to adjust to different application require-
ments. Some highly decentralized storage systems (e.g.. [5,
3, 4]) have recently been developed by major Internet based
companies to support their respective Web operations and
are being exploited as storage services in the Cloud. Having
all started from similar requirements, these systems ended
up providing a similar service: A simple tuple store interface,
that allows applications to insert, query, and remove indi-
vidual elements. More complex relational and processing fa-
cilities, let alone transactional guarantees common in tradi-
tional database management systems, are left to performed
by the client applications outside the system. By doing so,
these services focus on a specific narrow tradeoff between
consistency, availability, performance, scale, and cost, that
fits tightly their motivating very large application scenar-
ios but is much less attractive to common business needs,
in which there isn’t a large in-house research development
team for application customization and maintenance.

Our aim with Clouder is to steer the current tradeoff to-
wards the needs of common business users, thus providing
additional consistency guarantees and higher level data pro-
cessing primitives smoothing the migration path for exist-
ing applications. At the same time, the boom of the Web
2.0, led to the emergence of new web applications or ser-
vices, such as social network applications, that need to store
and process large amounts of data. These applications usu-
ally have lower consistency requirements, which favor perfor-
mance and can be invaluable to exploit simple asynchronous
aggregation operations, but most of them cannot afford to
deal with conflicts that arise from concurrent updates.

Clouder should be able to leverage large computing fa-
cilities composed of tens of thousands of nodes under the
same administrative, or at least, ownership domain. Un-
like current deployments [5] however, these nodes are not
expected to be functionally or permanently dedicated to the
object store but can even be commodity machines mainly
dedicated to common enterprise or academic tasks.

In the remainder of the paper we present Clouder’s moti-
vation, its main characteristics and solutions as well as our
current major challenges. A succinct comparison with re-
lated work concludes de paper.

2. CLOUDER

2.1 Context and Motivation
To efficiently address distributed processing over massive-

scale data stores data can no longer be managed in abstract
but its structure, contents, and usage patterns need to be

disclosed to the data management system. Additionally, this
applications require richer client APIs then existing data
stores, which leads to object store that combine data store
operations with in place processing.

With Clouder, our overall goal is to design and prototype
a flexible, efficient and dependable peer-to-peer system able
to manage very large sets of variable size objects and to
coordinate in place processing. The system is expected to
seamlessly fragment and persistently store application ob-
jects and to resort to combined replication techniques in
order to balance scalability and fault tolerance.

Additionally, as a general purpose object store, it should
manage very large sets of variable size objects. The achieve-
ment of these goals is to be demonstrated by a prototype
providing consistent, conflict-free, data storage, and in-place
processing capabilities, while allowing to leverage large com-
puting infrastructures with distributed storage capabilities.

2.2 Architecture
To manage very large distributed sets of data two main ap-

proaches prevail: structured network overlays [16, 20, 18], in
which all nodes are logically organized in a well-know struc-
ture; and unstructured network overlays [14, 9, 2], in which
nodes are not (a priori) structured but are probabilistically
managed.

The structured approach, heavily depends on the attributes
and adjustment of the logical overlay to the underlying phys-
ical network. A correct overlay contributes to an efficient
communication leveraging, nodes and links with higher ca-
pacity, locality, etc. Furthermore, as the overlay provides ap-
proximate views of the whole system it is possible to attain
reasonable guarantees of message delivery and order. On the
other hand, the usability of a structured overlay is limited by
the dynamics of the system’s membership. Changes on the
set of participants lead to recalculating the overlay which,
in the presence of high churn rates, can be impractical.

On the contrary, an unstructured network does not rely on
any a priori [2] global structure but on basic gossip commu-
nication. Each node uses local information about its neigh-
borhood and relays information to a random subset of its
neighbors. With the correct fan-out these protocols ensure
a high probability of message delivery. Due to their unstruc-
tured properties gossip communication is naturally resilient
to churn and faults and simple to maintain.

For Clouder, we adopt both approaches for the manage-
ment of two collaborating layers, a soft- and a persistent-
state subsystem, of distinct structural and functional char-
acteristics (Figure 1).

At the top, a soft-state layer is responsible for the 1) client
interface, 2) data partitioning, 3) caching, 4) concurrency
control, and 5) high level processing. Clouder provides a
generic object-oriented model. It is assumed that objects
have a unique key. The current client API allows appli-
cations to perform simple object manipulations operations
(put(key,object), object get(key), and delete(key)), to iter-
ate over standard collections and execute pre-defined general
processing operations object* operation(args*). Depending
on the application requirements object keys can be ordered
to allow range access. In both cases, key space is horizon-
tally partitioned into groups of objects that form units of
data distribution. To facilitate its adoption and the migra-
tion of general purpose applications to Clouder, a subset of
the Java Persistence API is being implemented and offered

Persistent-state Layer

Soft-state Layer

One Hop DHT

Figure 1: Clouder Architecture

as a Web Service. Others, such as LINQ to Entities can also
be envisaged.

This soft-state layer is assumed to be have a reasonably
stable membership. These nodes require global knowledge as
they need to delegate and coordinate among themselves the
partitioning of data. An ”one hop” DHT like Beehive [15]
or OneHop [8] seems the best fit to manage such subsys-
tem [17]. Each node of the DHT manages the mapping of
its object space partition into a set of nodes in the underly-
ing persistent-state layer. The resilience of each node meta-
data is currently ensured through the use of synchronous
primary-backup replication within the soft-state layer and
asynchronously saved in the persistent-state layer. In case
of the failure of a node fail-over to one the backups is auto-
matic. Should all metadata of a partition be lost at the
soft-layer (due to multiple failures) recovery through the
persistent layer is possible albeit subject to miss updates
inherent to asynchronous writes. Each node keeps memory
cache of a set of objects on its behalf. By having backups
also caching the primary’s soft-copies of data, the replication
schema, primarily target at fault tolerance, can also help on
load-balancing read operations.

With automatic and timely failover ensured, having all
operations addressed to a given object handled by a sin-
gle master node (even if it can then delegate control) obvi-
ates much of the per-object concurrency control complexity.
Load-Balancing can easily be adjusted through repartition-
ing of the object space. With this approach, the serialization
of operations becomes straightforward while, if allowed, re-
laxed consistency criteria can be accommodated helping the
trade-off towards performance. at the expense of overload-
ing the master node.

Processing at the soft-layer is meant to avoid off-system
aggregation which would, in general, defeat the purpose of
the whole computation model.

Stable storage is provided by the persistent-state layer.
This subsystem is meant to be supported by a very large

local network with weak assumptions on the nodes and net-
work reliability. These characteristics do not suit a struc-
tured approach due to the overhead of the reconfigurations
imposed by frequent membership changes. An unstructured
network approach is adopted as epidemic communication is
specially insensitive to churn and provides fine tuning pos-
sibilities invaluable to self-adaptation and self-tuning [12].
Objects stored in the persistent-layer are massively repli-
cated through gossiping. An object is assumed to be safely
stored once it is stored in m nodes (which become the en-
try points for the object at the soft-layer). For the sake of
fault-tolerance further replicas of the object are created.

2.3 Current Open Issues
While we feel quite confident with the current design of the

Clouder system to address its initial goals, we also identify
many open issues that justify deep research.

Currently, our client API is general but nevertheless lim-
ited. It considers the exchange of opaque objects and their
manipulation through their (non-disclosed) filter methods
for standard iterations. This is a most salient aspect of
the system and the subject of ongoing research. To effi-
ciently address distributed processing data can no longer
be managed in abstract but its structure and contents need
to be disclosed to the data management system. Standard
and emergent applications require richer client APIs based
on common entity-attribute-value model [13] as acknowledge
by the design of recent proposals of large data storage ser-
vices [1, 7].

The one hop DHT used in the soft-state layer must guar-
antee that even in the failure of nodes its structure is main-
tained so that only one is responsible to handle requests
from a given range. Otherwise, total order is not assured
and conflicts may occur. The eventual consistency of DHTs
has been studied in [11] but further research is required to
strengthen the ”one leader” guarantees and prevent update
conflicts.

We intend to take advantage of the massively paralleliza-
tion and dissemination properties of the persistent-layer to
offer simple asynchronous processing primitives like count-
ing or summing over the set of data [10]. The typical use case
would be to have the system continuously compute some rel-
evant statistics about a set of data and offer it to the client
upon request within a given degree of accuracy.

The management of distributed objects on top of a peer-
to-peer network raises many and interesting challenges. Some
are inherent to the large scale of the system which is not
forgiving to centralized algorithms or flooding protocols and
require judicious control of recurring, system wide, a priori
negligible tasks. Others are due to the dynamics of the sys-
tem’s membership and each node current capabilities. The
management of the membership on the persistent-state layer
and its correct articulation with the above soft-state is not
clear to us yet. On one hand the assumption on scale, dy-
namics and reliability forfeits any strict membership control
while, on the other hand, failing to directly access the nodes
holding the needed data has a serious impact on the system’s
performance.

3. RELATED WORK
Major companies like Google, Yahoo and Amazon devel-

oped their own decentralized data store to tackle internal
data management problems and support their current and

future Cloud services. Although having common aspects,
like per item consistency, horizontal partitioning, and aim-
ing at being scalable to hundreds of nodes, these systems
differ in some requirements, in their architecture and imple-
mentation.

Google’s BigTable[3], Yahoo’s PNUTS [4] and Amazon’s
Dynamo [5] provide a similar service: a simple tuple store in-
terface, that allows applications to insert, query, and remove
individual elements. BigTable and PNUTS additionally sup-
port range access in which clients can iterate over a subset
of data. Atop of these low level data stores, other services [7,
1] with richer data models and APIs start to appear. These
systems were initially, and still are to some extent, justi-
fied by internal needs and thus offer particular guarantees
and trade-offs. Worth mentioning, are the consistency guar-
antees provided. At this level, consistency is preserved per
tuple or record. Both BigTable and PNUTS are conflict free,
providing a serialization of write operations. Read freshness
can nevertheless be controlled by the application. Dynamo,
on the other hand, does not ensure conflict free executions,
allowing the application to see diverging values and dele-
gates conflict resolution.

To achieve high availability these data stores rely on ded-
icated infrastructures with high levels of service which do
not make them appropriate to leverage other less reliable
networks such as those found in banks and universities.

4. REFERENCES
[1] Inc Amazon.com. Amazon simpledb.

http://aws.amazon.com/simpledb/, 2008.

[2] Nuno Carvalho, Jose Pereira, Rui Oliveira, and Luis
Rodrigues. Emergent structure in unstructured
epidemic multicast. In DSN ’07: Proceedings of the
37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 481–490,
Washington, DC, USA, 2007. IEEE Computer Society.

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat,
Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: a distributed storage system for
structured data. In OSDI ’06: Proceedings of the 7th
symposium on Operating systems design and
implementation, pages 205–218, Berkeley, CA, USA,
2006. USENIX Association.

[4] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh
Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and
Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1(2):1277–1288, 2008.

[5] Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: amazon’s highly available key-value store. In
SOSP ’07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, pages
205–220, New York, NY, USA, 2007. ACM.

[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The google file system. SIGOPS Oper. Syst.
Rev., 37(5):29–43, 2003.

[7] Google. Google app engine datastore.
http://code.google.com/appengine/docs/datastore/,
2008.

[8] Anjali Gupta, Barbara Liskov, and Rodrigo
Rodrigues. Efficient routing for peer-to-peer overlays.
In First Symposium on Networked Systems Design and
Implementation (NSDI), San Francisco, CA, March
2004.

[9] Márk Jelasity and Ozalp Babaoglu. T-man:
Gossip-based overlay topology management. In In 3rd
Int. Workshop on Engineering Self-Organising
Applications (ESOA’05), pages 1–15. Springer-Verlag,
2005.

[10] Márk Jelasity, Alberto Montresor, and Ozalp
Babaoglu. Gossip-based aggregation in large dynamic
networks. ACM Trans. Comput. Syst., 23(3):219–252,
2005.

[11] Jayanth Kumar Kannan, Matthew Chapman Caesar,
Ion Stoica, and Scott Shenker. On the consistency of
dht-based routing. Technical Report
UCB/EECS-2007-22, EECS Department, University
of California, Berkeley, Jan 2007.

[12] Miguel Matos, José Pereira, and Rui Oliveira. Self
tuning with self confidence. In In ”Fast Abstract”,
Supplement of the 38th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks. IEEE, 2008.

[13] Prakash Nadkarni and Cindy Brandt. Data extraction
and ad hoc query of an entity-attribute-value
database. Journal of the American Medical
Informatics Association, 5(6):511–527, 1998.

[14] José Pereira, Lúıs Rodrigues, Maria J. Monteiro, Rui
Oliveira, and Anne-Marie Kermarrec. Neem:
network-friendly epidemic multicast. Reliable
Distributed Systems, 2003. Proceedings. 22nd
International Symposium on, pages 15–24, Oct. 2003.

[15] Venugopalan Ramasubramanian and Emin Gün Sirer.
Beehive: O(1)lookup performance for power-law query
distributions in peer-to-peer overlays. In NSDI’04:
Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation, pages
8–8, Berkeley, CA, USA, 2004. USENIX Association.

[16] Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, and Scott Schenker. A scalable
content-addressable network. In SIGCOMM ’01:
Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 161–172, New York, NY, USA,
2001. ACM.

[17] John Risson, Aaron Harwood, and Tim Moors. Stable
high-capacity one-hop distributed hash tables. In
ISCC ’06: Proceedings of the 11th IEEE Symposium
on Computers and Communications, pages 687–694,
Washington, DC, USA, 2006. IEEE Computer Society.

[18] Antony I. T. Rowstron and Peter Druschel. Pastry:
Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware ’01:
Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms
Heidelberg, pages 329–350, London, UK, 2001.
Springer-Verlag.

[19] David Skillicorn. The case for datacentric grids.
Technical Report ISSN-0836-0227-2001-451,
Department of Computing and Information Science,
Queen’s University, November 2001.

[20] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
Peer-To-Peer lookup service for internet applications.
In Proceedings of the 2001 ACM SIGCOMM
Conference, pages 149–160, 2001.

	Introduction
	Clouder
	Context and Motivation
	Architecture
	Current Open Issues

	Related Work
	References

