
Information Searching Methods In P2P file-sharing
systems

Nuno Alberto Ferreira Lopes
PhD student

(nuno.lopes () di.uminho.pt)

Grupo de Sistemas Distribúıdos
Departamento de Informática

Universidade do Minho

JOIN 2004



1 Introduction to Searching
Motivation
P2P Systems
Search Description

2 Search Methods in P2P Systems
Centralized Index
Decentralized Index
Distributed Index

3 Conclusions



Motivation

Why do we need search on P2P file-sharing?

Isn’t the search problem already resolved?



Characterization of P2P systems

Peer-to-Peer (P2P) file-sharing systems can be characterized by
having:

high number of nodes,

dynamic node membership,

dynamic node contents,

two independent file functions: search/location and
downloading.



Requirements For P2P Systems

Administrative requirements

Scalability up to millions of nodes

Completely decentralized solution

Correct system wide searches

Operational requirements

minimize network load (message number and size)

require small node storage and processing overhead



A search model

Keyword matching search with and and or operators.

Inverted Index model (keyword 7→ file reference list)

Announce and query operations are performed on the index



1 Introduction to Searching
Motivation
P2P Systems
Search Description

2 Search Methods in P2P Systems
Centralized Index
Decentralized Index
Distributed Index

3 Conclusions



Single centralized index

Features

Multiple clients with a single server

Server required for every search operation

Example: Naspter

Advantages/Disadvantages

+ Complete system wide searching

+ Best search performance

– Single point of failure of server

– Single authority administration

– High resource demand on server



Multiple mini-centralized index

Features

Static set of servers to which clients connect individually

Examples: Edonkey and Direct Connect protocols

Advantages/Disadvantages

+ Searches continue to be as efficient as in a
centralized solution

– Servers must support high network load

– Servers are static to clients which require a bootstrap
server list



Completely decentralized index

Features

Clients use neighbor broadcast routing

Searching operates on a per-node basis

Example: Gnutella protocol

Advantages/Disadvantages

+ No central authority

+ Individual node query processing

– Broadcast based queries with limited horizon



Multiple semi-decentralized index

Features

No exclusive server role, clients become super-peers as
needed, weaker clients connect to super-peers

Newer systems try to optimize message routing to avoid
broadcast but may limit search results

Examples: FastTrack (kazaa), Gnutella2 (shareazaa)

Advantages/Disadvantages

+ Dynamic peer role according to its availability

– Super-peers require more resources available and
continue to use message broadcast among them



Distributed Inverted Index

Each client stores a piece of the index

Popular keywords will create contention points on some clients
and probably a storage overload

Caching could be used to reduce hot spots, but must maintain
data consistency across peers



Distributed Hash Table (DHT) Systems

Examples: Chord, Pastry and others

Stores (hash key 7→ value) pairs

Scalable up to millions of nodes

Efficient key location with logarithmic number of messages

Scalable storage cost for management data on each peer

Unable to perform key searching!

Possible solution for a distributed index implementation? . . .



A Naive DHT Implementation

Search keywords are converted into a hash key, list of file
references is stored as corresponding value

Searching operations are required to access individual
keywords, any and or or operations must be performed on the
client

This is the case for the Overnet P2P network, however:

How will the system respond to a ”mp3 + foo“ query?

Since cache is not used, the hot spot problem will arise for
popular keywords; overloading specific peers

Worst, for keywords which will have a high number of file
references, clients that request them have to download the
entire list.



Possible Solutions to Overcome The DHT Limitations

Caching must be used to limit the number of accesses made
to peers storing popular keywords.

The file reference list of very popular keywords may not even
fit into a single peer; such list be splitted in smaller pieces
across several peers.

Both and and or operations must be performed at the peers
storing the lists.

Again, the caching technique must maintain consistency of
data across peers



Conclusions

Centralized P2P systems do provide the best searching
performance.
However, its design does not scale efficiently to millions of
nodes.

Current P2P systems are not well suited for a truly P2P
environment.

DHTs are very efficient in resource usage but they lack the
search functionality.
Using specific extensions to such systems, it could be possible
to obtain a system that could be both scalable and fully
searchable according to P2P requirements.


