
Evaluation of Group-based Database
Replication Using Centralized Simulation

Luís Manuel Oliveira Soares

Dissertação submetida à Universidade do Minho para obtenção do grau de Mestre em Informática,

elaborada sob a orientação de José Orlando Pereira

Departamento de Informática
Escola de Engenharia

Universidade do Minho
Braga, 2006

Partially funded by GORDA (FP6-IST2-004758) project.

ii

iii

Resumo

Replicação de bases de dados baseada em comunicação em grupo apresenta-se como
uma nova solução para promover sistemas de bases de dados que aliam fiabilidade a
elevada disponibilidade. Apesar de existirem algumas soluções de replicação sugeri-
das neste sentido, não é claro em que situações estas são indiscutivelmente aplicadas de
de maneira a optimizar o desempenho. Esta ambiguidade decorre da ausência de um
método comum e representativo de avaliação que produza resultados comparáveis para
todas as soluções.

Neste contexto, o trabalho apresentado nesta tese resulta numa avaliação exaustiva,
em diversos ambientes simulados, de múltiplas implementações de protocolos, de uma
forma em que os resultados obtidos são efectivamente comparáveis. A solução pro-
posta oferece a possibilidade de injectar transparentemente implementações reais em
ambientes de simulação. Desta forma, é criada uma plataforma de testes extremamente
flexível, a qual consegue reproduzir de forma muito próxima os ambientes equivalentes
do mundo real. A utilidade desta plataforma é demonstrada através de um estudo que
incide em implementações de diversos protocolos de replicação recorrendo a comuni-
cação em grupo. A avaliação é conduzida em diferentes infra-estruturas de rede assim
como na presença de faltas.

Abstract

Group-based replication is arising as a new trend to provide dependable, available and
reliable database management systems. Although several solutions have been proposed,
it is not clear which is the best for each application scenario, as evaluation methods used
are not representative or do not produce comparable results.

In this context, the work presented here results in a thorough and comparable eval-
uation of multiple protocol implementations in diverse simulated environments. The
approach allows the tester to transparently embed real implementations within a realis-
tic simulation, creating this way a flexible testing framework that is shown to accurately
mimic real world scenarios. The usefulness of the approach is demonstrated by evalu-
ating and comparing several group-based database replication protocols under different
network and application scenarios, as well as in the presence of faults.

Acknowledgements

I would like to specially thank my beloved wife, Raquel, for her permanent support, and
my adorable son, Gonçalo, who happened to be born during my work in this thesis. They
were the ones that suffered the most with my absence, stress and occasional bad mood.
Raquel and Gonçalo, I love you both.

I would also like to thank my parents, who always incited me to keep on with my studies,
and my sister for always being there when I needed. I know they have sacrificed on my
behalf. This is theirs too.

A special thanks to my supervisor, Orlando, who never turned his back on me, always
coming up with good suggestions, leading me invariably into the right direction. His
guidance was most crucial.

Another special thanks to Rui Oliveira. He is the one who made this possible by inviting
me to work in the distributed systems group, back in 2002.

For the rest of my research team, António Sousa and Alfrânio Correia Jr., a big thank you.
They were always willing to discuss any matter related to the work in this thesis. Their
comments were always most valuable. Thanks to Nuno Lopes, who had his working
spot right next to me. He never rejected help of any kind. Thanks to Luciano Rocha, José
Pedro, Vitor Fonte, Carlos Baquero, Paulo Sérgio and Francisco Moura, the rest of the
Distributed Systems Group members.

Finally, thanks to everyone that read this thesis and contributed with corrections and
critics.

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Contributions . 4

1.3 Outline . 4

2 Evaluation of Group-based Database Replication 6

2.1 Replication Using Group Communication 6

2.1.1 System Model and Group Communication 6

2.1.2 State Machine Replication . 8

2.1.3 Primary-Backup Replication . 9

2.2 Group-based Database Replication . 11

2.2.1 Relational Databases and Transactions 11

2.2.2 Conservative Replication Protocols 12

2.2.3 Optimistic Replication Protocols . 13

2.3 Performance and Dependability Evaluation 16

2.3.1 Testing Environments and Benchmarks 16

2.3.2 Simulation . 17

2.3.3 Evaluation Framework . 19

3 Centralized Simulation 23

3.1 System Architecture . 23

3.2 Simulation Model . 24

3.2.1 Workload Model . 24

3.2.2 Transaction Processing Model . 26

3.2.3 System Under Test . 28

3.2.4 Network Model . 29

3.3 Simulation Kernel . 30

3.3.1 Real-Time . 30

3.3.2 Client/Server Utility Classes . 31

vi

Contents vii

3.4 Model Calibration . 33

3.4.1 CPU . 34

3.4.2 Storage . 35

3.5 Validation . 37

4 Case Study 40

4.1 Motivation . 40

4.2 Scenarios . 41

4.3 Results: Optimistic vs Conservative . 43

4.3.1 Coarse Grain . 43

4.3.2 Fine Grain . 45

4.3.3 Snapshot Isolation . 46

4.3.4 Wide Area . 48

4.4 Results: Fault-injection and DBSM . 50

4.4.1 Correctness and Performance . 51

4.4.2 Performability . 53

4.5 Simulation Performance . 56

5 Conclusion 57

5.1 Future Work . 59

A Distribution Parameter Estimation 60

B Real vs Simulation Model 62

List of Figures

2.1 State Machine Replication. 9

2.2 Primary-backup replication. 10

2.3 Conservative replication protocols (CONS). 12

2.4 Optimistic replication protocols . 14

2.5 Real implementation: Client/Server interaction UML diagram. 19

2.6 Simulation: Client/Server interaction UML diagram. 20

2.7 Executing simulated and real jobs. 20

2.8 Scheduling events from real code. 21

3.1 Simple overview of the system architecture. 24

3.2 Simulated transactions and replicas interaction. 27

3.3 Simulated client calls server real implementation. 31

3.4 Client real implementation calls simulated server). 32

3.5 XLogWrite calls as a function of the number of items accessed. 36

3.6 Validation of the centralized simulation runtime. 37

3.7 Simulation vs Real comparison. 39

4.1 Local area network configuration. 42

4.2 Wide area network configuration. 43

4.3 Performance measurements in a LAN with coarse granularity. 44

4.4 Detailed profiling in a LAN with 270 clients. 45

4.5 Performance measurements in a LAN with fine granularity. 46

4.6 Performance measurements in a LAN with snapshot isolation. 47

4.7 Performance measurements in a WAN. 48

4.8 Handling concurrent transactions. 49

4.9 Detailed profiling of the Neworder transaction in a WAN. 50

4.10 Certification latency (fault injection). 52

4.11 Probability of committing a Neworder transaction within the period of
time τ . 54

viii

List of Figures ix

4.12 Performance comparison. 55

4.13 Ratio of time required to run the simulation vs. simulated time interval (9
servers/increasing number of clients). 56

A.1 Processing time fitting. 61

B.1 Transaction performance comparison. 63

List of Tables

3.1 Transaction types in TPC-C. 25

3.2 Size of tables in TPC-C. 26

3.3 System specifications. 33

3.4 CPU Times distributions (nanoseconds). 34

3.5 Storage simulation model parameters. 36

3.6 Simulation vs Real: TPM and latency results. 38

4.1 Definition of coarse conflict classes for each transaction type in TPC-C. . . 43

4.2 Types of faults injected. 51

4.3 Protocol CPU usage (%). 52

4.4 Abort rates with 3 sites and 1000 clients (%). 53

x

Chapter 1

Introduction

Information availability becomes critical nowadays mostly due to the data-intensive ap-
plications which populate the Internet. Recent studies claim that the volume of gener-
ated information is increasing at a rapid pace, in fact some point out that humankind
will generate more original information over the few years to come than the amount
that was created in the previous 300,000 years combined [Cor01]. These throughput re-
quirements, drive research towards distributed and replicated architectures, providing
solutions that enable high availability through network shared contents. Such systems,
require efficient storage capability as well as easy retrieval and outstanding processing
capabilities. Combining networked storage and processing entities, enables data distri-
bution and/or replication, reduces wasted storage capacity and backup inconveniences
as well as increases data availability.

In this context, distributed middleware is showing an exponential growth in the re-
cent years. This is mostly because the dawn of the Internet is coming to an end and it is
starting to undergo a maturation process. It started moving away from the initial chaos in
direction of a more delineated and middleware oriented structure. This trend influences
the design and architecture of new applications which more and more are developed
with Internet interaction in mind. The distributed nature of applications requires data
to be constantly available, dependable and easily retrievable. This leads to replication,
which is a mean to assure high availability and dependability. Applications usually rely
on a database to store their information, therefore, problems associated with replication
arise not by replicating the application, but by replicating data that applications deal
with. Such problems may vary a lot depending on, among others issues, the communi-
cation infra-structure, the structure and partitioning of data, the number of replicas, the
consistency criteria required and how fault-prone is the environment.

Applications store data in information containers known as databases. The informal
definition of a database may sound quite similar to the following: "A database is a col-
lection of data items with a very strict internal organization, which is determined by inter-items

1

2

relationships". While not being entirely precise, this definition is a good starting point and
provides a general picture of what a database really is.

In a database, data handling follows a transactional logic. The Transaction concept
encompasses many actions on the every-day life. Whenever one makes a phone call or
buys something at the grocery shop, a transactional activity is engaged. In both cases
some resources are allocated. In the former, the call setup establishes a connection allow-
ing the conversation. In the latter the clerk is kept busy fulfilling the customer requests.
Also, a state change is performed either because a virtual circuit is created to route the
voice transmission or some goods are now in the customer bag instead of the grocery
shelves. Note that these actions are done in a single step. When buying something, one
cannot receive the good and go away without paying, because that would be a violation
of the law. Until the grocery seller receives the money, the goods are not property of the
consumer. It is this atomicity in the buying action that makes trade possible, or in other
words, it makes transactional activity possible.

When it comes to transactional databases, transactions have one of two possible out-
comes: commit or abort. Committed transactions complete successfully, cannot be aborted
and have their updates persistently written into the database. On the other hand, trans-
actions that abort do not have their updates persistently written into the database, and
from the data point of view, the system behaves as none of them had actually ever hap-
pened [BHG87, CB02]. Aborts are, either explicitly, upon a request from the client (mostly
in interactive transactions), or implicitly, due to database internal transaction manage-
ment actions (e.g., solving deadlocks).

Transactions are actually a good starting point to head towards replication. Since
data becomes altered due to the execution of transactions, keeping all replicas coherent
is as simple as letting every replica becoming aware of every transaction execution. This
apparent simplicity hides a complex set of processes. For instance, every replica must
agree on the changes to its local copy and on which order they are applied. Replicated
databases exhibit higher complexity when compared to traditional centralized backends.
In order to make it all work, more machines have to function correctly and extra pro-
cessing is needed to accommodate the operations requested by the replication protocols.
The coordination among replicas also introduces a certain degree of complexity to sys-
tem, which without the proper consideration may easily break the replication process.
Furthermore, concurrent transactions started in different replicas may originate conflicts
leading to performance degradation. Conflict detection is driven by the consistency cri-
teria adopted and the precision of the conflict detection process. Relaxed correctness
criteria often improves performance, at the cost of sacrificing some consistency. On the
other hand, conservative criteria does not allow any inconsistency but may incur into un-
bearable performance penalties as well as it often also requires more interaction among
replicas. When it comes to detecting conflicts, fine grained conflict detection produces
larger messages and minimizes conflicts when compared to coarse grained. There may

1.1. Problem Statement 3

be scenarios that do not conceive fine grained control, either because such might require
unavailable bandwidth or the processing time required to execute the consistency checks
may not meet a real time constraint value imposed by the system. On the other hand,
when coarse grain is adopted, some scenarios may exhibit a high rate of false conflicts
rendering the approach impractical.

1.1 Problem Statement

Current evaluation methodologies of replication protocols reveal themselves limited. The
existent studies report to analysis conducted in local area networks or in small scale sce-
narios. The fact is that there are few chances to put together a wide area testing environ-
ment because that is not cost-effective, does not provide full control over the environment
variables and it does not enable deterministic testing. Furthermore, although in local area
environments there is more control over the environment, there is still no deterministic
execution and, as in the wide area, a full deployment of the software is also required.
These issues must be addressed when researching, developing, evaluating distributed
replication protocols. Realistic and controlled performance evaluation of distributed and
replicated applications is still very hard to achieve, specially if one considers large scale
scenarios and fault injection. Although there are few testbeds [ACM06, Fac06, Uni06] that
enable evaluation of distributed systems, they all focus a small portion of the spectrum
of possible problems.

Pure simulation models may be a solution to this problem, but creating abstract mod-
els from real implementations is not always possible or even desirable. Furthermore, in
an evaluation scenario, one is interested in evaluating the real solution and not an ab-
straction that mimics the original behavior.

The problem extends itself when there is the need for testing early and often during
the development cycle of a new replication protocol. The researcher/developer finds
himself without the possibility to abstract the irrelevant parts of the system, focusing
on the protocol and still conduct a realistic evaluation. For instance, when evaluating a
database replication protocol, the database engine and the network could be abstracted
as realistic simulation models, since they are not really part of the problem, and the pro-
tocol should be the only real implementation. This methodology is known as incremental
development. In this context, the development process is backed by an abstract simula-
tion model comprised of multiple sub-models that get replaced by real implementations
as these become available. The problem here is having the simulation execution to play
nicely with the real execution. Whenever real code execution takes place, the time spent
on it must be accounted in the simulation time line. This is the case of the approach
of centralized simulation proposed in CESIUM [AC97]. Nonetheless, one cannot reuse
CESIUM implementation because it defines very specific models that are not completely

1.2. Contributions 4

suitable for evaluating database replication protocols. In this context, time accounting
cannot be done in an ad hoc fashion because it would result in a time consuming and
error prone process.

1.2 Contributions

Briefly, this thesis proposes a framework that enables realistic evaluation of database
replication protocols by combining abstract simulation models and real implementations
in a centralized environment [AC97]. It takes advantage of a centralized execution envi-
ronment which provides means to embed implementations of protocols into simulation.
The framework allows changing the scenarios without having to rewrite any source code,
by requiring only modification to configuration files. An evaluation case study, using this
framework, is presented in which three group communication replication protocols are
profiled. The study brings forward conflict related issues and provides a solution as well
as evaluates the protocols in local and wide area networks. It also assess the performance
degradation when there is fault-injection.

List of contributions:

SSF Extensions for Centralized Simulation
A centralized simulation framework which is based on the SSF specification. It pro-

vides transparent means for injecting real implementations prototypes into simulation
and synchronize simulation clock with real execution.

SSF-based Database Simulation Model
A database simulation library written in Java. It provides several simulation mod-

els mimicking the execution of a real database. Calibration and validation conducted
ensures coherent behavior when compared to a real system;

Protocol Evaluation
The case study presents analysis of the behavior of the optimistic and conservative

protocols under different conditions. These ranged from relaxed to strong correctness
criteria processes, local area to wide area networks and from faultless to faulty environ-
ments.

1.3 Outline

This thesis is structured as follows: Chapter 2, introduces the distributed system model
considered, brings forward issues related to database replication evaluation and presents
the notion of centralized simulation; Chapter 3, discusses the implementation of a simula-
tion framework and its application to the study of database replication protocols; Chap-
ter 4, demonstrates the application of the simulation framework by presenting a case

1.3. Outline 5

study that evaluates three distinct synchronous database replication protocols; Finally,
Chapter 5, concludes the thesis.

Publications

Portion of the work presented in this thesis has been previously published in the form of
conference and workshop papers:

• A. Sousa and J. Pereira and L. Soares and A. Correia Jr. and L. Rocha and R. Oliveira
and F. Moura. Testing the dependability and performance of GCS-based database
replication protocols. In Proceedings of The International Conference on Dependable
Systems and Networks. 2005 (DSN’05).

• A. Correia Jr. and A. Sousa and L. Soares and J. Pereira and R. Oliveira and F.
Moura. Group-based replication of on-line transaction processing servers. In De-
pendable Computing: Second Latin-American Symposium. 2005 (LADC’05).

• L. Soares and J. Pereira. Experimental performability evaluation of middleware
for large-scale distributed systems. In 7th International Workshop on Performability
Modeling of Computer and Communications Systems. 2005 (PMCCS’05).

Chapter 2

Evaluation of Group-based Database
Replication

This chapter introduces database replication protocols based on group communication
and discusses techniques to evaluate their performance. A brief discussion of group com-
munication and general purpose replication techniques provides the background.

2.1 Replication Using Group Communication

Reliable and high availability software solutions are achieved mostly using replication.
It ensures fault-tolerant, dependable systems. This is often done by making use of group
communication primitives, which highly reduce the complexity of the procedure, making
the implementation really simple.

2.1.1 System Model and Group Communication

A distributed system is modeled as a set of sequential processes, P = {p0, p1, ..., pn},
communicating using message passing. This set of processes is generally known as the
group. Whenever a process chooses to send a message to all other processes it addresses
that message to the logical group address. The system is asynchronous, hence no as-
sumptions are made regarding the time a message takes to be transmitted or processed.
When the group changes, each process installs a new view, the new set of currently cor-
rect processes, and each member of the current view becomes aware of the composition
of the group. Crash-stop failures are assumed hence, if a process crashes, it never rejoins
the group.

Processes are affiliated to the group and a membership service [gcs01, BJ87] takes care
of process affiliation. Moreover, the membership service is responsible for keeping track

6

2.1. Replication Using Group Communication 7

of operational and mutually reachable processes. Groups are considered to be dynamic
therefore processes may leave the group by expressing voluntarily their will to do so,
or may even leave the group unexpectedly. In both cases, the service is responsible for
acknowledging the group change, either by being explicitly warned or by detecting the
failed member. A set of group communication services is assumed to exist, which pro-
vides some guarantees on message exchanging. For instance, the system may need to
ensure reliable or even atomic message delivery. In some cases message transmission
and group membership are tightly related, as is the case of virtual synchrony. Some sys-
tems additionally require messages to be delivered at each site in the same order. In this
context, two group communication primitives must be addressed: TOCAST (m, g) and
V SCAST (m, g).

Total order multicast (TOCAST), guarantees that any message, m, sent to a group,
g, TOCAST (m, g), is delivered in the same order at every member of group g. This
primitive is defined accordingly to the following properties [DSU04]:

Agreement, if a process, p, TOCAST (m, g), and a correct process p′ delivers m then
every correct processes in g also delivers m;

Total Order, consider any two processes p and p′. Such processes TOCAST (m, g) and
TOCAST (m′, g), respectively. If two correct processes q and q′ deliver m and m′,
then q delivers m before m′ if and only if q′ delivers m before m′;

Validity, if a correct process, p, TOCAST (m, g), then a correct process, p′, eventually
delivers m;

Integrity, every correct process q, delivers any message m at most once and only if it
was previously TOCAST (m, g) by a process p belonging to group g.

Virtual synchronous multicast (V SCAST), allows processes to synchronize messages
upon a group change. It is view-oriented meaning that actions like sending and receiv-
ing messages are done within the limits of a view context. V SCAST (m, g) satisfies the
following properties [gcs01]:

Delivery Integrity, if a process q delivers a message m, then message m was previously
V SCAST (m, g) by a process p;

No Duplication, if a process q delivers m and m′, then m 6= m′;

Sending View Delivery, if a process, q, delivers m in view V , and process p V CAST (m, g)
in view V ′, then V = V ′;

Virtual Synchrony, if processes p and q install two consecutive views, V and V ′, then
any message delivered by p in V is also delivered by q in V ;

2.1. Replication Using Group Communication 8

Termination of Delivery, if a process p V SCAST (m, g) in view V , then each member q

of V either delivers m or installs a new view V ′.

These two group communication primitives, although presented separately, are not
mutually exclusive. In fact in the implementations presented in this thesis, TOCAST is
built on top of V SCAST and a message sorting service [SPS+05].

2.1.2 State Machine Replication

In the state machine approach to replication all replicas execute the same set of actions
in the same order achieving this way the same output [Sch93, WPS+00, GS96]. This tech-
nique is also known as active replication. Since every replica actively handles requests,
without contacting any of the others, there is no need for a centralized control during ex-
ecution. Figure 2.1, depicts the execution flow of a request. Horizontal lines correspond
to each process time-line. Arrows between time-lines correspond to messages exchanged
and wiggly lines over time-lines are actions taken by each process. Whenever a client
issues a request it addresses it to a group of replicas (p1, p2, p3). Each replica in the group
executes the request and then replies back to the client. Clients wait for the first reply to
arrive, after which, they assume that the execution has ended.

This replication scheme relies on three assumptions: i) replicas receive the same mes-
sages in the same order; ii) requests are executed deterministically; and iii) all replicas
start from the same initial state.Given i), ii) and iii) consistency is safeguarded.

This strategy requires each replica to behave exactly like the others and replicas go-
ing off-line is fully transparent to clients. As long as there is at least one correct replica,
the client does not notice performance degradation [WPS+00]. On the other hand, hav-
ing every replica to perform exactly the same execution, may be pointed out as waste of
resources as well as deterministic execution is very often difficult to achieve. Imagine
that scheduler processes, at different sites, decide differently on the order of execution
of requests. This is problematic when there are concurrent requests. In this situation
global state starts to diverge because some replicas may have decided to perform several
updates on the same item in different order. A workaround to solve this problem is to
handle requests sequentially and transform non-deterministic into deterministic instruc-
tions, which in some cases may be difficult or, even worse, impossible to achieve. In the
latter situation, this replication strategy is not eligible at all.

Since every replica must deliver requests in the same order, clients make use of the
TOCAST primitive when addressing requests to the group. This way, concurrent re-
quests are serialized and concurrency does not become a problem if all replicas respect
the given order, when handling the requests.

Since this is a recognized replication technique, its adaption to database replication

2.1. Replication Using Group Communication 9

r

t

p1

p2

p3

TOCAST(r)

replies

Execution

Figure 2.1: State Machine Replication.

has been proposed [PGS98, AT02, WPS+00]. But this technique still suffers from the prob-
lems mentioned previously. Non-deterministic instructions must be handled in a way
that all database replicas reach the same final state after executing them. This may not
be easy to achieve even if one avoids such kind of statements. Nonetheless, achieving
determinism at instruction level is still not enough, one needs determinism in the trans-
action scheduler inside the database engine. For instance, consider two concurrent and
conflicting transactions. The deadlock detection algorithm at different replicas may de-
cide differently on which transaction ends up succeeding. There may even be the case
in which the transaction scheduler decides to completely ignore the delivery order and
commit transactions in its own determined order.

2.1.3 Primary-Backup Replication

Primary-backup, also known as passive replication [BMST93], assumes the existence of
one and only one master replica, the primary copy, and a set of backups. In most cases it
is irrelevant which replica is the master. Figure 2.2, depicts the protocol execution steps.
Arrows between horizontal lines (time-lines) represent messages, wiggly lines represent
execution and the newly introduced symbol, double down arrows over time-lines, rep-
resent installing the updates. In this figure, the master (p1), is responsible for interacting
with the client, handle its requests and send the updates to the backup replicas (p2 and
p3). Backups receive only the updates and not the invocation. In fact, these replicas do
not perform the execution at all, instead they just install the updates. It becomes clear that
p1 is the only replica executing the request, while p2 and p3 keep their state coherent with
p1’s state by installing the updates it propagates. Finally, after receiving the acknowl-
edgement of each backup, p1, replies to the client, terminating the entire operation. Note
that this strategy eliminates non-determinism issues, by avoiding multiple execution.

This replication strategy implies two assumptions. i) delivery of messages sent from
the primary copy to the backups must be atomic and ordered. This is solved, using
FIFO (first-in-first-out) communication between master and backups. The master assigns

2.1. Replication Using Group Communication 10

r

t

reply
p1

p2

p3
acks

VSCAST(updates)
Execution

Update

Figure 2.2: Primary-backup replication.

sequence numbers to the update requests, while backups buffer messages arriving out
of order and only apply them when their sequence number is reached. ii) Whenever
the primary copy fails, the backups must agree on which replica takes over the master
role and on which messages are yet to be delivered. The election of the new master and
message stabilization requires that each backup decide exactly on the same values, and
no new master should be elected before all backups agree on the messages delivered.

The agreement property becomes very important in case a master fails. In detail, it
may fail: i) during the execution of the request; ii) while or after sending the update
messages, but before replying to the client; or iii) after sending the reply to the client.
Situations i) and iii) are not much harmful. In the former, the client needs to reissue the
request and in the later the failure is completely transparent to the client. The worst case
scenario is situation ii), because it leads to inconsistency among replicas. Note that at
this point some of the replicas may have received the update messages and others might
not. If this is the case replicas begin to diverge. Hence, agreement on message delivery
becomes essential because, it ensures that for each message sent from the faulty master,
either all or none of the correct replicas deliver it. Moreover, messages sent by the failed
master are to be delivered before any message from the new master is delivered. Finally,
the last issue taken into consideration relates to the election of a new master. If a master
fails, a new leader must be chosen from left correct backups. The election requires that
all replicas agree on the new replica chosen.

In this context, VSCAST is a suitable communication primitive for passive replica-
tion [GS97] because, it assures agreement on message delivery as well as message stabi-
lization whenever there is a view change. No message from a previous view is delivered
in the new view. Furthermore, when a new view is installed every process becomes
aware of the group composition, and a new master may be elected. Ultimately, processes
may decide which is the new master, by choosing the one with the lower id.

As it happened with the active replication strategy, this one has been also proposed
to perform database replication [WPS+00]. Although it does suite database replication it

2.2. Group-based Database Replication 11

is sometimes pointed out as being a suboptimal strategy. Having only one master replica
serving clients transactions and a set of backups just waiting for updates, is often consid-
ered as a waste of resources. This may be critical when deciding whether to replicate a
database or not, since such decision is still very performance driven.

2.2 Group-based Database Replication

The performance of database replication using group communication can take advantage
of transactional and relational semantics to improve on general purpose active and pas-
sive replication approaches. In contrast with traditional database replication approaches,
group-based replication protocols take advantage of the specific properties of group com-
munication primitives, such as total ordering and agreement on message delivery, to
eliminate the possibility of deadlocks, reduce message overhead and increase perfor-
mance. Such protocols have been focusing systems that manage data updated frequently
and require high availability and short response times. In this context, two kinds of proto-
cols, specifically addressing On-line Transaction Processing (OLTP) systems, have recently
been the subject of much attention of both theoreticians and practitioners [Ped99, PGS98,
PMJPKA00, SPMO02]. They differ mainly in whether transactions are executed conser-
vatively or optimistically. In the former, by a priori coordination among the replicas, it
is assured that when a transaction executes there is no concurrent conflicting transaction
being executed remotely and therefore its success depends entirely on the local DBMS.
In the latter, execution is optimistic, each replica independently executes its locally sub-
mitted transactions and only then, just before committing, sites coordinate and check for
conflicts between concurrent transactions.

2.2.1 Relational Databases and Transactions

A relational database DB = {R1, . . . , Rs} is a set of relations, Ri ⊆ D1× . . .×Dq, defined
over data sets not necessarily distinct. Each element (d1, d2, ..., dq) of a relation Ri is called
a tuple and each di is called an attribute. To uniquely identify each tuple of a relation,
the existence of a minimum nonempty set of attributes, called the primary key is assumed
to exist. On certain occasions there may be several distinct sets of nonempty attributes
suitable for becoming the primary key. These are named candidate keys and only one of
them becomes the primary key [OV99].

Tuples are added, removed and changed on user requests. In general, the user ini-
tiates a transaction and, within its boundaries, update, delete or insert statements are
issued to the DBMS. This logical unit of work, satisfies four properties, often known as
ACID [BHG87], namely, atomicity, consistency, isolation and durability. The atomicity prop-
erty states that a transaction either ends successfully and its changes are applied into the

2.2. Group-based Database Replication 12

t

T reply
p1

p2

p3

Execution

Update

Classification

atomic mcast reliable mcast

Figure 2.3: Conservative replication protocols (CONS).

database, or, on the contrary, it fails and the database is not altered in any way. The consis-
tency property specifies that transactions are responsible for database transitions between
consistent states. Apart from programming errors, no database should reach an inconsis-
tent state because of a transaction execution. The isolation property determines complete
independence between transactions while they are in the execution stage. Finally, dura-
bility property ensures that the result of a committed transaction becomes persistent and
is not lost in case of a failure.

During execution, transactions query and sometimes update the database, hence they
read and write tuples. The set of primary keys obtained from the tuples read is named the
transaction read set (RS). Similarly, the set of primary keys obtained from the tuples writ-
ten is named the transaction write set (WS). Together they from the basic set (BS) [OV99] of
a transaction, (BS = WS ∪RS). Furthermore, the set of tuples read and the set of tuples
written are designated by read values (RV) and write values (WV), respectively. Transaction
execution may consist of a plain set of instructions or even comprise another transactions.
In the former case, transactions are named flat transactions and have a single start and a
single end point. In the latter, are named nested transactions and inside their boundaries,
another transactions exist, named sub-transactions. Despite these two execution models,
in this thesis, transactions are always reduced to RS, RV, WS, WV, no matter its execution
approach.

2.2.2 Conservative Replication Protocols

In the conservative approach to group-based database replication, data is a priori par-
titioned in conflict classes. Each transaction has an associated set of conflict classes (the
data partitions it accesses) which are assumed to be known in advance. While the conflict
classes for a transaction can be determined at runtime, this requires knowing the whole
transaction before its execution, precluding the processing of interactive transactions.

When a transaction, t, is submitted (Figure 2.3), the replica handling the request is-
sues a TOCAST (m, g). Message m contains, t’s identification and conflict classes. Each

2.2. Group-based Database Replication 13

replica has a queue associated with each conflict class and, once delivered, a transac-
tion is classified and enqueued in the queues matching the requested classes. As soon
as a transaction reaches the head of all of its conflict class queues it is executed and
removed from the queues. Transactions are executed by the replica to which they are
submitted. When isolated conflict classes exist, dedicating a distinguished replica to the
execution of all transactions of such classes, results in a faster processing of those trans-
actions [PMJPKA00].

When the commit request is received, the outcome of the transaction is reliably mul-
ticast to all replicas along with the replica’s state changes and a reply is sent to the client.
Each replica applies the remote transaction’s updates with the parallelism allowed by the
initially established total order of the transaction.

Conflicting transactions are executed sequentially. Clearly, conflict classes have a di-
rect impact on the performance. The lesser the number of transactions with overlapping
conflict classes, the better the interleave among transactions. Conflict classes are usually
defined at the table level but can have a finer grain at the expense of a non-trivial vali-
dation process to ensure that a transaction does not access conflict classes that were not
previously specified.

It is worth noting that, despite the use of a multi-version database engine, since con-
flicting transactions are totally ordered and executed sequentially, the protocol ensures
1-copy-serializability as long as transactions are correctly classified by the application.
Relaxing the correctness criterion to snapshot-isolation would simply require the reclas-
sification of the transactions by the application.

Conservative protocols have been introduced and initially evaluated in a cluster envi-
ronment [PMJPKA00]. It is thus not obvious how they react to different network latencies
(e.g., LAN and WAN). Increasing network latency should harm the transaction execution
and degrade performance. Another interesting issue to evaluate is the granularity of con-
flict classes. Should conflict classes be determined a table level or even more fine grained,
like tuple level. When defining conflict classes one must consider the trade-off between
performance and complexity. Choosing tuple level conflict classes introduces complexity
at the application level as well as it is very complicated to predict which tuples the trans-
action is going to manipulate. On the other hand, if one is able to use tuples as conflict
classes, the rate of false conflicts decreases which leads to less contention, hence better
performance.

2.2.3 Optimistic Replication Protocols

In the optimistic approach to group-based database replication, transactions are immedi-
ately executed by the replicas to which they are submitted without any a priori coordina-
tion. Locally, transactions are synchronized according to the specific concurrency control

2.2. Group-based Database Replication 14

t

T reply
p1

p2

p3

Execution Certification

Update

atomic mcast reliable mcast

(a) PGR

T

t

reply
p1

p2

p3

(b) DBSM

Figure 2.4: Optimistic replication protocols

mechanism of the database engine.

Upon receiving the commit request, a successful transaction is not readily commit-
ted. Instead, its read set (RS) and its write set (WS) are collected and a termination
protocol initiated. The goal of the termination protocol is to decide the order and the
outcome of the transaction such that the global correctness criteria is satisfied. This is
achieved by establishing a total order position for the transaction and certifying it (i.e.,
checking for conflicts) against concurrently executed transactions. The certification of a
transaction is done by evaluating the intersection of its RS (or WS in case of the snap-
shot-isolation criterion) with the WS of concurrent, previously ordered transactions. The
formal definition and detailed explanation of the certification procedures can be found
in [KA00, PGS03, WK05]. The fate of a transaction is therefore determined by the termi-
nation protocol and a transaction that would locally commit may end up aborting.

The two optimistic protocols considered, PGR and DBSM (Figure 2.4), ensure global
serializability, but differ in their termination protocols. Both use the transaction’s RS for
the certification procedure. But, in PGR the transaction’s RS is not propagated and thus
only the replica executing the transaction is able to certify it. On the other hand, in the
DBSM, the transaction’s RS is propagated allowing each replica to autonomously certify
the transaction.

In detail, upon the reception of the commit request for a transaction t, in PGR the

2.2. Group-based Database Replication 15

executing replica TOCAST (m, g). Message m contains t’s identification and t’s WS and
WV (recalling Section 2.2.1, WV means the values of the tuples in the WS). As soon
as t is ordered, the executing replica certifies t and reliably multicasts the outcome to all
replicas. The certification procedure consists on checking t’s RS against the WS of all
transactions committed locally since t’s commit request. The executing replica then com-
mits or aborts t locally and replies to the client. In the original protocol [KA00], a locking
concurrency control mechanism was considered for the database engine which allowed
to carry the certification process inside the database as part of the normal execution of
the transaction. The RS was not extracted and was actually the read locks granted to the
transaction. Upon the reception of the remote transaction’s commit outcome each replica
applies t’s state changes through the execution of a high priority transaction consisting of
updates, inserts and deletes according to t’s previously multicasted WV . The high pri-
ority of the transaction means that it must be assured of acquiring all the required write
locks, possibly aborting any locally executing transactions.

The termination protocol in the DBSM is significantly different and works as fol-
lows. Upon the reception of the commit request for a transaction t, the executing replica
TOCAST (m, g). Message m carries t’s id, the version of the database on which t was
executed, and t’s RS, WS and WV . As soon as t is ordered, each replica is able to cer-
tify t on its own. The database version is a counter maintained by the database that is
incremented every time a transaction commits.

For the certification procedure, in the DBSM each replica compares its database ver-
sion with that of t: if they match t commits, otherwise t’s RS are checked against the WS

of all transactions committed locally since t’s database version. If they do not intersect, t

commits, otherwise t aborts. If t commits then its state changes are applied through the
execution of a high priority transaction consisting of updates, inserts and deletes accord-
ing to t’s previously multicasted WV . Again, the high priority of the transaction means
that it must be assured of acquiring all the required write locks, possibly aborting any
locally executing transactions. The originating replica replies to the client at the end of
the transaction.

Of particular relevance for the performance of these two protocols is the definition
and representation of the transaction’s read-set. Since it determines the outcome of a
transaction certification it should reflect as accurate as possible which tuples a transaction
actually reads. In the DBSM protocol, the read-set size may have a serious impact on the
network bandwidth. In order to ease the network bandwidth usage not sending the entire
read-set may be considered, but then serializability is compromised. Another approach
is to upgrade the read-set granularity to table level, which leads to increased abort rate
due to false conflicts. In the PGR protocol, these issues are avoided at the expense of an
additional communication step.

When considering the snapshot-isolation correctness criterion, then both protocols

2.3. Performance and Dependability Evaluation 16

can be simplified and end up being the same. To satisfy snapshot-isolation, certification
does not need to check Read-Write conflicts and thus the transactions’ RS are not re-
quired. As such, the PGR protocol can be simplified by enabling a simpler Write-Write
certification at all the replicas and eliminating the second communication step conveying
the outcome of the transaction [WK05]. The DBSM protocol can also be simplified by not
propagating the read-sets and using the simpler certification procedure.

In this family of replication protocols is interesting to assess the impact of network
topology changes. Specifically, what is the impact on the system TPM (transaction per
minute) when changing the properties of the communication network (LAN vs WAN).
It is known that the probability of aborting a transaction in a optimistic concurrency
protocol increases in a quadratic effect [Tho98] regarding its size. Therefore, this is also
worth evaluating, specially the impact on wasted processing power due to execution of
large transactions that end up aborting. Another interesting issue, is the impact of faults,
whether in increasing transaction latency, due to network retransmissions of failed mes-
sages, or in processing throughput on heavily loaded replicas. Finally, it is also interest-
ing to assess, in the DBSM protocol scope, the impact of defining the read-set granularity,
either in terms of abort rate as in terms of network bandwidth usage.

2.3 Performance and Dependability Evaluation

Detailed evaluation of the performance and dependability of abstract protocols and of
their implementations is required to examine each trade-off in different environments.
Realistic tests are however costly to setup and run and depend on the availability of rep-
resentative workloads and fault-loads. This is especially difficult when targeting large
clusters or wide-area systems. Although often used, toy applications and micro-bench-
marks are unable to disclose the subtle interactions with application semantics and dy-
namics (e.g. flow control issues and hot-spots) and with the environment (e.g. fault
scenarios) as well as introduce significant probe effect.

System evaluation also depends on the availability of the complete target system. This
precludes incremental development and early testing of individual components. Agile
development methodologies have been attracting software engineers to focus on mod-
eling and automated testing of compliance. Unit testing means that development starts
by producing auxiliary test components directly from the model which are used, as the
software product evolves, to ensure that it matches initial modeling.

2.3.1 Testing Environments and Benchmarks

Benchmarks are used to assess a system’s performance and scalability. Stress-driven or
specific context driven tests are conducted when running the benchmark. This allows

2.3. Performance and Dependability Evaluation 17

the detection of bottlenecks as well as assessing its validity under not so usual situa-
tions, which normally are disregarded during development. Benchmarking a system,
involves deploying a suite of applications that setup the testing scenario according to the
benchmark specifications. This usually implies deploying a fully working system. For
instance, if one wants to use TPC-C [Cou01] or SPEC-Web [lSPEC05] benchmarks, a set
of applications and a database needs to be installed. The resulting overhead of setting up
the benchmark, either in terms of resources as in terms of time, may be prohibitive from
the researcher point of view.

There are a number of tools to setup and control distributed tests and benchmarks,
such as NetBed [WLS+02], ACME [ACM06], and TestZilla [Uni06], targeted specifically
at performance. A large share of the complexity of such tools is directly related with the
distributed nature of the system under study, namely, in performing consistent global
observation of system state and properties while minimizing interference. Tools such as
Facilita Forecast [Fac06] add to a distributed testing scenario the generation of represen-
tative loads, enabling load and stress testing to a wide range of applications. Distributed
testing can also be performed in realistic testbeds for wide area networks such as Emu-
lab [EMU] and PlanetLab [Pla] which provide transparent usage of the resources. They
provide flexibility but the user still needs to deploy a real system to perform the test.

2.3.2 Simulation

Simulation is often defined as the technique to mimic behavioral interactions of a given
environment, using a specified abstract model or instrument. The model or instrument
are used to obtain reliable and valuable information on how the real system should
evolve through time or even as a training playground [VOTC96]. Models may be cat-
egorized into physical or mathematical.

When modeling a system, one must take into account that the model should not rep-
resent the system per se. In fact, it should be a simplification of the real system. Never-
theless, the aspects under study should hold sufficient detail to draw valid conclusions
about the real system [BINN00].

Simulation of computer systems uses the discrete event approach: Time advances as
events are scheduled to happen. Therefore, if the system is just leaving instant in time
t and the next event is scheduled to happen at instant t′, the simulation time-line jumps
from t to t′ instantaneously. In such approach, components trigger events which are
scheduled to happen in the future creating a dynamic simulation time flow. Components
tend to be defined at a considerable level of abstraction, hence designing large scale sim-
ulation models is acceptable as well as their computation time. A nice example of how
to use this simulation strategy is a CPU model. It may be modeled as a simple queue in
which events are defined as the: the arrival of a job and the departing of a job. In detail,

2.3. Performance and Dependability Evaluation 18

upon a job, J0, arrival, it is set to execute at the CPU. If a job, J1, arrives in the mean time,
it is put on hold. The service time is simulated by scheduling an event to happen at the
end of the job execution. When J0 execution reaches the end, the event is triggered, and
job J1 is set to execute in the CPU.

An implementation of a discrete event simulation approach is the Scalable Simulation
Framework (SSF) [Cow99]. To build an SSF model, one identifies the objects of interest,
entities, and their attributes. Entities may have their attributes changed over the time by
processes, also named activities, which are triggered by the occurrence of events. Moreover,
the system maintains a state, the collection of variables which the modeler specifies as
being interesting for the study, describing the system at any time.

The SSF interface specifies additionally incoming and outgoing channels which act as
event routes between entities and their associated processes. Delays are imposed on in-
dividual events, but also on channels and channel bindings, allowing the system to par-
tition the simulation and take advantage of parallel processing [NL02, LNPP99, NL97].
The specification includes also the Domain Modeling Language (DML) [DML] that can
be used to assemble models. Multiple implementations of the SSF interface are available
in C++ [NL02, iSS] and Java [SSF]. The simple and clear interface of SSF provides means
for intuitively and easily setting up simulation models. As an example, if one wants to
simulate message passing in a network, one may bind channels between entities, act-
ing as network cards, in a point-to-point manner. Events written into channels represent
messages. Messages get delayed in the “network” accordingly to the delay specified at
channel binding time or may be imposed specifically for each message when the event
write operation takes place. These kind of setups may be configured using only a simple
DML configuration.

A more detailed example is shown in Figure 2.5 and Figure 2.6. These compare real
and simulated client/server interaction, respectively. Note that in these diagrams, and
for the sake of comprehensibility, channels and entities are implicit, hence, asynchronous
events suffixed with Event translate into write and reads into implicit channels. In Fig-
ure 2.5, the time it takes to execute a request is the sum of the partial latencies of calling,
executing and receiving back the return value. The identical scenario is depicted in Fig-
ure 2.6, but this time using pure simulation. In this case, direct invocations are translated
into events and simulation models are used instead of real implementations. This means
that both, client and server, are now entities with associated processes. These are con-
nected using channels from and on which events are read and written, respectively. As
in the real implementation, the execution latency is determined by the time spent call-
ing the method, executing the request and getting the return value. But now, invocation,
execution, and reply latencies are modeled as event delays. Therefore, one may say that
the simulation clock advances horizontally, each time an event operation (read/write to
a channel is performed) and real time advances vertically as native instructions get exe-
cuted.

2.3. Performance and Dependability Evaluation 19

Main

Setup Stage

«create»

Server

«create»

Client

Execution Stage

method()

returnValue

Figure 2.5: Real implementation: Client/Server interaction UML diagram.

A popular approach to evaluate designs, and specifically in the study of the dynamic
properties of very large and complex systems, is the development of simulation models,
making use of discrete-event strategy to operate simulation time-line. Namely, the de-
velopment of the network infra-structure, protocols, and their applications is, most often,
based on tools such as ns-2 [NS2] and SSFNet [CLL+99]. Although simulation models are
usually distinct from final implementations, often using scripting languages to simplify
modeling, it is sometimes possible to reuse library code by wrapping the functionality of
simulated components in standard APIs, thus allowing functional testing.

Fine grained simulation of computer systems can also be used to create highly real-
istic although small scale testbeds. Namely, tools such as Simics and SimOS [RBDH97]
simulate in detail computer systems allowing the execution of COTS binary-only oper-
ating systems and application software with unparalleled observability and lack of in-
terference. On the other hand, the detail means that substantial computing resources
are required to run realistic loads and that full implementations are required for testing.
This can be improved by directly running operating system and application code in the
host processor. This is the approach of UMLSim [Alm03] and FAUMachine [BS01], which
additionally allow for fault injection for dependability evaluation. Nevertheless, full im-
plementations are still required for testing.

2.3.3 Evaluation Framework

The ability to evaluate real implementations in a simulated environment has been pro-
posed in CESIUM [AC97]. In this framework, implementations of communication pro-

2.3. Performance and Dependability Evaluation 20

Main

Setup Stage

«create»

ServerSim

«create»

ClientSim

Execution Stage

invocationEvent

executionEvent

replyEvent

Figure 2.6: Simulation: Client/Server interaction UML diagram.

simulation time //

re
al

ti
m

e

��

/o/o/o /o/o/o /o/o/o

• δ1 // •__
∆1

__

δ2=? //___

δ2=∆1

// • δ3 // •

Figure 2.7: Executing simulated and real jobs.

tocols are tested for real-time properties. By running multiple instances of the imple-
mentation in a single address space within a discrete-event simulation model of the en-
vironment, centralized observation and manipulation of state is allowed with reduced
interference. Scheduling and management of virtual-time by taking account of real time
consumed by implementations, as obtained by profiling them, allows the system to be
tuned to accurately reproduce real systems. This approach is thus the only that allows
incremental substitution of model components by real implementations in performance
evaluation.

In an event-driven simulation, time is incremented only by scheduling events with
non-zero delays. The challenge when mixing real and simulated components is to ensure
that the time actually spent executing real code is accurately reflected in simulation time.
Thus this approach goes beyond the simple reuse of real code for simulation models and
is able to reproduce timing properties of real systems [AC97].

2.3. Performance and Dependability Evaluation 21

simulation time //

re
al

ti
m

e

��

/o/o/o /o/o/o/o/o/o/o /o/o/o

• δ1 // •__
∆1

__
__

∆2

__

δq //______
δ′
q=∆1+δq

**UUUUUUUUUUUUUUUUUU

δ2=∆1+∆2

// • • δ3 // •

Figure 2.8: Scheduling events from real code.

In detail, this implies starting a profiling timer whenever real code is entered to ac-
count for native execution time. When execution re-enters simulation code, the profiling
timer is stopped and the elapsed time used as an offset for all events scheduled. This
is illustrated in Figure 2.7. From the simulation point of view, a job with duration δ can
be set to execute at a specific instant t by scheduling a simulation event to enqueue it at
simulated time t. Executing jobs with real code is layered on top of the same simulation
mechanism. Figure 2.7, illustrates this with an example of how three queued jobs are
executed. The second job is assumed to contain real code. The x-axis depicts simulated
time and the y-axis depicts relevant real-time (i.e., we ignore real-time consumed dur-
ing execution of pure simulation code and thus pure simulation progresses horizontally).
The x-axis shows also with an wiggly line when the simulated execution is taking place.
Solid dots represent the execution of discrete simulation events. Scheduling of events is
depicted as an arrow and execution of real code as a double line.

The first job in the queue is a simulated job with duration δ1. After δ1 has elapsed,
execution proceeds to a real job. In contrast with a simulated job, one does not know
beforehand which is the duration δ2 to be assigned to this job. Instead, a profiling timer
is started and the real code is run. When it terminates, the elapsed time ∆1 is measured.
Then δ2 = ∆1 is used to schedule a simulation event to proceed to the next job. This
brings into the simulation time-line the elapsed time spent in a real computation. Finally
the second simulated job is run with duration δ3.

As a consequence of such setup, queueing (real code or simulated) jobs from sim-
ulated jobs poses no problem. Only when being run, they have to be recognized and
treated accordingly. Problems arise only when real code needs to schedule simulation
events, for instance, to enqueue jobs at a later time. Consider in Figure 2.8 a modification
of the previous example in which the third job is queued by the real code with a delay δq.
If real code is allowed to call directly into the simulation runtime two problems would
occur:

• Current simulation time still doesn’t account for ∆1 and thus the event would be
scheduled too early. Actually, if δq < ∆1 the event would be scheduled in the

2.3. Performance and Dependability Evaluation 22

simulation past!

• The final elapsed real time would include the time spent in simulation code schedul-
ing the event, thus introducing an arbitrary overhead in δ2.

These problems can be avoided by stopping the real-time clock when re-entering the
simulation runtime from real code and adding ∆1 to δq to schedule the event with a delay
δ′q. The clock is restarted upon returning to real code and thus δ2 is accurately computed
as ∆1 + ∆2. In addition to safe scheduling of events from simulation code, which can
be used to communicate with simulated network and application components, the same
technique must be used to allow real code to read the current time and measure elapsed
durations.

Chapter 3

Centralized Simulation

This chapter presents the proposed centralized simulation kernel and environment mod-
els that compose the distributed database evaluation framework. A description of how
this framework is calibrated and validated according to a real system is also presented.

3.1 System Architecture

The system is comprised of four distinct modules: i) workload; ii) transactional database
engine; iii) group-based replication protocols; and iv) network infra-structure. These
are depicted in Figure 3.1 as a stack of components. Since the work presented is about
database replication, each time an evaluation run is performed, the system contains sev-
eral instances of the given stack, one for each database site.

On top of the stack one finds the workload generator. It mimics clients issuing trans-
action requests to the database engine. Transactions submitted to the database engine
are executed and if any item is updated during execution, then the update transactions
cannot commit before the replication protocol coordinates with the other replicas. There-
fore, the database engine interacts with the replication protocol in order to propagate the
updates. Once the replication protocol propagates the updates to all other replicas us-
ing the network infra-structure, it then warns the database engine that it has terminated
and the transaction is ready to be committed or even aborted. Read-only transactions
do not need synchronization between replicas, therefore they can commit without any
interaction with the replication protocol module.

Detailing the stack presented, one finds that the system under study are the repli-
cation protocols, therefore real implementations are used in the replication part of the
stack. Database and network are abstracted as simulation models. The workload gen-
erator is actually half real, half abstraction, because at its core lies the same collection of
distributions used to generate transactions either for a real database as for the abstrac-

23

3.2. Simulation Model 24

Generator

Database

Engine

Replication

Protocols

Network

Workload

Figure 3.1: Simple overview of the system architecture.

tion presented in the model. In order to connect the generator to the simulated database
engine a simple adapter is needed to translate real transactions requests into simulated
transactions. In Figure 3.1, white background boxes represent real implementations while
dark background boxes represent simulation abstractions. The light shaded background
box represents the workload generator. Additionally, the arrow represents an update
transaction execution flow.

Using a realistic traffic generator submitting transactions to the system under test is
most valuable, since it enables realistic testing of the database engine, the replication pro-
tocols and the network. It also allows the system under test to face real world scenarios
in which several minor details always arise when deploying a system that has only been
tested with toy applications.

The next sections detail the architecture, using a top-down approach according to the
picture presented.

3.2 Simulation Model

3.2.1 Workload Model

The workload model is defined by the TPC-C [Cou01] benchmark. It is the industry
standard on-line transaction processing (OLTP) benchmark which mimics a wholesale
supplier with a number of geographically distributed sales districts and associated ware-
houses. The database contains the following tables: (i) warehouse; (ii) district; (iii) cus-
tomer; (iv) stock; (v) orders; (vi) order line; (vii) history; (viii) new order; and (ix) item. The

3.2. Simulation Model 25

Transaction Probability Description Read-only?
Neworder 44% Adds a new order into the system. No

Payment 44% Updates the customer’s balance,
district and warehouse statistics.

No

Orderstatus 4% Returns a given customer’s latest
order.

Yes

Delivery 4% Records the delivery of orders. No
Stocklevel 4% Determines the number of recently

sold items that have a stock level
below a specified threshold.

Yes

Table 3.1: Transaction types in TPC-C.

traffic is a mixture of read-only and update intensive transactions. A client can request
five different transaction types as follows: Neworder, adding a new order to the system
(with 44% probability of occurrence); Payment, updating customer’s balance, district and
warehouse statistics (44%); Orderstatus, returning a given customer latest order (4%);
Delivery, recording the delivery of products (4%); Stocklevel, determining the number of
recently sold items that have a stock level below a specified threshold (4%). TPC-C table
related information and transaction pattern are best depicted in Table 3.1 and Table 3.2.
The model accurately follows database scaling rules defined by TPC-C and the database
is scaled according to the number of clients. Namely, an additional warehouse should be
configured for each additional 10 clients and initial sizes of tables are also dependent on
the number of configured clients.

Each client is attached to a database server and produces a stream of transaction re-
quests. When a client issues a request it blocks until the server replies, thus modeling a
single threaded client process. After receiving a reply, the client is then paused for some
amount of time (think-time) before issuing the next transaction request.

The model abstracts away benchmark requirements such as screen load and back-
ground execution, which are not relevant for the work presented here. In fact, these
are not significant for the evaluation of replication and group communication protocols,
therefore, TPC-C is used as the basis for a realistic application scenario and not as a bench-
mark.

During a simulation run, clients log the time at which a transaction is submitted,
the time at which it terminates, the outcome (either abort or commit) and a transaction
identifier. The latency, throughput and abort rate of the server can then be computed for
one or multiple users, and for all or just a subclass of the transactions.

3.2. Simulation Model 26

Number of items
Relations 100 (Cli.) 2000 (Cli.) 4000 (Cli.) Tuple size
Warehouse 1× 101 2× 102 4× 102 89 bytes
District 1× 102 2× 103 4× 103 95 bytes
Customer 3× 105 6× 106 12× 106 655 bytes
History 3× 105 6× 106 12× 106 46 bytes
Order 3× 105 6× 106 12× 106 24 bytes
New Order 9× 104 18× 105 36× 105 8 bytes
Order Line 3× 106 6× 107 12× 107 54 bytes
Stock 1× 106 2× 107 4× 107 306 bytes
Item 1× 105 1× 105 1× 105 82 bytes
Total ≈ 5.1× 106 ≈ 10× 107 ≈ 2× 108

Table 3.2: Size of tables in TPC-C.

3.2.2 Transaction Processing Model

The database server model, named SSFDb, handles multiple clients and is modeled as
a scheduler and a collection of resources, such as storage, cache, processing units and a
concurrency control policy [ACL87, ACL85]. Each transaction is modeled as a sequence
of operations, which can be one of: i) fetch a data item; ii) do some processing; iii) write
back a data item; iv) call replication engine; and v) issue a lock related operation. Upon
receiving a transaction request each operation is scheduled to execute on the correspond-
ing resource. As an example, the generic replicated transaction execution path, is shown
in Figure 3.2. Every resource is modeled as a simple queue. For example, I/O requests
arriving at storage will have to wait if the I/O throughput is already at its maximum us-
age. The same happens in the CPU pool, if a job arrives and no CPU is free, it will have
to be put on a waiting queue or preempt, if that is the case, the execution of an executing
job.

Processing operations are scaled according to the configured CPU speed. Each is then
executed in a round-robin fashion by any of the configured CPUs. Additionally, sim-
ulated CPUs are also used to schedule real jobs by the centralized simulation runtime.
Therefore, transaction execution can be preempted to assign the CPU to real jobs, en-
abling concurrent execution between real and simulated jobs.

I/O operations are modeled using a storage abstraction that specifies procedures for
fetching and storing items. Its service rate (throughput) is defined by the number of
allowed concurrent I/O requests and the latency of a single request. Each request ma-
nipulates a write attempt, meaning that the cache hit ratio is very close to 100%, hence
storage bandwidth becomes configured indirectly.

Operations for fetching and storing items are submitted to the concurrency control
module (lock manager). Depending on the policy being used, the execution of a transac-

3.2. Simulation Model 27

t

Central
Processing

Units

StorageLock
Manager

Replication
Manager

Site 2

Central
Processing

Units

StorageLock
Manager

Replication
Manager

Site 3

Site 1

Central
Processing

Units

StorageLock
Manager

Replication
Manager

Figure 3.2: Simulated transactions and replicas interaction.

tion can be blocked between operations. Items get locked accordingly to the user defined
locking policy. The concurrency control may be based on timestamp or strict two phase
locking (2PL) protocols [BHG87]. In a timestamp locking policy, items fetched for reading
are ignored, while items updated are exclusively locked. When a transaction commits,
all other transactions waiting on the same locks are aborted due to Write-Write conflicts.
In the strict two phase locking all items get locked. Whenever a transaction aborts, its
locks are released and can be acquired by any subsequent transaction. In addition, all
locks are atomically acquired, and atomically released when the transaction commits or
aborts, thus avoiding the need to simulate deadlock detection. This is possible as all items
accessed by the transaction are known beforehand.

The transaction processing model also offers hooks to plug in replication protocols.
This is actually one of the main interfaces between the simulated environment and the
system under test (i.e., replication protocols). In detail, these offer the possibility to: i)
intercept queries upon arrival, to allow classification procedure and ordering required
by the conservative protocols; ii) intercept read and write-sets upon entering commit

3.2. Simulation Model 28

and producing realistic amount of write values which are to be transmitted over the net-
work, hence will produce real bandwidth consumption; iii) handle installation of remote
updates, for which there is no directly attached client entity. Note that the interaction
between simulation and real code is also performed at this level by using the centralized
simulation kernel (see Section 3.1).

During a simulation run, the usage and length of queues for each resource are col-
lected and used to examine in detail the status of the server. This is most useful to find
contention in the system. For example if the queue at one resource becomes extensive
then a bottleneck has been found. Then, one may confirm the bottleneck hint by examin-
ing the usage data to verify which is the optimal throughput rate of the resource.

3.2.3 System Under Test

The system under test is composed of actual implementations of database replication
protocols an group communication. Three different implementations are used as a case
study in this work. Namely, Database State Machine (DBSM), Postgres-R (PGR) and
Conservative (CONS) replication protocols.

When considering the conservative protocol, transactions are set to classify prior to
their execution. This involves a call to the replication layer in order to classify the trans-
action. While the classification is not concluded, the transaction is put on-hold. Once it
finishes, the transaction may begin its execution. By the time the commit operation is
issued, the write values are gathered and sent to the other replicas, hence another call to
the replication service is issued. On the other hand, if the DBSM protocol is considered,
there is only one call to the replication module. It happens when the transaction tries
to commit. This is also the case for PGR, which requires an additional communication
step when compared to the DBSM. All in all, every update transaction goes through the
replication layer at least once. Therefore, there is one or more interactions between real
code prototypes and simulation.

Each of the replication protocols rely on an atomic multicast protocol, which is pro-
vided by the group communication layer. Such primitive is implemented in two stages.
A view synchronous multicast protocol and a total order protocol. The former, view-syn-
chronous multicast, works in two phases. First, messages are disseminated, taking ad-
vantage of IP multicast in local area networks and falling back to unicast in wide-area
networks. Then, reliability is ensured by a window-based receiver initiated mechanism
similar to TCP/IP [PTK94] and a scalable stability detection protocol [Guo98]. Flow con-
trol is performed by a combination of a rate-based mechanism during the first phase and
the window-based mechanism during the second phase. View synchrony uses a consen-
sus protocol [SS93] and imposes a negligible overhead during stable operation.

The goal of the stability detection protocol is to determine which messages have al-

3.2. Simulation Model 29

ready been delivered to all participants and can be discarded from buffers. It is there-
fore a key element in the performance of reliable multicast. Stability detection works in
asynchronous rounds by gossiping: i) a vector S of sequence numbers of known stable
messages; ii) a set W of processes that have voted in the current round; and iii) a vector
M of sequence numbers of messages already received by processes that have voted in the
current round. Each process updates this information by adding its vote to W and ensur-
ing that M includes only messages that have already been received. When W includes all
operational processes, S can be updated with M , which now contains sequence numbers
of messages discovered to be stable.

Total order is obtained with a fixed sequencer protocol [BvR94, KT91]. In detail, one of
the sites issues sequence numbers for messages. Other sites buffer and deliver messages
according to the sequence numbers. View synchrony ensures that a single sequencer site
is easily chosen and replaced when it fails. By implementing total order within the proto-
type, it becomes possible to later explore several optimizations of atomic multicast in the
context of transaction processing. Namely, semantic reliability [PRO03] and optimistic
total order [PS03, SPMO02]. Semantic reliability improves throughput stability in hetero-
geneous and wide area networks by discarding messages that become obsolete while still
in transit, for instance, because a transaction is known to have aborted. Optimistic total
order recognizes that it is possible to exploit the spontaneous order of messages which
happens with high probability to optimistically start processing transactions. If the order
turns out to be wrong, the execution is rolled back and the transaction is redone in the
correct order.

3.2.4 Network Model

The network model is defined by using the components from a library of components
that can be reused. This is the case of the SSFNet [CLL+99] framework, which models
network components (e.g. network interface cards and links), operating system compo-
nents (e.g. protocol stacks), and applications (e.g. traffic generators). Complex network
models can be configured using such components, mimicking existing networks or ex-
ploring particularly large or interesting topologies. The SSFNet framework provides also
extensive facilities to log events. Namely, traffic can be captured in the same format used
in real networks and thus the log files can be examined using a variety of existing tools.

The interface between the group communication and the network is the other main
interface between the system under test and the simulated environment. It offers a sim-
plified version of the standard socket API for connectionless protocols. Again, interaction
between simulation and real code is performed at this level by using the centralized sim-
ulation kernel.

3.3. Simulation Kernel 30

3.3 Simulation Kernel

In the previous section prototypes of the replication and group communication protocols
were said to be embedded within simulation. This section explains how this is achieved
by detailing the simulation kernel and how it handles real time execution. It starts by
comparing a real system and a simulation model. Then it goes on demonstrating how to
mix both using the simulation kernel developed.

3.3.1 Real-Time

Running selected components with simulation models of realistic environments, work-
loads, and fault-loads is accomplished using a centralized simulation kernel [AC97]. This
approach is implemented as a small extension to the Scalable Simulation Framework
(SSF) [Cow99] specification that greatly simplifies interfacing real implementations within
simulation models while accurately reproducing the timing behavior of real systems.

The extension of the SSF interface is very simple and consists on being able to desig-
nate selected entities as real-time entities by overriding the isRealTime() method. A pro-
cess associated with such entity becomes a real-time process and behaves as follows: the
profiling clock is started when the process reads an event from an incoming channel and
stopped whenever the process writes an event to an outgoing channel. Code executed
between writing an event and reading another event is therefore not accounted for. Af-
ter stopping the profiling clock, the real-time process is not rescheduled until simulation
time has advanced by as much time as real execution took. The event is actually written
to the channel only after simulation time has catch-up. The proposed programming in-
terface was implemented in Java as the MinhaSSF package. This was required as source
of the existing implementation is not available.

Accounting real-time within the simulation kernel is easily implemented in existing
SSF implementation as this boils down to taking into consideration real time processes
whenever entering the simulation runtime and minor changes to the scheduler. A key
issue is the profiling clock used to measure real-time. It is important that the method
used allows a fine-grained measurement of time by one operating system thread even
if other concurrent threads are running and can thus preempt the desired thread. This
is achieved in the Linux operating system using the perfctr patch [Pet04], which offers a
virtualized hardware cycle counter for each operating system process.

The proposed semantics is targeted at client/server interactions between simulated
and real components. Real code calling into simulation by means of writing an event
will suspend accounting of real time, which is resumed upon reading the return event.
Conversely, when behaving as a server, accounting of real time starts upon receiving an
invocation event from simulated components and until a return is written.

3.3. Simulation Kernel 31

Main

Setup Stage

«create»

Server

«create»

RealTimeProxy

«create»

ClientSim

Execution Stage

invocationEvent

method()

returnValue

replyEvent

Figure 3.3: Simulated client calls server real implementation.

The SSF specification as well as the extensions mentioned in this section are imple-
mented in Java and available to the GORDA project[Con04] and are to be release in the
near future as open source.

3.3.2 Client/Server Utility Classes

To avoid the tedious and error prone task of manually writing stubs for every interac-
tion, i.e., which translate events into invocations and back, a set of proxy classes has been
implemented. These are realized using Java reflection and provide a simple and clear in-
terface that enable generalized usage and complete isolation between simulation models
and real implementation. A proxy, named SimulationProxy, is responsible to transform an
invocation made by real code into a pair of events (write and read operations), that trans-
parently interface with simulation code. The second proxy, name RealTimeProxy, does the
reverse operation, listening for events, invoking real code and replying the result.

The role of dynamic proxies is better understood with an example. Recalling the pre-
vious client/server example from Section 2.3.2, one is able to easily reuse the real server
implementation in conjunction with the simulated client, as Figure 3.3 illustrates. Keep
in mind that entities and channels are implicit in the diagrams, as already previously
stated. The server implementation is embedded into a RealTimeProxy, which in its turn

3.3. Simulation Kernel 32

Main

Setup Stage

«create»

ServerSim

«create»

SimulationProxy

«create»

Client

Execution Stage

method()

invocationEvent

executionEvent

 replyEvent

returnValue

Figure 3.4: Client real implementation calls simulated server).

is a MinhaSSF real-time entity. This proxy contains a process that reads incoming events
from an invocation channel and translates them into calls to the server implementation.
At the same instant the process reads the invocation event, the simulation kernel implic-
itly starts a timer which keeps track of time spent in the real invocation, which is the next
thing the proxy performs after reading the event. When the method returns, the proxy
writes a reply event containing the result into the reply channel and the kernel implicitly
suspends the timer. The reply event is delivered to the simulated client, after the time in
the real execution elapses in the simulation clock. In the mean time, the RealTimeProxy
process is not scheduled again until the simulation clock catches-up.

Calling simulation from real code is also possible due to the other proxy: Simulation-
Proxy. Taking the client/server example, one more time, and now considering the client
as the real implementation and the server as a simulation model, its usage is depicted
in Figure 3.4. The SimulationProxy implements the interface of the server, exposes it to
the other objects and provides channel end-points that can be connected to the simulated
server to convey invocations and replies. A reference to the proxy object is provided to
the real Client instance making it believe it has actually a reference to a server implemen-
tation. Once the client calls the method(), the proxy translates this call into an invocation

3.4. Model Calibration 33

Resource Properties
Processor 2 × 2.4 GHz AMD Opteron
Storage 1 dedicated 100Gb partition
RAM 4 GBytes
Operating System Linux 2.6.10-1.737 (Fedora Kernel)
Filesystem ext3
Database Management System PostgreSQL 8.0

Table 3.3: System specifications.

event (invocationEvent), writes it to the channel, and blocks waiting for the reply. At this
moment the MinhaSSF kernel suspends accounting of real time associated with the real
client execution. When the server receives the event, which only happens after the simu-
lation clocks elapses the time accounted in the client execution, it simulates the execution
with an event (executionEvent) and sends back the result by writing an event (replyEvent)
into the reply channel. Upon delivery of the reply event, the proxy collects the result and
handles it back to the client as the return value of the fake method(), so control is back
in the client implementation. At the same time the timer is resumed, hence the kernel
restarts accounting execution time of client instructions.

3.4 Model Calibration

This section presents how the simulation model is calibrated. In detail, how to configure
simulation components so they can reproduce accurately a real environment. The pur-
pose of the calibration is to tune the model in order to guarantee generalized conclusions.

The calibration procedure is driven by the available hardware for testing, hence the
model is configured accordingly. The hardware consists in one HP Proliant dual Opteron
processors machine. It has 4 GBytes of RAM memory and uses a fibre-channel attached
storage with 1 TByte in a RAID-5 configuration. The operating system used is Linux, ker-
nel 2.6.10-1.737, from Fedora, and the database engine used is PostgreSQL v8.0, having
all data stored in a dedicated partition sized in 100Gb, hence no other processes perform
I/O into that device. Emulated TPC-C clients are configured to execute from remote
machines and communicate with the DBMS over a LAN.

Database calibration is performed using the described hardware and running a bench-
mark with only one emulated TPC-C client. The logs collected are used to tune the sim-
ulation model. It is adjusted in two distinct levels: i) it needs to be setup according the
hardware specifications of the real system (the same number of CPUs, the same storage
throughput, ...); and ii) resource consumption must follow the same profile as in the real
system (i.e., the CPU must be under the an equivalent load, the number of access to stor-
age must be equivalent, ...). Using the calibration setup, TPC-C runs with 10 clients, in
both the real and simulated systems, are compared to verify if they match.

3.4. Model Calibration 34

Transaction Empirical Estimators
Name Distribution
Delivery normal mean=143698975.769 sd=2332369.0642
Neworder uniform min=6450113.77352 max=16829661.7371
Orderstatus normal mean=1658057.33333 sd=830521.190802
Stocklevel uniform min=1845659.43141 max=2328872.56859
Payment normal mean=2261806.48101 sd=213283.617067

Table 3.4: CPU Times distributions (nanoseconds).

3.4.1 CPU

The CPU abstraction is modeled as queue in which the arrival process and the service
time distribution follow an exponential distribution. The service time for each job is con-
figured according to the transaction type. Given this, execution times are determined
by measuring the time a transaction actually spends in a real CPU in a real execution.
Therefore, simulated transactions spend equivalent times to the ones that a real transac-
tion would spend in the real system.

In order to obtain CPU processing times, transactions need to be profiled. To accu-
rately obtain the amount of CPU time consumed by each transaction, an instrumented
version of PostgreSQL was developed. In PostgreSQL, a process, named the backend,
handles a single transaction execution from start to end. This makes it easy to use the
Linux perfctr patch [Pet04] to obtain the time spent processing by reading the virtualized
per-process cycle counter.

In detail, a CPU timestamp counter is used, which provides accurate measure of
elapsed clock cycles. By using a virtualization of the counter for each process, measure-
ments of process virtual time (i.e. the time elapsed when the process is not scheduled to
run is not accounted for) are also obtained. To minimize the influence in the results, the
elapsed times are transmitted over the network only after the end of each query (and thus
out of the measured interval), along with the text of the query itself. The time consumed
by the transaction’s execution is then computed from the logs. By examining the query
itself, each transaction is classified.

The analysis conducted using the logs of the real execution. The initial 17 minutes
of the run (100 transaction samples) and the aborted transactions are discarded, so war-
m-up effects are minimal, and the percentile 90% of the remaining, is considered. The
90% percentile eliminates deviating samples which are due to operating system overhead
(swapping and process scheduling) as well as other system daemons interference. The
resulting histograms (Appendix A) provide a hint on the empirical distribution that the
collected samples follow. The profiling process also allowed to fine tune the PostgreSQL
configuration as well as optimize the TPC-C implementation.

Once the logs become fully analyzed and the histograms plotted one may intuitively

3.4. Model Calibration 35

find an empirical statistical distribution describing the processing times required for each
transaction type (Table 3.4). Therefore, using the fitdistr function from MASS package of
the R [ea97, Dal02] project for statistical computation, one is able to fit the empirical distri-
bution to a theoretical statistical distribution. Details of the fitting process are presented
in Appendix A.

3.4.2 Storage

The storage calibration is accomplished by considering the number of items that a trans-
action accesses for writing. Again, like in the CPU time profiling, the PostgreSQL engine
had to be modified so the number of items a transaction tries to update gets logged. This
is achieved by creating update, delete and insert triggers that keep track of the items
accessed during the transaction execution. Upon a commit request, this information is
passed to the logger which flushes the information to a file and frees memory kept for
holding this information.

There are two situations to take into account: i) fetching; and ii) writing an item. The
latency of reading operations is minimal judging from the results obtained, in the tests
performed. In fact, despite the warm-up period, the cache hit ratio tends to 1.0, meaning
that zero time is spent in I/O for reading. Writing operations requires studying the writes
performed in the database log file and the writes performed in the database data space.
Writing to the log is critical because it implies at least one disk flush when a transaction
issues the commit instruction. This has impact in the total transaction execution latency.
It has been verified that, writing to the data storage space does not produce significant
impact in the final latency. Explaining this behavior is the fact that PostgreSQL keeps a
background writer process that is in charge of flushing the dirty data to the database data
space. This is performed asynchronously and most often outside transaction execution
context, thence it does not count for the total execution latency.

Y = m ·X + b (3.1)

m =
Y2 − Y1

X2 −X1
(3.2)

In order to calculate the storage service time, the time spent on each log write op-
eration is measured. But knowing the latency of a log write operation is not enough,
one needs to find the correlation between the number of log writes and the number of
items accessed. This need is imposed because the input for the simulated storage is the
number of items a TPC-C transaction writes and not the number of log writes. With this
information the storage model is configured using the writes-items relation, the latency
of each access and a concurrent parameter that states how many concurrent accesses may

3.4. Model Calibration 36

 0

 200

 400

 600

 0 40 80 120 160

Nu
m

be
r o

f L
og

 W
rit

es

Items Accessed

 0

 200

 400

 600

 0 40 80 120 160

Nu
m

be
r o

f L
og

 W
rit

es

Items Accessed

Figure 3.5: XLogWrite calls as a function of the number of items accessed.

Parameter Value Short Description
m 3.8088 Slope of the ratio

line between items and log writes.
logAccessDelay 986 ms Average XLogWrite call latency.
parallelism 8 Parallel log writes.

Table 3.5: Storage simulation model parameters.

be performed. In order to obtain the number of log writes performed, one needs to ex-
port the number of calls to the PostgreSQL XLogWrite function and measure its time. By
plotting, for each transaction, the number of items accessed versus the number of calls
to XLogWrite one is able to find a linear relation between both. Figure 3.5, shows the
number of log writes as a function of the items accessed. It is clear that there is a linear
relation between both. The 2D Cartesian coordinate system, states that a line is described
by Equation (3.1). Since b is where the line intersects the ordinate axis when X is equal
to zero, then its value is obviously zero (Figure 3.5). The line slope is determined by
the expression given by Equation (3.2). Therefore, if one considers the two given points
X2 = (140, 531) and X1 = (13, 4) one is able to determine the line slope without any
hassle: m = 531−13

140−4 ≈ 3.8088. In addition, Figure 3.5, also depicts, as a solid line, the
extrapolated equation: Y = 3.8088×X .

The number of parallel log writes is determined by the average number of calls be-
tween two consecutive flush operations. Flush operations force disk I/O. The measured
number of log writes without any flush operation was 8.

Table 3.5, presents the storage simulation model final parameters obtained from the
calibration process.

3.5. Validation 37

●
●
●

●

●

●

●

●

●

●

0 1000 2000 3000 4000 5000

0
50

0
10

00
15

00
20

00
25

00
30

00

Size (bytes)

B
W

 (
M

B
its

)

● REAL
SIM

(a) Bandwidth written.

●●●
● ●

●

●

● ●
●

0 1000 2000 3000 4000 5000

0
50

0
10

00
15

00
20

00
25

00
30

00

Size (bytes)

B
W

 (
M

B
its

)

● REAL
SIM

(b) Bandwidth read over Ether-
net 100.

●●

● ● ● ●

●

●

●

●

0 1000 2000 3000 4000 5000

0
5

10
15

Size (bytes)

R
ou

nd
−

T
rip

 ti
m

e
(u

se
cs

)

● REAL
SIM

(c) Average round-trip.

Figure 3.6: Validation of the centralized simulation runtime.

3.5 Validation

Simulation models are a simplification of the real system they mimic. The model pre-
sented is no different, therefore the match between the real system and the abstraction is
by no means an absolute match. Nonetheless, a validation procedure is presented in this
section, in order to stress the fact that the developed model performs quite similar to the
real system.

Network model and its configuration are validated by comparing the resulting per-
formance measurements of the model to those of the real system running the same bench-
mark.

Figure 3.6(a) shows the maximum bandwidth that can be written to an UDP socket
by a single process in the test system with various message sizes. Figure 3.6(b) shows the
result of the same benchmark at the receiver, limited by the network bandwidth. Finally,
Figure 3.6(c) shows the result of a round-trip benchmark. The difference observed with
packets with size greater than 1000 bytes is due to SSFNet not enforcing the Ethernet
MTU in UDP/IP traffic. Deviations from the real system are avoided by restricting the

3.5. Validation 38

Transaction Average TPM Average Latency (ms)
Simulation Real Simulation Real

Delivery 2.64 3.66 151.3 192.2
Neworder 33.37 32.43 12.82 11.57
Payment 29.88 30.14 3.21 3.23
Orderstatus 3.15 3.09 1.63 1.21
Stocklevel 2.87 3.18 2.08 2.63
TOTAL 71.62 72.93 7.328 6.97

Table 3.6: Simulation vs Real: TPM and latency results.

size of packets used to a safe value.

The last stage of the validation process is to determine how close to the real system
the simulation models performs. Taking the configuration values obtained from the stor-
age and CPU calibration, one is able to perform a simple run on the real system and
compare the outcome with the same run on the simulation model. The metrics used
for comparison are: transaction inter-arrival and execution latency. The former indicates
the throughput, while the latter shows how much time a transaction spends inside the
database engine during its execution. The abort rate is not taken into consideration, be-
cause is its practically zero in both runs.

The validation scenario considers ten emulated TPC-C clients issuing transactions
requests to the database. Figure 3.7(b) and Figure 3.7(a), present the comparison of the
latency and inter-arrival of transactions considering the percentile 90%. Note, that these
plots show the Empirical CDF of the two runs and present a Q-Q plot to determine how
close they are to each other. In a Q-Q plot, a 45o degrees line states that both plots are
perfectly matching. Taking the Q-Q plot into consideration, both are very much alike
either in terms of inter-arrival as in terms of latency, despite the deviation for a small
amount of samples in the latter. This deviation is not significant due to the small amount
of samples. Table 3.6, depicts numerical values for the average TPM and latency. One
may find that real and simulated runs perform real close, hence the system becomes
calibrated and validated. For additional details (per transaction analysis), please refer to
Appendix B.

3.5. Validation 39

0 1000 2000 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDFs

(ms)

REAL
SIM

●●
●●
●●●

●●
●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●

●

0 500 1000 1500 2000 2500

0
50

0
10

00
15

00
20

00
25

00

REAL vs SIM

(a) Inter-arrival.

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDFs

(ms)

REAL
SIM

●
●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●

●●
●●●

●●●

●

●●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

0 5 10 15

0
5

10
15

REAL vs SIM

(b) Latency.

Figure 3.7: Simulation vs Real comparison.

Chapter 4

Case Study

This chapter presents a case study featuring the replication protocols put forward in
Chapter 2. Special attention is payed to the performance evaluation of the replication
system, since these measures strongly define the applicability of the approach. Evalu-
ation was performed in ideal network environments as well as in faulty networks. The
simulation environment was based on the centralized simulation environment, described
in Chapter 3.

4.1 Motivation

The trade-offs implicit in the design of each protocol described in Chapter 2 can now be
evaluated within a common framework and in a variety of environments. In detail, one
wants first to answer questions such as:

• Is the replication protocol scalable, i.e., is the system capable of operating under
heavy loads, and in a large cluster?

• How does performance degrade when going from a local area network into wide
area network, specially regarding the increase on latency for message transmission?

• What is the impact on performance if messages get lost in the network, and which
transactions will suffer most in the presence of faults?

• How differently does the system perform when comparing Write/Write (Snap-
shot-Isolation) and Read/Write consistency criteria?

When considering optimistic replication protocols, one is also interested on the fol-
lowing:

40

4.2. Scenarios 41

• Does network become a bottleneck when sending read sets between replicas and if
so, is there a way to reduce its size? What is the impact on the certification process
when compressing the read set?

• Which transactions end up aborting most frequently and why?

• Do large transactions end up aborting most due to their longer execution latency?

• Does PGR benefits from not sending the read set over the network at the cost of an
additional communication step?

On the other hand, when considering conservative replication protocols one wants to
know the following:

• How should one consider the traffic profile to determine conflict classes?

• What is the impact on performance when defining coarse grained conflict classes
(e.g., table level conflict classes)?

• How does contention in conflict class queues increase transaction latency?

• Is transaction latency directly proportional to contention due to class-level con-
flicts?

Answering these requires building large scale testing scenarios, changing the behav-
ior of the database management system model, injecting faults and finally a number of
different observations of external and internal metrics, which would be hard to accom-
plish in a real setting.

4.2 Scenarios

Given the motivations in the previous section, a case study allowing the answer of such
questions is presented in this chapter. It aims at providing an extensive empirical obser-
vation of how the replication protocols introduced in Chapter 2, behave under different
environments. The selected application model is based on one of the TPC set of bench-
marks, and has already been exhaustively described in the Section 3.2. Replication is
achieved having nine sites with the exact same instance of the TPC-C database. Hosting
machines are modelled as HP Proliants with two AMD Opteron(tm) Processor 250 pro-
cessors with 4GB of RAM. For storage, a fibre-channel attached box with 4×36GB SCSI
disks in a RAID-5 configuration is considered. Details on how the simulation model cal-
ibration is accomplished may be found in Section 3.4.

Each site handles transactions submitted by clients in a multi-master way. The load is
symmetric, i.e., every site has the same number of clients connected to it, and every client

4.2. Scenarios 42

Figure 4.1: Local area network configuration.

is modelled as a sequential process. If a client tries to update the database, issuing an
update transaction, it must be replicated to the other replicas, hence an update transac-
tion submitted at site S0 must also update every other site in the system. For the sake of
clearness, transactions submitted by a client at a site will be referred to as local transactions
and transactions submitted at any site by the replication protocols (remote updates) will
be referred to as remote transactions.

As for the communication infra-structure, two different approaches are considered.
The first approach considers nine sites communicating using low-latency and high band-
width network channels, similar to a cluster environment. All sites are in the same net-
work, hence they all operated in a LAN infra-structure. Links considered have 1 Gbps
of bandwidth and the transmission latency is around 120 µs. Figure 4.1, depicts this
network configuration.

In the second approach, sites are spread over a wide area network. The original nine
sites are grouped on clusters of three, and each of these clusters exhibit the same proper-
ties of the LAN network mentioned previously. Intercommunication between groups is
accomplished through a wide area network. Messages sent from one cluster to another,
go through a border router which communicates with a backbone router. The communi-
cation channels between each border router and the backbone router are configured with
100 Mbps of bandwidth and the transmission latency is close to 60 ms. This means that a
network packet that is transmitted between two different clusters performs three router
hops. The packet round trip delay is given by Equation 4.1.

RTTWAN ≈ 2× (2× ClusterLatency + 2×WANLatency) (4.1)

Therefore, accordingly to the configuration described, the transmission time, T , of a
network packet between sites on different clusters would be: T ≈ RTTWAN/2 ≈ 2 ×
(0.12× 2 + 60× 2)/2 ≈ 120ms. Figure 4.2, depicts this configuration.

4.3. Results: Optimistic vs Conservative 43

Figure 4.2: Wide area network configuration.

Class./Trans
Warehouse

District
Customer

Item
Stock

Orders
OrderLine
NewOrder

History

Serializable
Neworder Payment Delivery

x x
x x
x x x
x
x
x x
x x
x x

x

Snapshot Isolation Level
Neworder Payment Delivery

x
x x

x x

x
x x
x x
x x

x

Table 4.1: Definition of coarse conflict classes for each transaction type in TPC-C.

4.3 Results: Optimistic vs Conservative

4.3.1 Coarse Grain

The first study evaluates the conservative and the DBSM approaches without exploiting
any application specific details and thus in a configuration that can easily be automated.
In the conservative approach, each table is considered to specify a conflict class, which
can actually be easily extracted from the SQL code. The resulting conflict classes and
conflict relations among transactions types are shown in the “Serializable” column of
Table 4.1. Regarding the DBSM, special attention needs to be payed to read-set sizes
since the propagation of large read-sets may be impractical. An immediate workaround
to this problem is to set a limit for the read-set size over which the whole table is used. In
the TPC-C, this results in transactions of type Delivery always being marked as reading

4.3. Results: Optimistic vs Conservative 44

●

●
● ● ●

0 1000 2000 3000 4000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Clients

T
P

M
● CONS−G

DBSM−G

(a) Throughput

●

0 1000 2000 3000 4000

0
5

10
15

20

Clients

La
te

nc
y

(m
s)

● CONS−G
DBSM−G

(b) Latency

● ● ● ● ●

0 1000 2000 3000 4000

0
1

2
3

4
5

Clients

A
bo

rt
 R

at
e

(%
)

● CONS−G
DBSM−G

(c) Abort rate

●

●

●

●

●

0 1000 2000 3000 4000

0
20

40
60

80
10

0

Clients

A
bo

rt
 R

at
e

(%
)

● DBSM−G

(d) Delivery abort rate

Figure 4.3: Performance measurements in a LAN with coarse granularity.

the entire OrderLine table. All others access only a small number of items.

Figure 4.3, presents performance measurements in the LAN scenario. It can be ob-
served in Figure 4.3(a), that the DBSM protocol with optimistic execution apparently
scales much better to a large number of clients than the conservative protocol. As shown
by Figure 4.3(b), the bottleneck in the conservative protocol translates in very large queue-
ing latencies.

This result is highlighted in Figure 4.4 that decomposes latency as seen by a client, and
shows that the impossibility to concurrently process transactions that potentially conflict
leads to queueing delays which grow very rapidly with the number of clients connected.

However, as seen in Figure 4.3(c), the good throughput of the DBSM is achieved at
the expense of a number of aborted transactions. This is especially worrisome since the
4% of transactions being aborted overall are in fact all Delivery transactions as shown in

4.3. Results: Optimistic vs Conservative 45

Cons DBSM

270 Clients

La
te

nc
y

(m
s)

0
10

20
30

40
50

Cons DBSM

Queueing
Network
I/O
CPU
Conc. Control

2070 Clients

Figure 4.4: Detailed profiling in a LAN with 270 clients.

Figure 4.3(d). Therefore, even if such transactions can be resubmitted, there is a very low
probability of ever being executed.

Conclusion: Results show that neither DBSM nor CONS protocols scale, without appli-
cation specific configuration, to a large number of clients with an OLTP load, even with
plenty of resources in a LAN.

4.3.2 Fine Grain

To reduce the number of conflicts, a finer granularity has to be specified when defining
conflict classes for the conservative approach and the read-set extraction in the DBSM.
Fine grained conflict classes are obtained by taking advantage of the fact that all tables
except Item have references to the Warehouse table and that clients connected to the same
node have high locality regarding a specific subset of warehouses.

Although the simulation run considers this granularity for the CONS protocol, it is
impractical since one cannot predict beforehand which subset of tuples, a transaction will
access, specially for the Neworder and Payment transactions. This renders the approach
impractical.

In the optimistic protocol, this granularity is practical, because the read-set is ex-
tracted during the transaction execution, hence there is no need to predict it. But if there
is no hotspots this approach is worthless.

These optimizations are also compared with the PGR protocol which can use the ex-
act read-set by centralizing certification of each transaction. The results are presented in
Figure 4.5. It can be observed that all approaches produce approximate results with min-
imal differences in latency and abort rate. Network usage is also low, showing that the
overhead incurred by the DBSM when sending the read-set is offset by requiring only a

4.3. Results: Optimistic vs Conservative 46

●

●

●

●

●

0 1000 2000 3000 4000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Clients

T
P

M
● CONS−g

DBSM−g
PGR

(a) Throughput

●

●
●

●

●

0 1000 2000 3000 4000

0
5

10
15

20

Clients

La
te

nc
y

(m
s)

● CONS−g
DBSM−g
PGR

(b) Latency

● ● ● ● ●

0 1000 2000 3000 4000

0
1

2
3

4
5

Clients

A
bo

rt
 R

at
e

(%
)

● CONS−g
DBSM−g
PGR

(c) Abort rate

Figure 4.5: Performance measurements in a LAN with fine granularity.

single communication step.

Conclusion: When an appropriate grain can be defined, CONS and DBSM, are equally
suited as PGR for an OLTP load in a cluster.

4.3.3 Snapshot Isolation

An alternative approach to avoid synchronization conflicts is to relax the correctness cri-
terion to snapshot isolation [BBG+95] which only considers Write-Write conflicts.

In the DBSM approach, all the concerns previously discussed about the size of the
read-set are avoided. As Figure 4.6 shows, it turns out that this alternative has also a be-
nign impact on the performance of the DBSM approach, reducing the number of aborted
transactions. Moreover, this is a very appealing alternative, as it avoids all configuration

4.3. Results: Optimistic vs Conservative 47

●

●
● ● ●

0 1000 2000 3000 4000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Clients

T
P

M
● CONS−SI

DBSM−SI

(a) Throughput

●

0 1000 2000 3000 4000

0
5

10
15

20

Clients

La
te

nc
y

(m
s)

● CONS−SI
DBSM−SI

(b) Latency

● ● ● ● ●

0 1000 2000 3000 4000

0
1

2
3

4
5

Clients

A
bo

rt
 R

at
e

(%
)

● CONS−SI
DBSM−SI

(c) Abort rate

Figure 4.6: Performance measurements in a LAN with snapshot isolation.

issues. Under snapshot isolation the DBSM and PGR protocols become the same.

Unlike the DBSM, the conservative approach does not benefit from the snapshot iso-
lation criterion, exhibiting the same latency as in the coarse grain study. In the “Snapshot
Isolation Level” column of Table 4.1 the new conflict relations among the transactions are
depicted. Regardless of their type, all update transactions still conflict and thus have to
be sequentially executed.

Conclusion: When using snapshot-isolation, DBSM presents a reduced abort rate, while
the CONS protocol, despite the relaxed correctness criteria, still suffers from conflict
penalties.

4.3. Results: Optimistic vs Conservative 48

●

●

●

●

●

0 1000 2000 3000 4000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Clients

T
P

M
● CONS−g

DBSM−SI
DBSM−g
PGR

(a) Throughput

● ● ● ● ●

0 1000 2000 3000 4000

0
10

0
20

0
30

0
40

0
50

0

Clients

La
te

nc
y

(m
s)

● CONS−g
DBSM−SI
DBSM−g
PGR

(b) Latency

● ● ● ● ●

0 1000 2000 3000 4000

0
5

10
15

Clients

A
bo

rt
 R

at
e

(%
)

● CONS−g
DBSM−SI
DBSM−g
PGR

(c) Abort rate

● ● ● ● ●

0 1000 2000 3000 4000

0
20

40
60

80
10

0

Clients

A
bo

rt
 R

at
e

(%
)

● CONS−g
DBSM−SI
DBSM−g
PGR

(d) Delivery abort rate

Figure 4.7: Performance measurements in a WAN.

4.3.4 Wide Area

It is also interesting to observe how the proposed approaches scale to interconnected
clusters in WAN. Wide area networks introduce higher communication latency when
compared to LANs. Consequently, transactions take more to conclude, resulting in a
higher probability of concurrent transactions in the system, thus higher probability of
conflicts.

In a protocol based on distributed locking, the influence of latency can potentially
be very large, if a node has to wait that all other nodes enter and leave a critical section
plus the time it takes to pass the authorization around. In contrast, when using active
replication [Sch93, GS97], the only overhead is encapsulated in the total order multicast
protocol and no additional synchronization is required. Ideally, a database replication
protocol based on total order multicast would be able to achieve the same goal.

4.3. Results: Optimistic vs Conservative 49

T

T'
t

reply
p1

p2

p3

(a) CONS

T

T'
t

reply
p1

p2

p3

(b) DBSM

T'

T

t

reply
p1

p2

p3

(c) PGR

Figure 4.8: Handling concurrent transactions.

To study the impact of the communication latency overhead when considering WANs,
the best performers in the previous scenarios were chosen. Their performance is pre-
sented Figure 4.7. Although Figure 4.7(a) shows that throughput scales equally well,
Figure 4.7(b) shows that the additional communication step, incurred by PGR, when cen-
tralizing certification results in a large increase in latency. This has also an impact in the
overall abort rate in Figure 4.7(c), which is higher than with other optimistic approaches.
Nevertheless, counterpointing results from Figure 4.3, Figure 4.7(d) shows that no single
transaction type exhibits high abort rates, hence, if one chooses to resubmit the aborted
transactions there is a high probability of a successful execution.

Figure 4.8, depicts the conservative and optimistic protocols handling the execution of
two concurrent non-conflicting transactions. In the CONS protocol (Figure 4.8(a)), once
the transactions are ordered, all steps of the protocol are executed concurrently therefore
corresponding to the desired behavior.

Regarding the optimistic approaches, one can see that in the DBSM (Figure 4.8(b)) the
transactions’ execution can always be carried in parallel while the certification procedure
needs to be done sequentially. Once the certification is finished, since the transactions do
not conflict, the updates may be incorporated concurrently. The DBSM therefore incurs in
the certification procedure overhead. However, the certification execution time is usually

4.4. Results: Fault-injection and DBSM 50

PGR DBSM SI DBSM g Cons g

270 Clients

La
te

nc
y

(m
s)

0
50

10
0

15
0

20
0

25
0

30
0

35
0

PGR DBSM SI DBSM g Cons g

Queueing
Network
I/O
CPU
Conc. Control

2070 Clients

Figure 4.9: Detailed profiling of the Neworder transaction in a WAN.

negligible.

In contrast, the PGR protocol (Figure 4.8(c)) is penalized by the supplemental reliable
multicast. Although the transactions’ execution can be done in parallel too, the certifica-
tion of T ′ (ordered after T) can only be done once p3 knows the outcome of T . That is, the
latency of the reliable multicast of T is incorporated in the response time of T ′. Figure 4.9,
presents the average latency in each execution step of a Neworder transaction. Queueing
stands for the time a transaction is put on-hold in the replication protocol, and the other
legends are self explanatory. This figure clearly depicts the extra queueing overhead, in
the PGR protocol. Queueing side effects can be further worsened as more concurrently
executing transactions exist.

Conclusion: Results show that both, DBSM and CONS family of protocols, behave sim-
ilar in wide area networks. On the other hand, PGR presents additional queueing over-
head, leading to increased execution latency and higher abort rates.

4.4 Results: Fault-injection and DBSM

In this section the simulation model is used to evaluate the performance and dependabil-
ity of the DBSM prototype implementation.

4.4. Results: Fault-injection and DBSM 51

Fault type Parameters Implementation
Clock drift rate Scheduled events are scaled up (i.e.

postponed) and elapsed durations
measured are scaled down by the
specified rate.

Scheduling latency distribution A randomly generated delay is
added to events scheduled in the
future (i.e. in which the process is
suspended and scheduled back).

Random loss rate Each message is discarded upon re-
ception with the specified probabil-
ity. Models transmission errors.

Bursty loss average burst lengths Alternate periods with randomly
generated durations in which mes-
sages are received or discarded.
Models congestion in the network.

Crash time A node is stopped at the specified
time, thus completely stopping in-
teraction with other nodes.

Table 4.2: Types of faults injected.

4.4.1 Correctness and Performance

The performance of the termination protocol (set of DBSM and group communication
instructions) is assessed by conducting simulations in local area with three sites only.
Faults are injected and the termination performance is measured.

Fault injection creates adverse conditions causing message losses or high jitter on
message processing time. Table 4.2, exhibits a detailed overview of the type of faults
injected into the system. Faults are injected by intercepting calls in and out of the runtime
as well as by manipulating model state.

The evaluation of the results is two-fold. First, to ensure that all operational sites
must commit exactly the same sequence of transactions by comparing logs off-line after
the simulation has finished. This condition has been met in face of all types of faults listed
in Table 4.2 and ensures the safety of the approach and of the prototype implementation
in maintaining consistency. Second, to measure the impact of faults on the performance
of the termination protocol and its ultimate consequences at the transaction level. Besides
crashes, which as expected have a profound impact in performance by disconnecting a
number of clients, the types of faults in Table 4.2 causing more performance degradation
are those causing message losses. Figure 4.10, plots the empirical cumulative distribution
functions (ECDF) of certification latency with 1000 clients. Note the logarithmic scale
in the x-axis. It can be observed that random loss of 5% of messages has much more
impact than the same amount of loss in bursts of average length of 5 messages (uniformly
distributed). The long tail of the distribution indicates that a small number of transactions

4.4. Results: Fault-injection and DBSM 52

1 2 5 10 20 50 100 500

0.
0

0.
4

0.
8

(ms)

ra
tio

 o
f l

at
en

ci
es

No Faults
Random Loss − 5%
Bursty Loss − 5%

Figure 4.10: Certification latency (fault injection).

Run Usage
No Faults 1.22
Random Loss 1.90
Bursty Loss 1.89

Table 4.3: Protocol CPU usage (%).

is taking as much as 10 times more, in the termination protocol, than before. Table 4.3
shows also an increase in CPU usage by real jobs, showing the extra work by the protocol
in retransmitting messages.

The impact of faults in the quality of service provided to the application should also
be measured by the number of aborted transactions presented in Table 4.4. This is ex-
plained by the extra time spent in the termination protocol. In fact, the random loss
tail corresponds to the group protocol blocking a few times for short periods during the
simulation run. Blocking is caused by a combination of three factors:

• The group protocol enforces fairness by ensuring that each process can only own a
share of total available buffering.

• Using a fixed sequencer for ordering messages. This leads to a much larger number
of messages being multicast by one of the participant processes.

• Each round of the stability detection mechanism can only garbage collect contigu-
ous sequences of messages received by all participants. As loss is injected indepen-
dently at each participant, the common prefix of messages received by all processes
is dramatically reduced, even with loss rate as low as 5%. This slows down garbage
collection.

It is therefore likely that the buffer share of the sequencer process is exhausted and
the whole system blocked temporarily waiting for garbage collection. The problem is

4.4. Results: Fault-injection and DBSM 53

3 Sites/1000 Clients
Transaction No Faults Random Loss - 5% Bursty Loss - 5%

Delivery 1.41 9.84 4.46
Neworder 1.46 3.38 1.63

Payment 12.78 22.54 14.15
Orderstatus 2.43 2.93 1.82

Stocklevel 0.00 0.00 0.00
All 6.72 11.94 7.96

Table 4.4: Abort rates with 3 sites and 1000 clients (%).

mitigated by increasing available buffer space or by allocating a dedicated sequencer
process. The ideal solution would be to avoid the centralized sequencer.

Note also in Figure 4.10 that the loss of 5% of messages results in delaying 30% to 40%
of messages at the application level. This is a consequence of the total order required by
DBSM. This result suggests that relaxing the requirement for total order [PS99] is neces-
sary for efficient deployment in wide area networks.

Conclusion: The certification performance is not affected in any way due to high jitter on
processing messages. On the other hand when there are message losses the certification
latency increases 10 times for 20% of the messages. Nonetheless, the degradation of the
system as a whole is not directly proportional to the latency increase, as it only shows a
slight increase in the abort rate.

4.4.2 Performability

Section 4.4.1 presented evaluation of the termination protocol performance when faults
were injected. This section extends the previous one, by assessing how well do the DB-
SM-g (fine granularity) and DBSM-SI (snapshot isolation) protocols variations degrade
under faulty conditions. This is done by conducting a performability study.

Performability embraces two concepts: performance and dependability. It is a com-
posite measure which is often used to assess if a system is able to degrade gracefully in
the presence of faults. If a system degrades gracefully, it tolerates faults, appearing to
be working normally. The study presented in this section relates to the fault injection by
dropping messages, either randomly or where there are bursts.

The most representative transaction in the TPC-C benchmark is the one that stands
for the arrival of a new order to the system. Then, Neworder transactions are a good
indicator on how the system is performing. Therefore, one is interested in measuring
the impact on these transactions when the system is facing adverse conditions. In other
words, how graceful does the execution of Neworder transactions degrade, in the pres-
ence of faults, namely when there are packet losses? Having to retransmit the missing

4.4. Results: Fault-injection and DBSM 54

●

●

●

●

●

1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Clients

● DBSM g bursty
DBSM g random
DBSM SI bursty
DBSM SI random

Figure 4.11: Probability of committing a Neworder transaction within the period of time
τ .

packets, implies that the replication latency increases, which directly changes the aver-
age response times for the incoming new orders. The performability metric considered
to conduct the study is the system’s ability to commit a Neworder within the period of
time needed to commit 90%, of the same kind of transactions, when there are no faults at
all [TM96]. Put differently, given L, the average execution latency of a Neworder trans-
action, and τ , as the percentile 90 of the commit time in the faultless system, the metric
considered is the probability: P (L ≤ τ).

DBSM fine granularity and DBSM with snapshot isolation consistency criteria, both
in the LAN environment described in Section 4.2, are the scenarios in which random and
bursty drops of messages are injected. Figure 4.11, depicts the system behavior from
the referenced performability metric point of view. As expected, as the load increases,
the probability of committing a Neworder within the τ period diminishes. As the system
suffers more from retransmissions, the probability decreases almost exponentially as load
is increased. The results show that random drops are worse tolerated than bursty drops.
Note that when there is a light load (270 clients) it is almost 20% worse. Under heavy load,
the system performability values tend to be the same, almost zero, both in the presence
of bursty and random drops.

Although, from the user point of view, an increase in latency, in a milliseconds scale,
may not be perceptible, such growth may influence the response of the entire system,
directly in terms of abort rate and consequently in terms of throughput. In the case that
there are bursty drops, the probability of a Neworder transaction commits within the
τ period decreases from 60% to 10%. In this case, the abort rate for the two different
variations of the DBSM protocol remain below the 5%. On the other hand, if one con-
siders random drops, the probability decreases from 40% to almost 5%. Therefore, the
abort rate will increase due to the higher probability of the execution exceed given τ .
However, note that none of the protocol variations shows an abort rate above 10%, even

4.4. Results: Fault-injection and DBSM 55

● ● ● ● ●

1000 2000 3000 4000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Clients

A
bo

rt
s

● DBSM SI
DBSM SI bursty
DBSM SI random
DBSM g
DBSM g bursty
DBSM g random

(a) Aborts

●

●

●

●

●

0 1000 2000 3000 4000

0
20

00
40

00
60

00
80

00
10

00
0

Clients

T
ra

ns
ac

tio
ns

 p
er

 M
in

ut
e

● DBSM SI
DBSM SI bursty
DBSM SI random
DBSM g
DBSM g bursty
DBSM g random

(b) TPM

Figure 4.12: Performance comparison.

under heavy load (3960 clients). Figure 4.12(a), depicts the abort rate.

Figure 4.12(b), depicts the throughput of successful new orders per minute that the
system is able to achieve. It shows that there is only one situation in which performance
degradation is perceptible. This is the case of DBSM g random. All the others are not
affected considerably in the presence of faults. In fact, in the cases that snapshot isolation
is considered the system does not exhibit degradation at all since, the abort rate remains
below 2% and the throughput matches the one in which there are no faults. One may
conclude that snapshot isolation is more tolerant to latency variations due to network
retransmissions than the other variant (fine grained). The reason is that the SI consistency
criteria considers only Write-Write conflicts, therefore, despite the increase of network
latency, which leads to a larger period of time in which concurrent transactions may
occur, few Write-Write conflicts do really happen. In the fine grained consistency criteria,
Read-Write conflicts are detected, hence there is a higher probability that a conflict occur,
when increasing the network latency.

A final remark to the performability of the random drop scenarios. When looking at
the abort rate for the DBSM SI and DBSM g, one may find that there is a difference of
almost 7%. This difference should be translated into a smaller value in the probability of
committing a Neworder transaction when comparing both. What is preventing this from
happening is that aborted transactions take less to execute, and release their resources
sooner. This way, DBSM g system exhibits less contention when compared to the DBSM
SI. Less contention means less time that transactions have to wait for resources to be-
come available, hence exhibit smaller execution times. As a consequence, the probability
of committing a transaction within the τ period of time becomes the same for the two
protocols.

Conclusion: It was shown that for the snapshot isolation variant, the system degrades

4.5. Simulation Performance 56

0 1000 2000 3000 4000
0

2
4

6
8

10

Clients

Re
al

 v
s

Si
m

.

LAN
WAN

Figure 4.13: Ratio of time required to run the simulation vs. simulated time interval (9
servers/increasing number of clients).

gracefully, both in the presence of bursty and random drops, despite that in the latter case
it suffers most. In the fine grained variant, the performance degradation of the system
is not perceptible in the presence of bursty drops. However, when random drops are
injected, the system is not able to keep up with the performance of the faultless scenarios.

4.5 Simulation Performance

The usefulness of the resulting setup for experimental evaluation of performability, early
and often as implementations of replication and group communication protocols evolve,
is tightly related to the ratio of time required to run the simulation in a single host to the
simulated time interval. Figure 4.13, shows that a cluster of 9 servers and sufficient client
resources to open 4000 client sessions generating up to 12000 tpm (i.e., an additional clus-
ter) can be simulated in less than 8 times the simulated time interval. When simulating 3
clusters of 3 servers interconnected by a WAN, which would be substantially harder and
more costly to setup in reality, only a small additional delay is incurred.

Chapter 5

Conclusion

This work addresses the problem of evaluating group-based database replication proto-
cols in a way that is representative and comparable. Previous work was based either on
simplistic simulations or toy applications, or was tightly coupled with a single database
management system or replication protocol.

However, preparing a fully featured testing environment using real resources, is costly
to setup and run and often depend on the availability of the complete target system, on
realistic workloads and fault-loads. This is especially difficult when the application tar-
gets large clusters or grid systems, and precludes incremental development and early
testing of individual components. In fact, testing distributed applications, often requires
deploying more than once the target system, including client-side software and hard-
ware. This makes the approach very expensive and limits the possibility to observe the
global system state.

The proposed approach builds on the concept of centralized simulation [AC97] as
way to combine real implementations of components under study with a simulated en-
vironment. The work presented in Section 3.3 does, however, expand it in two different
ways:

• The implementation is achieved with minor extensions to an existing standard in-
terface for event driven simulation, thus making it possible to reuse existing mod-
els, namely, SSFNet [CLL+99].

• A library based on Java reflection provides a fully transparent interface between im-
plementation components and the simulated environment with minimal program-
ming effort.

Also in contrast with previous work on centralized simulation, the simulated applica-
tion is not a simple component. Instead, a detailed simulation of a database management

57

58

system is used, thus providing to the replication protocols a realistic scenario that encom-
passes resource usage and synchronization issues. This was achieved in two steps:

• The SSFDb model library created provides abstractions which accurately repro-
duce the behavior of a real DBMS system. It is comprised of several models which
mimic central processing units, storage, database engine scheduler, lock manager
and replication manager. It is described in Section 3.2.

• Model tuning is accomplished by calibrating each model component in such a way
that the simulation is actually comparable to the real system. A description of the
calibration process and a validation of the result is included in Sections 3.4 and 3.5.

The usefulness of the approach is shown in Chapter 4 by presenting and discussing
how results obtained with the framework answer to a number of questions. In detail,
several replication protocols (DBSM, Postgres-R and Conservative) are compared in dif-
ferent communication scenarios.

Results show that in local area networks, if a simple configuration is used, the opti-
mistic family of protocols would always ending up aborting a specific kind of transaction.
On the other hand, the conservative family of protocols would generate very high conflict
rates, meaning that queueing effects become dramatic. Therefore transactions would e-
xecute in a sequential manner, rendering the system useless due to the latency overhead.
Previous results were not able to disclose this.

A second interesting result was obtained when the consistency criteria was set to
snapshot isolation. The optimistic family would get good results, while the conserva-
tive would still exhibit deficient behavior. The protocols that performed better in local
area were also tested in wide area environments, exhibiting identical performance among
them. Previous results had not addressed group based replication protocols in WANs.

Finally, a performability study assessed system degradation when faults were injected
in two DBSM protocol variants: fine granularity and snapshot isolation. Results show
that DBSM fine granularity suffers most when facing packet losses because latency in-
creases, due to packet retransmission, allowing more concurrent transactions to execute.
Such phenomena leads to a higher probability of Read-Write conflicts and consequently
to higher abort rates.

Despite a small delay introduced when comparing the same testing scenario in sim-
ulation against the real system, one notices that simulation is more attractive because it
does not require extra hardware/software deployment as it is in the real system.

The incremental development environment provided by the simulation framework
is also a great asset. It allows development to start from a collection of pure simulation
models that are replaced as real implementations become available. From the initial sim-
ulation model, tests may be derived and used to assess if the real implementations are

5.1. Future Work 59

in conformity to the simulated models that they have replaced. This is quite similar to
the unit testing approach, which is however hard to apply to middleware, where initial
modeling focus is on performability of the system and not on independent correctness of
each component.

5.1 Future Work

Further development is envisioned upon all contributions of this work, namely, on the
simulation kernel, on environment models, and on protocol evaluation.

Regarding the MinhaSSF simulation kernel, it is a priority to support realistic simu-
lation of multiple threads running on the same CPU. Besides minor changes to kernel to
properly account real time and scheduling, this will require providing simulated models
of concurrency control primitives. The resulting package should then be useful to sup-
port incremental development of a wide spectrum of middleware for distributed systems.
This is being driven by the development of the Appia [MPR01] group communication
system also within the GORDA project [Con04].

Also regarding simulation models, a better support for fault-injection within SSFNet
is sought. In this sense, one would be able to easily setup faulty processes or faulty net-
work connections. This is required to apply MinhaSSF to the study of other distributed
applications, in particular, to large scale event dissemination and peer-to-peer systems.
This is being driven by the development of the NeEM protocol in the P-SON [ML05]
project.

Finally, the experimental framework described here is being used daily within the
GORDA project to evaluate new protocols, new protocol configurations and existing pro-
tocols under different environment conditions. In fact, all protocol development at the U.
Minho is first done in the context of the MinhaSSF framework and thus new results are
added to those in Chapter 4 every day.

Appendix A

Distribution Parameter Estimation

Choosing a generic distribution is accomplished by intuitively fitting a generic distribu-
tion to the empirical observation. By looking at the histogram, drawn from the samples,
one is able to pick one distribution that the population is following. Having chosen the
distribution, the parameters need to be estimated, hence, the fitdistr function from R 1 is
used. This function analyzes the samples and estimates the parameters of the given dis-
tribution. In order to assess the goodness of the fit, a Q-Q plot is drawn. In the Q-Q plots
presented in this section, values of the empirical observation are plotted against values
obtain by sampling the fitted distribution. If the plot shows a straight line, 45 degrees
steep, then data obtained from the empirical observation comes from a population that
follows the given distribution.

The following figures show the fitting of the CPU and storage times, obtained for each
one of the transactions in the TPC-C benchmark.

1software project for statistical computation (http://www.r-project.org/)

60

61

Empirical Histogram

(ms)

D
en

si
ty

140 145 150 155

0.
00

0.
05

0.
10

0.
15

Normal Distribution Histogram

(ms)
D

en
si

ty

140 145 150 155

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

140 145 150 155

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Functions

(ms)

Empirical
Observation
Normal Fit

●

● ●
●

●
●

●

●

● ●

●

●

●

140 142 144 146 148

14
0

14
2

14
4

14
6

14
8

Empirical vs Normal Distribution

(a) Delivery.

Empirical Histogram

(ms)

D
en

si
ty

6 8 10 12 14 16 18

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Uniform Distribution Histogram

(ms)

D
en

si
ty

6 8 10 12 14 16 18

0.
00

0.
05

0.
10

0.
15

6 8 10 12 14 16 18
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Cumulative Distribution Functions

(ms)

Empirical
Observation
Uniform Fit

●●●●●
● ●●●●●

●●●

●
●
●●●

●●●
●●●
●●
●●

●
●
●
●●
● ●●

●●●
● ●

●●●●●
● ●●●

●●
●●●●●●●

●●

●

●●
●●
●●●

●●
●●

●
●●

●●●
●

●●●
●●

●●
●●
●

●●
●

6 8 10 12 14 16

6
8

10
12

14
16

Empirical vs Uniform Distribution

(b) Neworder.

Empirical Histogram

(ms)

D
en

si
ty

1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Normal Distribution Histogram

(ms)

D
en

si
ty

1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.
0

0.
5

1.
0

1.
5

1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Functions

(ms)

Empirical
Observation
Normal Fit

●

●● ●

●
●

●●
●
●●
●●
●●●
●●
●●●●●●

●●●
●●
●●
●●●
●●●●

●●●●●●●
●●
●
●●●
●●●●●●●●●

●●●
●●●●● ●●● ●

● ●
●●

●●

●

1.8 2.0 2.2 2.4 2.6 2.8 3.0

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

Empirical vs Normal Distribution

(c) Payment.

Empirical Histogram

(ms)

D
en

si
ty

0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

Normal Distribution Histogram

(ms)

D
en

si
ty

0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Functions

(ms)

Empirical
Observation
Normal Fit

●

●
●

●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Empirical vs Normal Distribution

(d) Orderstatus.

Empirical Histogram

(ms)

D
en

si
ty

1.9 2.0 2.1 2.2 2.3 2.4

0
1

2
3

4
5

6
7

Uniform Distribution Histogram

(ms)

D
en

si
ty

1.9 2.0 2.1 2.2 2.3 2.4

0
5

10
15

20

1.9 2.0 2.1 2.2 2.3 2.4

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Functions

(ms)

Empirical
Observation
Uniform Fit

●

●

●

● ● ●

1.9 2.0 2.1 2.2

1.
9

2.
0

2.
1

2.
2

Empirical vs Uniform Distribution

(e) Stocklevel.

Figure A.1: Processing time fitting.

Appendix B

Real vs Simulation Model

This section details the comparison of the real and simulated run. It compares each trans-
action in terms of the considered performance metrics: inter-arrival, latency. These are
depicted in the following figures.

62

63

0 20000 40000 60000 80000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDFs

(ms)

REAL
SIM

●●●
●●●●●

●
●
●●●●

●●●●●
●●
●
●

●● ●

●

●● ●

●
●

●
●

●

●

●
●
●
●●

●
● ●

●

●

0 10000 30000 50000

0
10

00
0

30
00

0
50

00
0

REAL vs SIM

(a) Delivery Inter-arrival.

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDFs

(ms)

REAL
SIM

●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ● ● ● ●

150 200 250 300

15
0

20
0

25
0

30
0

REAL vs SIM

(b) Delivery Latency.

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDFs

(ms)

REAL
SIM

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●●

●●●
●●●●
●●●●●●●

●●●●●●●●
●●●●●

●●
●●●
●●
●●●●●●●●

●●●●●
●●●●

●●
●●●●

●●●●

0 1000 2000 3000 4000 5000

0
10

00
20

00
30

00
40

00
50

00

REAL vs SIM

(c) Neworder Inter-arrival.

0 5 10 15 20 25
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

ECDFs

(ms)

REAL
SIM

● ●●● ●●
●●
●●●●●
●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●

6 8 10 12 14 16 18

6
8

10
12

14
16

18

REAL vs SIM

(d) Neworder Latency.

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDFs

(ms)

REAL
SIM

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●
●●●●●●●●

●●
●●●●●●●●●●●

●●●
●●●●●
●●●
●●●●●●●
●●●●●●●

●●●
●●●●

●●●
●●●●
●●●
●●●●
●●
●●●

●●
●●●●

●
●●

●●●

0 1000 2000 3000 4000 5000 6000

0
10

00
30

00
50

00

REAL vs SIM

(e) Payment Inter-arrival.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDFs

(ms)

REAL
SIM

● ● ● ● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

2.5 3.0 3.5

2.
5

3.
0

3.
5

REAL vs SIM

(f) Payment Latency.

0 20000 40000 60000 80000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDFs

(ms)

REAL
SIM

●●●●
●●

●●
●●●●
●●●●

●
●●
● ●● ●●

●
● ●

●●

●

●● ● ●●

●●
●●

●

●●
●

●

●

●
●

●

0 10000 20000 30000 40000 50000 60000

0
10

00
0

30
00

0
50

00
0

REAL vs SIM

(g) Orderstatus Inter-arrival.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDFs

(ms)

REAL
SIM

●

●

●

●
●
●●●
●
●●
●●●
●●
●
●●●
●●
●●●●

●●
●●
●●●●
●● ●● ●

●
●●● ●

●● ●
●

0 1 2 3

0
1

2
3

REAL vs SIM

(h) Orderstatus Latency.

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDFs

(ms)

REAL
SIM

●●●
●●●

●●●●●
●
●● ●

●●●
●●

●●●●
●●●

●
●●●●

● ● ●●
●●

●

●
●●●

●

●●
●

●
●

●

●

●

●

0 20000 40000 60000 80000

0
20

00
0

40
00

0
60

00
0

80
00

0

REAL vs SIM

(i) Stocklevel Inter-arrival.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDFs

(ms)

REAL
SIM

●●●●
●●
● ● ●

●●●● ●●●●
●●
●●●●●

●●●●
●●●●●

●●
●●●
●●●●●

●●●●●●●●● ●

2.0 2.2 2.4 2.6 2.8

2.
0

2.
2

2.
4

2.
6

2.
8

REAL vs SIM

(j) Stocklevel Latency.

Figure B.1: Transaction performance comparison.

Bibliography

[AC97] G. Alvarez and F. Cristian. Applying simulation to the design and perfor-
mance evaluation of fault-tolerant systems. In 16th Symposium on Reliable
Distributed Systems (SRDS’97), 1997.

[ACL85] R. Agrawal, M. Carey, and M. Livny. Models for Studying Concurrency
Control Performance: Alternatives and Implications. In Proceedings of the
1985 ACM SIGMOD International Conference on Management of Data, 1985.

[ACL87] R. Agrawal, M. Carey, and M. Livny. Concurrency control performance
modeling: Alternatives and implications. ACM Transactions on Database
Systems, 1987.

[ACM06] ACME. Automated configuration management environment, 2006.

[Alm03] W. Almesberger. umlsim - a uml-based simulator. In Linux Conference Aus-
tralia, 2003.

[AT02] Y. Amir and C. Tutu. From total order to database replication. In Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS), 2002.

[BBG+95] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A cri-
tique of ANSI SQL isolation levels. In Proceedings of the 1995 ACM SIGMOD
international conference on Management of data (SIGMOD ’95), 1995.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, 1987.

[BINN00] J. Banks, J.S. Carson II, B. L. Nelson, and M. Nicol. Discrete-Event System
Simulation. Prentice Hall, 2000.

[BJ87] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed sys-
tems. In SOSP ’87: Proceedings of the eleventh ACM Symposium on Operating
systems principles, 1987.

[BMST93] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. The
primary-backup approach. 1993.

64

Bibliography 65

[BS01] K. Buchacker and V. Sieh. Framework for testing the fault-tolerance of sys-
tems including os and network aspects. In In Proc. High-Assurance System
Engineering Symp. (HASE’01), 2001.

[BvR94] K. Birman and R. van Renesse. Reliable Distributed Computing with the Isis
Toolkit. IEEE Computer Society Press, 1994.

[CB02] T. Connolly and C. Begg. Database Systems: A Practical Approach to Design,
Implementation and Management 3rd Ed. Addison-Wesley Longman Publish-
ing Co., Inc., 2002.

[CLL+99] J. Cowie, H. Liu, J. Liu, D. Nicol, and Andy Ogielski. Towards realistic
million-node internet simulation. In Intl. Conf. Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’99), 1999.

[Con04] GORDA Consortium. Gorda - open replication of databases.
http://gorda.di.uminho.pt/consortium, October 2004.

[Cor01] Winter Corporation. Scalable network stor-
age: Convergence of san and nas with highroad.
http://www.jos.com.my/events/doc/(EMC)HighRoadWinterPaper.pdf,
2001.

[Cou01] Transaction Processing Performance Council. TPC BenchmarkTM C stan-
dard specification revision 5.0, February 2001.

[Cow99] J. Cowie. Scalable Simulation Framework API Reference Manual, 1999.

[Dal02] P. Dalgaard. Introductory Statistics with R. Statistics and Computing.
Springer, 2002.

[DML] DML specification.
http://ssfnet.org/SSFdocs/dmlReference.html.

[DSU04] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 2004.

[ea97] D. Bates et al. The r project for statistical computing.
http://www.r-project.org/, 1997.

[EMU] Emulab. http://www.emulab.net/.

[Fac06] Facilita. Facilita forecast, 2006.

[gcs01] Group communication specifications: a comprehensive study. ACM Com-
put. Surv., 2001.

Bibliography 66

[GS96] R. Guerraoui and A. Schiper. Fault-tolerance by replication in distributed
systems. In Proceedings of the 1996 Ada-Europe International Conference on
Reliable Software Technologies, 1996.

[GS97] R. Guerraoui and A. Schiper. Software-based replication for fault tolerance.
IEEE Computer, (4), 1997.

[Guo98] K. Guo. Scalable Message Stability Detection Protocols. PhD thesis, 1998.

[iSS] iSSF homepage. 2003.
http://www.crhc.uiuc.edu/˜jasonliu/projects/issf/.

[KA00] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a new
way to implement database replication. In VLDB ’00: Proceedings of the 26th
International Conference on Very Large Data Bases, 2000.

[KT91] M. Kaashoek and A. Tanenbaum. Group communication in the Amoeba
distributed operating system. In Proc. the 11th International Conference on
Distributed Computing Systems ICDCS, pages 222–230, Washington, D.C.,
USA, May 1991. IEEE CS Press.

[LNPP99] J. Liu, D. Nicol, B. J. Premore, and A. L. Poplawski. Performance prediction
of a parallel simulator. In PADS ’99: Proceedings of the thirteenth workshop on
Parallel and distributed simulation, 1999.

[lSPEC05] SPEC logo Standard Performance Evaluation Corporation.
Standard performance evaluation corporation (web 2005).
http://www.spec.org/web2005/, 2005.

[ML05] U. Minho and F.C.U. Lisboa. Probabilistically-structured overlay networks.
http://pson.lsd.di.uminho.pt/, 2005.

[MPR01] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel
supporting multiple coordinated channels. In Proceedings of The IEEE 21st
International Conference on Distributed Computing Systems, 2001.

[NL97] D. M. Nicol and X. Liu. The dark side of risk (what your mother never told
you about time warp). In PADS ’97: Proceedings of the eleventh workshop on
Parallel and distributed simulation, 1997.

[NL02] D. M. Nicol and J. Liu. Dartmouth ssf, 2002.

[NS2] The network simulator - ns-2, 2006.

[OV99] M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Pren-
tice Hall International, Inc., 1999.

Bibliography 67

[Ped99] F. Pedone. The Database State Machine and Group Communication Issues. PhD
thesis, 1999.

[Pet04] M. Pettersson. Linux performance counters.
http://user.it.uu.se/ mikpe/linux/perfctr/, 2004.

[PGS98] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic broadcast in
replicated databases. In Proceedings of EuroPar (EuroPar’98), 1998.

[PGS03] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine ap-
proach. Distributed and Parallel Databases, 2003.

[Pla] Planetlab. http://www.planet-lab.org.

[PMJPKA00] M. Patino-Martínez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scalable
replication in database clusters. In Proceedings of the 14th International Con-
ference on Distributed Computing, 2000.

[PRO03] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable multicast:
Definition implementation and performance evaluation. Special Issue of
IEEE Transactions on Computers on Reliable Distributed Systems, 2003.

[PS99] F. Pedone and A. Schiper. Generic broadcast. 1999.

[PS03] F. Pedone and A. Schiper. Optimistic atomic broadcast: A pragmatic view-
point. 2003.

[PTK94] S. Pingali, D. Towsley, and J. Kurose. A comparison of sender-initiated
and receiver-initiated reliable multicast protocols. In ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, May 1994.

[RBDH97] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using the simos
machine simulator to study complex computer systems. Modeling and Com-
puter Simulation, 1997.

[Sch93] F. Schneider. Replication management using the state-machine approach.
In S. Mullender, editor, Distributed Systems, chapter 7. Addison Wesley,
1993.

[SPMO02] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in
wide area networks. In Proc. 21st IEEE Symposium on Reliable Distributed
Systems, 2002.

[SPS+05] A. Sousa, J. Pereira, L. Soares, A. Correia Jr., L. Rocha, R. Oliveira, and
F. Moura. Testing the dependability and performance of GCS-based
database replication protocols. 2005.

Bibliography 68

[SS93] A. Schiper and A. Sandoz. Uniform reliable multicast in a virtually syn-
chronous environment. May 1993.

[SSF] SSF research network.
http://www.ssfnet.org/homePage.html.

[Tho98] Alexander Thomasian. Concurrency control: methods, performance, and
analysis. ACM Comput. Surv., 1998.

[TM96] A.T. Tai and J. F. Meyer. Performability management in distributed
database systems: An adaptive concurrency control protocol. In Fourth
IEEE International Workshop on Modeling, Analysis, and Simulation of Com-
puter and Telecommunications Systems (MASCOTS’96), 1996.

[Uni06] Cornell University. Testzilla - a framework for the testing of large scale
distributed systems., 2006.

[VOTC96] L. Valadares, Rui Carvalho Oliveira, Isabel Hall Themido, and F. Nunes
Correia. Investigação Operacional. McGraw-Hill, 1996.

[WK05] S. Wu and B. Kemme. Postgres-r(si): Combining replica control with con-
currency control based on snapshot isolation. April 2005.

[WLS+02] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-
bler, C. Barb, and A. Joglekar. An integrated experimental environment for
distributed systems and networks. USENIX Association, 2002.

[WPS+00] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Under-
standing replication in databases and distributed systems. In Proceedings
of the The 20th International Conference on Distributed Computing Systems (
ICDCS 2000), 2000.

