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Resumo

A necessidade de ter dados críticos seguros e acessíveis através de

vários locais tem-se tornado uma preocupação global, seja tratando-

se de dados pessoais, organizacionais ou de aplicações. Assim, veri-

�camos a emergência de serviços de armazenamento online. É tam-

bém importante ter em conta o recente paradigma de �Cloud Com-

puting�, o qual acarreta novas ideias para a criação de serviços que

permitem aos utilizadores armazenar os seus dados e executar as

suas aplicações na �Cloud�. Através de uma gestão inteligente e e�-

ciente dos dados armazenados por estes serviços, é possível melhorar

a qualidade do serviço oferecido e optimizar a utilização da infra-

estrutura onde os serviços correm. Esta gestão torna-se ainda mais

crítica e complexa quando a infra-estrutura é composta por milha-

res de servidores, correndo várias máquinas virtuais e partilhando o

mesmo sistema de armazenamento de dados. A eliminação de da-

dos redundantes pode ser utilizada para simpli�car e optimizar esta

gestão.

Esta tese apresenta uma solução para detectar e eliminar dados du-

plicados entre máquinas virtuais que correm no mesmo servidor e

escrevem os seus discos virtuais para o mesmo sistema de armazena-

mento de dados. É também apresentado e avaliado um protótipo que

implementa esta solução. Finalmente, descreve-se um estudo sobre

a e�ciência de dois métodos usados para eliminar dados duplicados

num conjunto de dados pessoais.
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Abstract

Keeping critical data safe and accessible from several locations has

become a global preoccupation, either being this data personal, or-

ganizational or from applications. As a consequence of this issue, we

verify the emergence of on-line storage services. In addition, there

is the new paradigm of Cloud Computing, which brings new ideas

to build services that allow users to store their data and run their

applications in the �Cloud�. By doing a smart and e�cient manage-

ment of these services' storage, it is possible to improve the quality of

service o�ered, as well as to optimize the usage of the infrastructure

where the services run. This management is even more critical and

complex when the infrastructure is composed by thousand of nodes

running several virtual machines and sharing the same storage. The

elimination of redundant data at these services' storage can be used

to simplify and enhance this management.

This dissertation presents a solution to detect and eliminate dupli-

cated data between virtual machines that run on the same physical

host and write their virtual disks' data to a shared storage. A pro-

totype that implements this solution is introduced and evaluated.

Finally, a study that compares the e�ciency of two di�erent ap-

proaches used to eliminate redundant data in a personal data set is

described.
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Chapter 1

Introduction

Dependable backup services are increasingly important to enterprises

but also to common users that want to keep their personal �les safe.

A traditional approach, for common users, is to have a copy of all

their �les in an external hard drive. One example of such system is

Time Machine [50]. For enterprises the solution requires having a

larger storage and a more complex solution to backup their critical

data. For some enterprises, data is so important that several backup

copies must be kept in di�erent physical locations in order to avoid

losing it in case of natural catastrophes.

Another important aspect, for both enterprises and common users,

is the need of accessing their data remotely from di�erent places.

For this purpose, the web is a good solution, having in mind how

easy is to insert and retrieve information of any kind from it.

This explains the emergence and success of on-line backup services

like Dropbox [33], Box.net [30], RapidShare [48] and Google Docs

[40], that allow clients to have their data safe in the web. These

services are more than just simple data archives. Some of them

support other features, like collaborative work, versioning, online

editing and synchronization of user's data between several devices.

With these new functionalities, a storage service that is intended to

store and retrieve data e�ciently is necessary. In classical archival

1



2 CHAPTER 1. INTRODUCTION

systems this was not needed to be contemplated. As expected, all

these services have limits to the amount of data each user can backup

and, therefore, clients must pay a fee to expand these limits.

Besides online backup services, the Cloud Computing model [1] al-

lows users to shift their data and applications to the web and run

them without the obligation of having their own physical infras-

tructure. With this new paradigm, new services were created with

di�erent goals [5].

One type of service provided gives the client the possibility of run-

ning applications in the cloud's infrastructure. Services like Amazon

EC2 [25] and Google App Engine [39] provide this type of service.

In Amazon EC2, the client must provide a customized virtual ma-

chine image with her application and deploy it into the cloud in-

frastructure. For Google service, the application must be ported to

Python [47] or Java [7] and respect Google App Engine API.

Another kind of service has the goal of providing remote storage.

This is the case of Amazon S3 [26], Amazon EBS [24] and Google

App Engine Datastore [38]. These services can be combined with

other cloud services or can be used as a remote storage directly,

with the exception of Amazon EBS that was designed to be used

with Amazon EC2. One example of this combination of services is

present in Dropbox that uses Amazon S3 [28] to store its clients'

data and Amazon EC2 to run their server application.

There are also other cloud services with di�erent functionalities, like

Amazon SimpleDB [27], that enable the client to store and query

data with the advantage of retrieving only the information needed

and doing it more quickly than with services like S3. This service is

intended to store small data sets, but can be used with Amazon S3

in order to have Simple DB functionality with larger data sets.

All the cloud services described above allow the client to stop con-

cerning with problems, such as:
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Dependability. Clients' applications and data stored in these ser-

vices must be accessible 24×24 hours a day and seven days

per week. Besides that, clients' data is stored redundantly in

several data centres in di�erent geographical locations.

Elasticity. Clients have the illusion of having unlimited resources.

For example, in Amazon EC2, when clients' applications need

to scale, this can be done in a few minutes by running an

additional virtual machine. Clients also have the possibility of

starting with few resources, buying more resources only when

they are necessary.

Another important aspect is the use of virtualization [9,20] technol-

ogy by cloud services [1, 54]. Virtual machines (VMs) allow these

services to have increased �exibility in terms of deployment and re-

deployment of applications in the cloud. Deploying a new virtual

machine or redeploying it in another physical server is faster and

simpler than deploying a new physical server. Virtualization also al-

lows having more control over cloud resources, like disk, network and

computation power. Therefore, these resources can be distributed

accordingly to the applications' needs. The use of virtual machines

is a key aspect to achieve the elasticity property. Virtual machine's

isolation property assures us that a failure in one VM does not a�ect

the other VMs running in the same physical server.

Cloud infrastructure is therefore composed by several data centres.

In each data centre there are several physical nodes running a cer-

tain number of virtual machines. The cloud storage has to be large

enough to accommodate these virtual machines images and the clients'

data that is stored remotely.

Both cloud services and on-line backup services will have a large

amount of data that needs to be stored persistently and, as a conse-

quence, a huge amount of duplicated data is expected to be found.

In the case of on-line backup services, many users will have dupli-
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cated �les, like music, videos, text �les, etc. As it concerns enter-

prises that use backup services, identical data will probably be found

between the employees' �les. Yet, another source of duplicated data

that may exist in some enterprises storage is the e-mail. There are

studies, which show us that e-mail data sets have more than 32% of

their blocks duplicated [8].

Regarding cloud computing provider's storage, duplicated data is

expected to be found between the several virtual machines images

and between data stored remotely. In fact, if we recall that Dropbox

uses Amazon S3 as backend, Amazon's storage will have all that

duplicated data mentioned above for on-line backup applications.

Additionally, there is the possibility to run applications that use

databases in the cloud, which may need to create several replicas in

order to process a large number of concurrent read requests. This

will further increase the number of duplicated data.

If some of this duplicated data is eliminated, the storage's space in

use can be reduced and a better service can be achieved by support-

ing more clients without having to add extra storage resources or by

providing a better service to each client. This storage space reduc-

tion also allows these services to make a more e�cient and simple

management of their data.

A certain level of redundancy is always needed to have a service that

is resilient to failures and has e�cient access to data from several

locations. For this purpose, data must be replicated amongst several

nodes and these nodes should be located in several geographical

locations.

Usually, systems that provide solutions to reduce data duplication

are known for indexing the storage's data in order to share data with

the same content. The elimination of redundant data is known as

deduplication. Deduplication can also be used to improve bandwidth

usage for remote storage services. If the storage's data is indexed,

then it is possible to choose what data really needs to be transmitted
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to the storage server and what data is already there. The bandwidth

cost and the data upload speed is described as one of the main

obstacles for the growth of cloud computing [1].

1.1 Problem Statement

E�ective deduplication in a cloud computing scenario raises however

a number of challenges.

First, there are architecture challenges. In this scenario, at least one

distinct VM is running for each client's application. This means that

data is spread by several VMs virtual disks. Additionally, groups of

VMs are running in distinct physical machines. Finally, there is the

necessity of keeping data deduplication process transparent to the

VMs and the applications running on them.

Second, there are algorithm challenges. An e�cient method to detect

modi�ed data and to share identical data is needed. This method

must use metadata to compare the modi�ed data with the storage's

data in order to share it. Metadata's size is needed to have in account

to achieve an e�cient deduplication algorithm. To detect modi�ed

data without having to scan all the storage, a method that intercepts

I/O requests to the disk is also necessary. This approach reduces

the CPU usage but can introduce signi�cant overhead in the I/O

requests. This overhead value must be as low as possible.

1.2 Objectives

The main goal of this dissertation is to show how deduplication can

be achieved in a virtualized system1, towards �nding and eliminating

redundant data in the context of cloud computing services.

1System where there is one physical server running several virtual machines

that map their virtual disks into a shared storage.
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A second objective is to evaluate the impact of deduplication in

personal data towards demonstrating the usefulness of the proposed

solution.

1.3 Contributions

As the �rst contribution, we present an approach to detect and elim-

inate redundant data in a server where several virtual machines are

running. This server's virtual machines store their images in a shared

storage.

As the second contribution, we present both our prototype, working

with Xen [2], that implements the approach referred above and the

results of our prototype's evaluation in terms of space saved and

overhead generated.

Finally, we present a study and its results for the redundant data

found in a personal �les' data set. In this study, we compare two

distinct methods: the whole �le approach, which �nd �les with the

same content, and the �xed block size approach, which �nds blocks,

with a �xed size, that have the same content.

1.4 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, the state of

the art for data deduplication and Cloud services is described. An

overview about remote storage services and virtualization systems,

related with our work, is also presented. Chapter 3 introduces a

study about the e�ciency of two distinct deduplication methods in

a data set that contains personal data. In Chapter 4, our architec-

ture to �nd duplicated data among virtual disks of VMs that are

running in the same physical host is presented. Chapter 5 describes

the implementation of our architecture and introduces new mecha-
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nisms to improve our prototype's performance. In Chapter 6, the

prototype is evaluated by two di�erent benchmarks and the results

are discussed. Finally, in Chapter 7 we conclude our work by de-

scribing the objectives achieved and, in Chapter 8, we present some

ideas that would be interesting for future research in this area.
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Chapter 2

Related Work

This chapter presents the state of the art for: data redundancy de-

tection and elimination methods, storage and backup services, Cloud

Computing services and virtualization scenarios that are related with

our work.

2.1 Finding and Eliminating Duplicated

Data

There are several methods to �nd redundant data. The �rst of these

methods is the whole �le content hashing [17] that calculates a hash

sum of the entire �le's content. If two �les have the same hash value

then they have identical contents.

Another option is the �xed size block method [8, 11, 17], where du-

plicates are found at the block level. The process is identical to the

one from the whole �le approach, but instead of calculating hash

sums for the entire �le's content they are calculated for �le's blocks

with a �xed size.

A third method uses chunking and Rabin �ngerprints [4, 8, 11, 17].

Chunks are also de�ned by content, but their bounds are not re-

stricted to a �xed size, like in the �xed size block approach. A

9
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sliding window moves through the �le's content and calculates �n-

gerprints for a chunk1. When a prede�ned pattern is found, the

chunk boundaries are marked and its signature is calculated.

The main di�erence among the �xed size block method and the

chunking method is visible when a �le is modi�ed. The chunk

method only needs to recalculate the signature for the chunks where

modi�cations were made. The �xed block size approach needs to re-

calculate the signature for the blocks where modi�cations were made

and for all the subsequent blocks of the same �le.

These methods focus only on detecting data that has exactly the

same content. The super-�ngerprint method [11,12] can be used to

�nd similar data. A super-�ngerprint is a group of �ngerprints be-

longing to di�erent parts of the same �le. If several super-�ngerprints

of a �le are calculated, the resemblance among �les is given by the

number of super-�ngerprints that match.

Delta encoding [11] is used to reduce redundancy between similar

�les. This method generates a delta �le containing di�erences be-

tween the �les, which allow keeping only one �le and the delta �le

needed to rebuild the other �le. This method does not �nd similar

�les.

Compression [8, 11] is a well known form of reducing duplicated in-

formation. This technique can be used to compress a single �le, and

only reduce redundant data from that �le, or to compress several

�les, and reduce redundancy across those �les. Most of the ap-

proaches that use this technique only �nd redundancy among close

�les when compressing several �les.

REBL [11] uses compression, chunking and delta-compression of the

chunks. First, chunks are calculated and hashed in order to �nd du-

plicated data and to eliminate it. Then, similar chunks are found

with super-�ngerprints and are delta-compressed. Finally, all the

1This sliding window method can be used because �ngerprints are distributive

over addition.
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chunks that were neither delta-compressed nor eliminated in the

chunking process are compressed.

All the methods described above present ways to �nd or remove

redundant data, with the exception of REBL and compression that

present both methods. Despite that, these methods present ways of

saving space, but they are not concerned with the actual process of

sharing data, from di�erent users, and the necessity of maintaining

this data consistent when clients need to access it.

The Rsync [23] approach is used to reduce bandwidth usage in the

speci�c case where we want to update two �les (in distinct comput-

ers) to have the same content. In this solution, the receiver splits

the �le into blocks and calculates two hash functions for each block.

The sender receives the blocks' hashes and compares them with its

�le blocks' hashes. This way, Rsync only sends data from blocks

that are missing at the receiver and information to reconstruct the

rest of the �le with blocks that the receiver already has.

All the methods described above were tested in a scenario where

the detection of duplicated data was accomplished with a scan ap-

proach2. With this approach, the opportunities for sharing data are

detected by scanning all the storage. The scan approach �ts well

for the purpose of the studies described in this section. However,

for our speci�c scenario where data will be modi�ed constantly, the

scan approach will introduce signi�cant overhead in computational

power. This happens because this approach needs to scan the stor-

age several times to check for modi�ed data and share it. Having this

speci�c scenario in mind, a dynamic approach that detects modi�ed

data, suits better on our work. As an example, this can be achieved

by intercepting I/O write requests to the storage.

This change of paradigm to detect duplicated data also changes the

applicability of the methods described above. Compression method

is not appropriated for a scenario where several �les are accessed

2It may also be referred as static approach.
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and updated frequently. Chunking method with rabin �ngerprints

also introduces unnecessary complexity for this new scenario. As

stated above, the main advantage of this method, when compared

to �xed size block approach, is visible when a �le is modi�ed in

a speci�c part. With the �xed size block approach, we may have

to calculate signatures for blocks that were not modi�ed. However,

with chunking, we only calculate the signature for the block that was

updated. In our scenario, this is not relevant because I/O requests

are intercepted dynamically. If we assume that these requests have a

�xed size for the data that is written, then we can use the �xed size

block approach for that speci�c size and only calculate signatures for

the data that was updated. Besides that, if we compare the values

shown in [17] for the �xed size block and chunking approaches, in

terms of space saved by eliminating redundancy, we see that both

methods have identical results. In fact, for interactive contexts like

ours, where hash sums are only calculated for the data that really

was updated, the �xed size block method o�ers higher processing

rates.

2.2 Remote Backup/Storage Services

LBFS [15] is a network �le system designed to reduce bandwidth

when transmitting �les to the server. Files are divided into content

de�ned chunks using Rabin �ngerprints. For each chunk, a SHA-

1 [53] digest is calculated and stored locally. Before transmitting

a �le, SHA-1 signatures of its chunks are sent and compared with

the ones available at the receiver. This way, clients only send the

chunks that are missing at the server. LBFS approach uses duplicate

detection to reduce bandwidth.

Pastiche [6] provides a solution to reduce storage redundancy in a

backup peer-to-peer system that resembles LBFS. Like LBFS, Pas-

tiche uses content based indexing. When a peer contacts another to
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backup its data, chunks signatures are sent �rst. This way, Pastiche

only stores chunks that do not exist already at the receiver. The

main di�erence from LBFS is that Pastiche's data is stored on peers

as chunks. By storing data this way, the sharing process is simpli-

�ed because an additional table relating data stored with chunks is

not needed to keep. These chunks also contain information about

the peers sharing them for garbage collection. This solution also

introduces the idea of choosing peers to hold backup by their data

proximity. This way, when one node wants to backup its data; it

calculates signatures of some of its chunks and compares them with

the signatures calculated from other peers. This approach allows

�nding buddies that will probably be more suitable to keep backups

of that node in terms of storage space and bandwidth saved.

The Venti [18] archival storage system is aimed at keeping data that

has a write-once policy. This way, data is never modi�ed neither

deleted from the storage. Venti presents a simple interface to read

and write blocks of several sizes. Backup applications can use Venti

as backend with this API. In Venti, blocks are identi�ed by their

hash, which allows eliminating duplicated data at the storage. The

index that keeps all blocks signatures is implemented with a disk

resident hash, which represents a performance penalty because every

request must use it.

Deep Store [57] is an archival storage system aiming scalability, re-

liability and e�ciency. The storage service works at the �le abstrac-

tion level and has a simple interface that allows the clients to store

�les, retrieve �les and delete them. Deep Store is intended to run

in several nodes and each node contains its own processor, mem-

ory and disk. Each of these nodes runs several processes in order

to provide the archival storage service. This solution also presents

a study about three di�erent ways to eliminate redundancy across

their storage service. The methods described are the whole �le con-

tent, delta-compression and the chunking method for �le's parts.
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All the solutions described above can give us the idea of a storage ser-

vice's infrastructure and architecture. However, they do not address

the scenario where virtualization is used on the physical nodes.

Besides the systems described above, we also have commercial prod-

ucts that provide storage systems using data deduplication tech-

niques. This is the case of EMC Avamar [34], Exagrid [35], IBM

ProtectTire [41] and DataDomain [31]. All these services provide

a server that bundles all the software and hardware, including the

storage hardware, necessary to be used as a remote storage service

that can be easily deployed in the client's infrastructure.

IBM ProtectTire and DataDomain also present a gateway solution

that can be used with di�erent types of external storage. This is

useful for clients that use a third party external storage system.

With the exception of Avamar and Exagrid, all the solutions use an

in-line approach to detect duplicated data. Through this approach,

duplicated data is found and shared before storing the data. This

approach spares more disk space, but has the disadvantage of be-

ing slower because digests must be calculated and compared before

storing the data on disk. EMC Avamar detects duplicated data at

the client side, which reduces bandwidth usage. In contrast, Exa-

grid uses a post-processing approach. With this technique, the data

is stored immediately and the sharing process only occurs after the

operation is over. This technique is faster when compared to the

in-line deduplication, but it consumes more storage space.

All these solutions are intended as backup solutions. This way, they

are not concerned with the need to store and retrieve data e�ciently.

Besides that, their implementation details are not known because

they are commercial products. These approaches are not intended

to store virtual machines images. The exception is EMC Avamar

that has speci�c software used to store VMware virtual machines

images, but, once again, this solution is intended for the backup

scenario, which is not expected to have a huge load of read and
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write requests to the VMs images.

2.3 Cloud Services

Cloud Computing storage services like Amazon S3 [26], Amazon

EBS [24], Amazon SimpleDB [27] and Google App Engine Datas-

tore [38] provide remote storage services for their clients. Amazon S3

o�ers a storage service with a simple API that allows clients to store,

retrieve and delete objects from di�erent namespaces, called buck-

ets, that are also managed by the client. In fact, this service's API

resembles the Deep Store interface described in section 2.2. Amazon

SimpleDB and Google App Engine Datastore allow clients to store

data and to be able to perform queries on it.

Google App Engine [39] and Amazon EC2 [25] allow clients to run

their applications in these services' infrastructure. Google App En-

gine forces the users to write their applications in Python or Java

and to respect this service APIs. These applications run in Google

infrastructure and, if needed to scale, this is done automatically if

the user pays the additional load. Amazon EC2 service has a di�er-

ent approach. In this service, the user customizes a virtual machine

image with her application and deploys that virtual machine into

Amazon infrastructure. If the application needs to scale, the client

can run an additional virtual machine instance with her application

image in minutes. This is not done automatically, so the user must

explicitly start the instances she wants to use. If the client wants to

keep her virtual machine images state stored persistently, then she

can use the S3 service or the EBS service. Amazon EBS provides a

block level storage volume that can be attached to an Amazon EC2

instance. These volumes persist even if the instance is terminated

or fails. The main bene�t of using EBS, instead of S3, is that this

service presents a better solution in terms of e�ciency and simplicity

for applications that need to use a raw block storage, �le system or
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databases. Using S3 for an application that uses a database can also

be achieved, but this solution has some restraints attached to it [3].

In the context of our work, the combination of Amazon EC2 and

EBS is very interesting because it represents the precise scenario

where our approach performs deduplication. With this combination,

we have virtual machines writing to their virtual disks, which will

probably be mapped to a common storage. Duplicated data can be

found inside the virtual disks and across them.

The cloud services described above do not present any public infor-

mation about their infrastructure and architecture. This way, we

cannot know precisely their details. However, the information above

shows us the importance of virtualization in these services and also

gives us some hints about the type of information that needs to be

stored.

Eucalyptus [16] is a project that presents a framework to implement

cloud computing services on top of private clusters. Eucalyptus cur-

rent version provides two types of services: one resembling Amazon

EC2; and another resembling Amazon S3. In fact, the APIs pro-

vided by Eucalyptus are identical to the Amazon APIs. Regarding

Eucalyptus design, each physical node in the clusters has a node

controller that has the responsibility of managing the VM instances

and the resources of its physical node. More speci�cally, this node

is able to start and stop instances as well as to provide information

about physical node resources and virtual machines instances run-

ning on it. Currently, there are only supported virtual machines that

run atop the Xen hypervisor.

A cluster controller is used to manage several node controllers. This

controller can be used to schedule incoming requests to a speci�c

node controller and gather resources information about a set of node

controllers.

There is also a storage controller (Walrus) that is used by the client

to store data into the cloud. This is done via an interface identical
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to the Amazon S3's interface. Walrus is also used to store virtual

machines images. When node controllers need to start virtual ma-

chines, they can request the virtual machines images from Walrus.

The work described in this section does not address any deduplica-

tion approach. However, this work is important to understand design

details of cloud services and to understand the type of system where

we want to eliminate duplicated data.

2.4 Virtualization Scenarios

Parallax [13, 56] presents a solution to reduce redundancy among

persistent snapshots3 of virtual machines images and their current

image. This solution is intended for a cluster where there are several

nodes and each node can run more than one VM. All these nodes

have access to a shared storage (block device) where they keep their

VMs' disk images (VDIs) and their snapshots. For each physical

node, there is an instance of parallax running that controls all I/O

requests from VMs that are also running on that same node. When

a snapshot is taken, its blocks are shared with the current image;

when a request to write to a block that is shared is intercepted by

parallax, a copy-on-write operation is performed to keep the block

content consistent.

Blktap [29] is used to implement the copy-on-write mechanism and

to provide virtual disks for each VM by intercepting block's write

and read requests from VMs. A radix tree is used to map virtual

block addresses4 to physical block addresses5. Every VDI has its

own radix tree and these trees are also stored as metadata in the

shared storage.

3Read only copies.
4Addresses used by the VMs to request blocks.
5Addresses that point to the location at the physical device where blocks are

stored.
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By having copy-on-write techniques, each Parallax instance needs to

be able to reclaim free blocks to execute this operation. To solve this

problem, a lock mechanism is used to ask for free blocks. In order

to avoid using the distributed lock mechanism every time a Parallax

instance needs space to write VDI's data, an extent mechanism is

introduced. Blockstore6 is divided into �xed size extents. These

extents are typed. Data extents hold VDIs' blocks and metadata

extents hold information, such as radix trees, and are locked by

Parallax instances in order to write to the Blockstore. There is a

special extent that holds information about shared storage's size,

extent's size, extent's type and their lock holder.

New VDIs can be created from snapshots. These VDIs will also share

duplicated blocks with the snapshots used to create them. However,

data from di�erent VDIs without a common ancestral is not shared.

Satori [14] and VMware ESX Server [55] present two approaches

that �nd and eliminate duplicates in memory instead of disk. Both

approaches are intended for the scenario where there are several vir-

tual machines running on the same physical host, and the objective

is to share VMs' memory pages. In VMware ESX, memory is shared

by doing a scan to all the VMs' memory pages and by calculating

their hashes and storing them in a Hash Table. This scan is done

periodically and all the pages that are shared are marked as copy-

on-write. VMware ESX also introduces the Ballooning mechanism

that is used when the server needs to reclaim free pages from their

VMs.

Satori presents a solution that does not use a scan approach to �nd

duplicated memory pages. Their approach modi�es the VM's virtual

disk implementation in order to intercept read I/O requests made

by the VM to its disk. When a block read request is intercepted, its

content is hashed and compared with the other pages digests to see

if the page is duplicated. If the page is duplicated then it is shared

6Name given to the shared storage.
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and marked as copy-on-write. The Repayment FIFO mechanism is

introduced to provide free pages when a page share is broken. This

FIFO is a list of volatile pages that the VM's operating system is

willing to relinquish at any time.

One of the advantages presented in Satori approach is the possibility

of detecting short-lived sharing opportunities. In other approaches,

like VMware ESX Server, that use the scan method, some of these

opportunities are not processed.

Summary

In this chapter, two approaches that use virtualization and intercept

I/O requests from VMs are presented. Neither of them has the

purpose of eliminating duplicated data at a storage that is shared

among several VMs. Nevertheless, these solutions are important for

a better understanding of how dynamic detection of modi�ed data

can be achieved, for our speci�c scenario. By intercepting I/O write

requests from VMs, modi�ed data can be detected. This solution is

more e�cient than the one that uses a static approach, which must

scan either the VMs' virtual disks or the storage, to �nd data that

has changed and share it. Nevertheless, dynamic approaches can

introduce overhead in the I/O requests to the storage. This happens

when write requests are intercepted and its completion is delayed

because the sharing process is being executed.
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Chapter 3

Redundancy Study

This chapter presents a study about the redundancy found in a per-

sonal data set. The viability of two di�erent methods, which �nd

redundant data, is discussed in terms of space saved and in terms

of space used by metadata. This metadata is necessary to share

identical data in a scenario resembling the one we address.

3.1 Redundancy Detection

This section presents our study about duplicated data found in

GSD's1 data set. This data set contains 1,676,046 personal �les

associated with research projects from GSD and has a size of 108.11

GB. We choose it because its content is expected to resemble the

one found in services like Dropbox, where personal data from several

users is stored. On the one hand, we know that this data is slightly

more related because personal �les belong to researchers that have

projects in common. On the other hand, the �les that everyone

possesses have few copies when compared to Dropbox's data set.

To detect duplicated data in our study's data set two methods were

compared:

1Distributed Systems Group is part of the Department of Informatics of the

Universidade do Minho.
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Whole �le - In this approach, duplicated data is found at the �le

level. This is done by calculating each �le's SHA-1 [53] digest

and storing it in a table. Each collision in the table shows that

�les are duplicated.

Fixed size block - This approach is similar to the whole �le method,

but �nds redundancy at the block level. This way blocks

digests are used instead of �les digests. In this method the

block's size is �xed.

GSD's data set was used to test the applicability of these two meth-

ods in our work. Freedup [36] was used to detect duplicated �les.

Freedup is an application that detects �les with the same content

inside a directory and its subdirectories. Files only need to have the

same content to match and �le names do not need to be identical.

An application was written, in C [10], to detect duplicated blocks.

This application receives as arguments the path for the directory

where duplicated data will be searched and the value to be used for

the block's size. The application reads regular �les' contents located

inside the directory and its subdirectories, and computes a SHA-1

digest for each �le's block. These hashes are stored in a hash table

to detect collisions. This algorithm uses the �xed size block method

but, when it reaches the end of the �le and the last block's size

is inferior to the default size, the hash for that block is calculated

anyway.

Both these applications have as output a log �le with information

about duplicates found. Logs are analyzed and results extracted

using a python script. These results are useful to choose the best

technique for our approach, described in Section 4, and also to pre-

dict the duplicated data that will be found in a data set that contains

several users' personal �les.

Table 3.1 shows the number of items2 scanned,the number of items

2Files for the whole �le approach and blocks for the �xed size block approach.
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Table 3.1: GSD's data set redundancy results: comparison between

the whole �le and the �xed size block approaches.

File Block 4KB Block 8KB Block 12KB

Files/Blocks Scanned 1,676,046 29,530,586 15,461,284 10,794,932

Files/Blocks Without Duplicates 536,418 22,610,369 11,581,715 7,912,071

Unique Files/Blocks 765,594 24,449,410 12,584,335 8,632,784

Files/Blocks to Eliminate 910,452 5,081,176 2,876,949 2,162,148

Space Saved 13.37 GB 16.75 GB 16.31 GB 16.01 GB

Duplicates per Regular File/Block 0.68 0.23 0.25 0.27

Duplicates per Duplicated File/Block 3.97 2.76 2.87 3.00

that do not have any duplicate, the number of unique items, the

number of identical copies found that can be removed, the space

saved by eliminating these copies, the average number of duplicates

per item and the average number of copies that a duplicated item

has.

Space saved improves by using the �xed size block method instead

of the whole �le. We ran the �xed size block algorithm for three dif-

ferent sizes, 4 KB, 8 KB and 12 KB, and the space saved is identical

within these three options.

The best approach, in terms of space saved, is the 4KB �xed size

block method. 15.5% of the total space is saved by using this ap-

proach. The whole �le approach saves 12.4%. which represents the

worst method. We can also witness that, in average, each �le has less

than one duplicate, but if the �le is replicated, it possesses, in aver-

age, 4 identical copies. For blocks, the average results are inferior,

but the relation is similar.

Figure 3.1 shows the number of �les we can �nd in the GSD's data

set with a certain number of duplicates. This �gure shows values

up to twenty �ve duplicates of the same �le. Figure 3.2 shows the

same information for �les with more than twenty �ve duplicates.

These �gures are interesting to understand that the number of �les

with few duplicates is substantially higher and that this number
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Figure 3.1: GSD's data set redundancy results: �les with less than

twenty �ve duplicates.
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Figure 3.2: GSD's data set redundancy results: �les with more than

twenty �ve duplicates.
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drastically decreases when the number of duplicates per �le grows.

We also think that is interesting to notice that there are �les with

more than two thousand duplicates. We only present here charts for

the �le results because the blocks charts are very similar and the

conclusions we can extract from them are the same.

The results described above only show the e�ciency of the methods

in terms of space saved. However, in our work, we also need to have

in account the space that will be occupied by metadata that will be

used to hold information needed for sharing identical data.

3.2 Metadata

As said before, our main goal is to �nd duplicated data and share it in

an interactive system where several VMs' virtual disks are mapped

into a shared storage. Besides having an e�cient method to �nd

identical data, metadata holding information that will be used to

share blocks with the same content and to keep VMs' disks I/O

operations consistent is needed. In this section, we use our study's

results to estimate metadata's size.

As a consequence of presenting virtual disks to VMs, a table (Trans-

lation table) that translates virtual addresses to physical addresses

is needed. Virtual addresses are the the addresses that VMs request

to read and write to their virtual disk. Physical addresses are the

addresses that point to the location of the �le/block in the physical

storage. This table is needed because VMs will see virtual disks that

will make the sharing process transparent to them. However, these

disks will have shared content that will be mapped into the same

physical address at the physical storage.

Translation table's size can be calculated using the following formula:

Nfb × Phyadd
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Nfb is the maximum number of items3 that VMs' virtual disks can

store and Phyadd is the size of the physical address. We are talking

about virtual disks where redundancy elimination must be trans-

parent. This way the number of items found at this level will be

higher than the one found at the physical storage, where the virtual

disks are mapped and where duplicated data is eliminated. In this

formula, we do not contemplate virtual address's size. We assume

that implicit values for virtual addresses can be used to reduce this

overhead. As an example, an array where the index represents the

virtual address and the value pointed by the index represents the

physical address can be used. Other data structures like trees can

also be used to reduce the overhead.

GSD's data set was used to estimate the size for this table. The

size of physical address used was 64 bits and for the Nfb parameter

we used the values described in the �rst row of Table 3.1, which

represents the total items found at the data set before eliminating

duplicated data. Table 3.2 shows the values obtained. This table

shows the expected size of the Translation table for a mapping be-

tween virtual and physical addresses of �les, 4 KB blocks, 8 KB

blocks and 12 KB blocks.

As expected, the size of the Translation table for the �le scenario is

drastically lower when compared to the blocks' results. 8 KB and

12 KB blocks have identical values and the 4 KB block is the worst

solution in terms of space consumed.

Besides the Translation table for each VM, another table that keeps

mappings between blocks' hashes and their physical address at the

storage is necessary. This table is essential to share blocks with the

same content. This table possesses an additional column, for every

physical address, that represents the number of virtual addresses

pointing to it. This last column is useful when a shared block is

modi�ed by one VM and is necessary to know if the old physical

3Files or blocks.
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Table 3.2: Translation table's size.

Translation table's Size

4 KB 225.3 MB

8 KB 117.96 MB

12 KB 82.36 MB

File 12.79 MB

address can be freed or if that address is still being pointed by an-

other virtual address. If the block is not being used by any virtual

address, then it can be freed, otherwise the block's content cannot

be modi�ed.

For this table, that we call Hash-to-Address, we used the following

formula to calculate the worst scenario possible in terms of space

occupied. This is the scenario where the size of the table is propor-

tional to the number of unique items at the global storage:

Nu × (Hashs + Phyadd + Refcount)

Table 3.3: Worst scenario for Hash-to-Address table's size.

Hash-to-address Translation table Total Space Saved

4 KB 746.14 MB 225.3 MB 971.44 MB 15.8 GB

8 KB 384.04 MB 117.96 MB 502 MB 15.83 GB

12 KB 263.45 MB 82.36 MB 345.81 MB 15.67 GB

File 23.36 MB 12.79 MB 36.15 MB 13.33 GB

Nu is the number of di�erent items at the physical storage, Hashs is

the hash's size, Phyadd is the physical address's size and Refcount

is the size occupied by the �eld representing the number of virtual

addresses sharing a speci�c physical address.

Table 3.3 shows the result of this formula applied on the same data

set described above. We have used 160 bits for hash's size, 64 bits
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for physical address's size and 32 bits for representing the number of

virtual addresses sharing the same physical address. We have used

the values described in the third row of Table 3.1 for the Nu param-

eter. We choose 32 bits because we think that this value is su�cient

to represent an upper bound for the number of addresses sharing the

same block in a large dataset. By analyzing study's results for the

4KB blocks, there is one block with 225,165 duplicates that repre-

sents the higher value for this approach and for all the others. If we

assume a scenario where addresses point to 4KB blocks and Refcount

has 32 bits, we can have 16 TB4 of virtual content pointing to the

same physical address. This value is more than enough for the case

we described above and for larger data sets. A worst scenario can

occur if all the free blocks at the storage are being shared between

the virtual machines and pointing to the same physical address. In

such case, we think that the 16 TB value described above is an ac-

ceptable value. Other aspects, like keeping some redundancy in the

storage, which we do not take into account, also reduce the number

of virtual addresses pointing to the same physical address.

This table also shows values for the space occupied by the Trans-

lation table and the Hash-to-Address table and what impact these

values have on the space saved that is described in Table 3.1. We

see that the whole �le approach continues to be the worst solution

despite the small size occupied by its metadata. Among all block

based approaches the results are very similar.

Figure 3.3 presents the percentage of space used for Translation and

Hash-to-Address tables by using the worst case approach. Percent-

ages are presented for the whole �le approach and the �xed size block

approach with sizes of 4 KB, 8 KB and 12 KB. For example, for a

data set with 108.11 GB and using the 4 KB block approach, the

tables' size will be 108.11× 0.0088 = 0.95GB.

This scenario has its disadvantages when we think in the metadata's

4(232 × 4)÷ 10243 = 16TB
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Figure 3.3: Percentage Space Used.

size. However, if we try to reduce Hash-to-Address table's size, there

is always a trade o�. For instance, we can think in the opposite

scenario where the Hash-to-Address table is not used. In this new

scenario, a digest must be calculated for each block at the storage, to

�nd a match for the block that is being shared. As a matter of fact,

this solution presents serious drawbacks because it generates a huge

amount of CPU and I/O overhead. Therefore, there is always a trade

o� between metadata's size and computational overhead generated.

As stated before, some redundancy is necessary at the storage. In

this dissertation, we do not contemplate this issue. However, the

decision to maintain some redundancy can be easily achieved in two

ways:

• One solution is to update an entry in the VM's Translation

table to point to a shared physical address in some occasions

only. This way redundancy is achieved automatically. This

approach allows maintaining some redundancy without having

to keep additional metadata information.

• Two extra columns can be added to the Hash-to-Address table

for each duplicated block that is desirable to have in the sys-

tem. One of the columns has the physical address at the global
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storage and the other has information regarding virtual ad-

dresses that are sharing that physical address. This approach

consumes space but, with it, we can control the number of du-

plicated data, the number of virtual addresses that are sharing

each of the physical blocks and handle read requests that fail

because the block they are pointing to is corrupted. With this

last method, we have more control but we lose in terms of

space occupied by metadata.

In this section, we do not describe all the metadata that is necessary

for our approach to work. Our interest in this section is to present

metadata's size that we can predict with this study and that must

be used by all approaches that detect duplicated data in a scenario

like our own. Other types of metadata will be discussed in next

chapters.



Chapter 4

Deduplication Architecture

This chapter introduces an architecture to detect and share dupli-

cated data from VMs running in the same physical host and sharing

the same storage. Figure 4.1 describes this scenario.

Figure 4.1: System description.
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4.1 Overview

The architecture is composed by three modules. The I/O Intercep-

tion module is used to intercept I/O requests from VMs and register

the blocks that were written. For each VM there is an indepen-

dent I/O Interception module. The Share module is responsible for

processing the modi�ed blocks and sharing them with other blocks

with identical content. The Garbage Collector module is necessary

to provide free blocks to the I/O interception module for copy-on-

write (COW) operations and to collect free blocks that were freed

by the Share module or by the COW requests. COW is necessary

to keep I/O requests coherent. Figure 4.2 shows a description of the

architecture.

Figure 4.2: Architecture's diagram.
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4.2 Intercepting I/O Requests

The I/O Interception module is responsible for intercepting I/O re-

quests, from VMs to their virtual disks, at the block level. A Trans-

lation table is necessary for each VM. This table maps virtual ad-

dresses into physical addresses and is crucial to share physical blocks

between several virtual addresses, being these virtual addresses from

the same VM or from several VMs. Read and write I/O requests

from the VMs require checking the Translation table, which is needed

to �nd the location of the physical block necessary for processing the

I/O operation. Listing 4.1 shows the pseudo code for the I/O Inter-

ception module.

1 read_request(virtual_address){

2

3 lock_mutex_page_table()

4 physical_address = check_for_address_in_page_table(virtual address)

5 unlock_mutex_page_table()

6

7 read_from_storage(physical_address)

8 }

9

10 write_request(virtual_address,content){

11

12 lock_mutex_page_table()

13 physical_address = check_for_physical_address_in_page_table(virtual address)

14 boolean = has_cow_mark(physical address)

15

16 if(boolen == FALSE){

17 unlock_mutex_page_table()

18 write_to_storage(physical_address,content)

19 }

20 else{

21 free_block_address = ask_for_free_block()

22 update_page_table_virtual_address_mapping(virtual_address,free_block_address)

23 unlock_mutex_page_table()

24

25 write_to_storage(free_block_address,content)

26

27 lock_mutex_free_cow_queue()

28 insert_address_free_cow_queue(physical_address)

29 unlock_mutex_free_cow_queue()

30 }

31

32 lock_mutex_dirty_addresses_table()
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33 insert_address_dirty_addresses_table(virtual_address)

34 unlock_mutex_dirty_addresses_table()

35 }

Listing 4.1: Intercepting read and write requests.

In read requests, this module only needs to check the Translation

table to redirect the read operation to the right physical address (line

4). As it concerns write requests, additional operations are needed

to be performed. When a write requests is intercepted, the signature

of the block's content is not calculated immediately to perform the

sharing of that block. The write operation is processed normally

(line 18 and 25) and the VM's virtual address pointing to that block

is registered to be processed later (line 33). We refer to this table

of virtual addresses as the Dirty Addresses table. All the registered

virtual addresses will be processed in background by another module

responsible for sharing identical blocks. With this approach, the I/O

overhead in write requests is reduced, but more disk space is needed

because duplicated data is not eliminated before being written to the

storage. There is always a tradeo� between space consumed and I/O

write operations overhead. In our scenario, we see the I/O overhead

as a more critical issue because this is not an archival system and

VMs need to have an acceptable throughput when writing to their

virtual disks. In addition to these two operations, a copy-on-write

mechanism is used. This mechanism is necessary to ensure that

write operations on a physical block, that is being shared, do not

corrupt other virtual addresses that are also pointing to that block.

To achieve this goal, the Translation tables' physical addresses that

are being shared by more than one virtual address are marked as

copy-on-write. When a copy-on-write block's content needs to be

updated, it is not modi�ed directly that block. Instead, a new copy

where the modi�ed data will be written is created. When a write

request for a physical address marked as copy-on-write is intercepted,

an unused block (line 21) to write the new data is asked. This way,

the virtual address will point to this new block and the old physical
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block's content will remain unmodi�ed. An additional mechanism is

necessary to check if the old physical address is still being pointed

by any virtual address or can be freed. This work is done by another

module, that will collect all the physical addresses to be processed

via the insert_address_free_cow_queue() method.

For each VM there is an independent module intercepting I/O re-

quests. Data structures described above are not shared between

VMs. This means that each VM has its own Translation Table and

Dirty Addresses Table.

4.3 Share Module

Data that has been written can potentially be shared and must be

examined. Virtual addresses that have content susceptible to be

shared are kept in the Dirty Addresses table and processed later.

In this section, it is described our module that processes this table

and shares identical data. Listing 4.2 shows the pseudo-code for this

module.

1 process_dirty_addresses_table(){

2

3 /∗move operations copy elements from source to destination and remove

4 them from the source∗/
5

6 lock_mutex_dirty_addresses_table()

7 move_dirty_addresses_table_addresses_to(hot_set)

8 unlock_mutex_dirty_addresses_table()

9

10 identical_addresses = get_identical_addresses_in(hot_set,cold_set)

11 remove_addresses_from_cold_set(identical_addresses)

12

13 addresses_to_be_processed = cold_set

14 remove_all_addresses(cold_set)

15 move_hot_set_addresses_to(cold_set)

16

17 return addresses_to_be_processed

18 }

19

20

21 share_data(){
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22

23 addresses_to_be_processed = process_dirty_addresses_table()

24 for_each_virtual_address_in(addresses_to_be_processed){

25

26 lock_mutex_page_table()

27 physical_address = check_for_physical_address_in_page_table(virtual_address)

28 mark_as_cow(physical_address)

29 unlock_mutex_page_table()

30

31 content = read_from_storage(physical_address)

32 signature = calculate_signature(content)

33

34 lock_mutex_hash−to−address()
35 if(hash_is_in_hash−to−address_table(signature)){
36

37 shared_physical_address =

38 get_physical_address_value_from_hash−to−address_table(signature)
39

40 lock_mutex_page_table()

41

42 if(physical_address ==

43 check_for_physical_address_in_page_table(virtual_address)){

44

45

46 update_page_table_virtual_address_mapping(virtual_address,

47 shared_physical_address)

48 new_free_block(physical_address)

49 increment_entry_references_�eld_value_from_hash−to_address_table(signature)
50 }

51 unlock_mutex_page_table()

52 }

53 else{

54

55 references_�eld_value = 1

56 shared_physical_address = physical_address

57 insert_into_hash−to−address(signature,shared_physical_address,shares_�eld_value)
58 }

59 unlock_mutex_hash−to−address()
60 }

61 }

Listing 4.2: Share module pseudo-code.

Dirty Addresses table contains virtual addresses that were modi-

�ed and consequently marked for the sharing process. This table

is scanned periodically by the Share module. The addresses at this

table are not shared immediately. A mechanism that �nds what ad-
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dresses are less susceptible to be written in a near future is used.

This is done because some blocks are constantly modi�ed and there

is not any advantage in sharing them. If blocks that are constantly

being modi�ed are shared, the use of COW mechanism increases and

thus the write requests' overhead also increases.

This approach to �nd what blocks are appropriated to be shared

requires the use of two additional sets of virtual addresses. When the

Share module scans the Dirty Addresses table, it copies its addresses

to a �rst set of virtual addresses, which we call the Hot set (line 7).

After the copy operation is completed, all the addresses that were

marked to be processed are removed from the Dirty Addresses table.

All addresses at the Hot set are compared with the addresses found

at a second set, which we call the Cold set (line 10). Addresses that

are common to the Hot set and to the Cold set are removed from the

Cold set (line 11). When this comparison is �nished, all the elements

that remain at the Cold set are ready to be shared (line 13). After

sharing all the addresses in Cold set and removing them from it,

the Hot set's content is copied to the Cold set (line 14 and 15). In

each scan, this process is repeated and, by doing this, there is the

warranty that will only be shared addresses that were not marked

as dirty in two consecutive scans.

After choosing what virtual addresses are ready to be shared, each

of them is processed independently (line 24). First, the VM's Trans-

lation table's entry, where that virtual address belongs, is used to

mark the physical address, pointed by it as copy-on-write (line 28).

As a consequence of reading the block's content (line 31) with a cer-

tain delay from the time that the write requests were intercepted,

there is the possibility of reading a physical block that was modi�ed

prior to the decision of sharing it. This detail does not bring any is-

sues for our algorithm because all the modi�cations to that physical

block were done via the same virtual address. The mechanism that

only processes blocks that were not written in two consecutive scans
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allow to reduce the number of times this situation occurs. Block's

content is used to calculate its signature (line 32) that is used to

search for identical blocks in the Hash-to-Address table (line 35),

mentioned earlier in Section 3.2. In this table are kept mappings

between blocks' content's signatures and their physical address at

the storage. If the signature is found at the table, there is a physical

block with the same content at the storage. To share the blocks, the

virtual address, contained inside the VM's Translation table, needs

to be updated to point to the new physical address found at the

Hash-to-Address table's entry (line 46). After doing this, the two

blocks are shared and the physical block that was pointed by the

virtual address can be freed (line 48). Finally, the value that de-

scribes the number of virtual addresses sharing that physical block,

which we call the number of references �eld (line 48), must be in-

cremented. Each Hash-to-Address table's entry stores its own value

for this parameter.

If the signature is not found at the Hash-to-Address table, then it

is added as a new entry (line 54-57). This entry is composed by the

signature, the physical address where the block is stored and the

number of references �eld, which is initialized with the value one.

The Share module is the same for all VMs, but processes concur-

rently the algorithm described above for each VM. This way, a con-

currency control mechanism is necessary for the Hash-to-Address

table that will be accessed concurrently to eliminate redundancy

between all the VMs' virtual disks. A similar mechanism is also

necessary for the VM's Translation table and Dirty Addresses table

because they are accessed concurrently by the Share module and by

the module that intercepts I/O requests.

The new_free_block() function is used to report a free block to the

Garbage Collector module (line 48); this function will be explained

in Section 4.4. The interval of time that this module keeps the VM's

Translation table locked must be as low as possible because this will
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generate overhead for the I/O read and write requests. In function

share_data() (line 21), the VM's Translation table is locked to read

the physical address and mark it as copy on write but, this lock is re-

leased while the addresses' content signature is being calculated (line

26-29). When the signature is found at the Hash-to-Address table,

the virtual address must be updated to point to another physical

address (line 35). Before doing this procedure, the physical block's

content must be checked to ensure that it has not changed while

the VM's Translation Table's lock was not being held (line 42). If

this content has changed this means that a copy-on-write operation

was performed meanwhile and the physical address cannot be shared

because is no longer in use by that VM.

4.4 Garbage Collector Module

The Garbage Collector module has a queue of free blocks (Free

Blocks queue) and is responsible for distributing unused blocks across

the I/O Interception modules when a copy-on-write occurs and is

necessary a new block to write data modi�cations. GC module also

is responsible for collecting unused blocks that are produced by shar-

ing and copy-on-write operations. Listing 4.3 shows the pseudo code

for this module's behavior.

1

2 new_free_block(physical_address){

3

4 lock_mutex_free_blocks_queue()

5 insert_into_free_blocks_queue(physical_address)

6 unlock_mutex_free_blocks_queue()

7 }

8

9 ask_for_free_block(){

10

11 lock_mutex_free_blocks_queue()

12 free_block_address = pop_address_free_blocks_queue()

13 unlock_mutex_free_blocks_queue()

14

15 return free_block_address

16 }
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17

18 process_free_cow_queue(){

19

20 lock_mutex_free_cow_queue()

21 physical_address = pop_address_free_cow_queue()

22 unlock_mutex_free_cow_queue()

23

24 /∗
25 if physical address is empty then the free_cow_queue has no more addresses

26 ∗/
27 while(physical_address_is_not_empty(physical_address)){

28

29 content = read_from_storage(physical_address)

30 signature = calculate_signature(content)

31

32 lock_mutex_hash−to−address()
33 decrement_entry_shares_�eld_value_from_hash−to−address_table(signature)
34 shares_value = get_shares_�eld_value_from_hash−to−address_table(signature)
35

36 if(shares_value == 0){

37

38 new_free_block(physical_address)

39 remove_entry_from_hash−to−address_table(signature)
40 }

41 unlock_mutex_hash−to−address()
42

43 lock_mutex_free_cow_queue()

44 physical_address = pop_address_free_cow_queue()

45 unlock_mutex_free_cow_queue()

46 }

47 }

Listing 4.3: Garbage Collector module pseudo-code.

When two physical blocks are shared by the Share module, the block

that is no longer used is immediately freed and made available to be

used as a free block (line 2). This unused block is collected by the

GC module and inserted in its Free Blocks queue (line 5).

The Garbage Collector also collects unused blocks that are produced

at the copy-on-write operation. When a copy-on-write operation is

executed for a speci�c physical address, there is one virtual address

that is no longer pointing to that physical address. All these unused

physical addresses are kept in a queue (Free COW queue) that will

be consumed by the GC module (line 18). This module is respon-
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sible for checking if these physical addresses are no longer pointed

by any other virtual address. To achieve this goal, the GC module

must calculate the signature of each physical block and search for its

entry at the Hash-to-Address Table (line 29-32). After �nding the

correct entry, the value of the number of references �eld that repre-

sents the number of virtual addresses sharing that physical block is

decremented (line 33). If the �eld value is zero, then that physical

block can be added to the Free Blocks queue because is no longer

used by any virtual address (line 36-40). If the value is greater than

zero, that physical block cannot be collected. This approach can be

taken because a physical block, which was marked as COW, cannot

be modi�ed until the GC module frees it.

Another important policy decision is to choose when the Garbage

Collector must process the Free COW queue's elements. These re-

quests are not processed immediately when they are introduced at

the queue because it would generate more overhead in the I/O write

operation. Garbage Collector runs when the queue reaches a de-

termined size that can be modi�ed accordingly to the space we are

willing to spare for the queue. This method alone is not satisfac-

tory because a scenario where the queue takes too long or never

reaches that size threshold is possible to happen. This way, a second

mechanism was introduced to activate the Garbage Collector if a

determined time has passed since the last run.

The Garbage Collector's Free Blocks queue must be loaded with

some free blocks in it. This is important because the blocks freed by

the sharing process may not be su�cient for attending the unused

block requests to perform COW operations. Such scenario is only

expected in early stages of the sharing algorithm or for very spe-

ci�c cases, where shared blocks are constantly modi�ed and sharing

opportunities are not being properly addressed. For this last case,

one solution is to increase the timing between Share module's scans,

which will allow the Hot and Cold set approach, described in the
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prior section, to perform better.

At this module, the garbage collection algorithm is processed con-

currently for each VM. This way, concurrency control mechanisms

when inserting and retrieving elements from the Free Blocks queue,

which is shared between all the VMs, are needed. The Garbage Col-

lector algorithm also accesses the Hash-to-Address table in parallel

with the Share module. Each VM has its own Free COW queue,

which is accessed concurrently by the Garbage Collector and the

I/O interception module. The function new_free_block() is used

by the GC and Share modules. Function ask_for_free_block() is

used by the I/O Interception module when is necessary to ask for a

free block for a COW operation.
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Prototype

This section describes the implementation details of our architecture.

A mechanism that is used to load VMs images into the shared storage

and to share data between VMs images is also presented. Finally,

two optimizations are described. Our prototype works with Xen [2]

version 3.3 as hypersivor and all the code is written in C.

5.1 Intercepting I/O Requests

There are several options to intercept I/O requests from a VM to

its virtual disk. Dm-userspace [32] provides a way to control the

device-mapper with a user space application. This solution allows

intercepting VM's disk requests and redirecting them to a di�erent

location by using a user space process. The requests intercepted

have information about the block's address that is being accessed

and the type of operation (read/write). Requests are intercepted at

block level and Dm-userspace is available to use with Xen or a Linux

distribution. This solution's main problem is that it is no longer

maintained. Since 2006 there are no new updates for Dm-userspace.

Blktap [29] presents virtual disks to virtual machines. This solution

intercepts block I/O requests from VMs and reports them to a user

space process. New user space drivers that present custom virtual

43
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disks to VMs can be implemented easily. Read and write requests are

reported separately and are intercepted at the block level. For each

VM's disk, there is a di�erent user space process intercepting the

I/O requests. Blktap is only supported by Xen. With either Blktap

or Dm-userspace, solutions that need copy-on-write operations can

be implemented easily because read and write requests are reported

independently, which allows knowing exactly the blocks that have

been modi�ed.

Fuse [22] provides a simple API in order to implement a �le system

in a user space program. It works at �le level and it is supported for

Windows, Linux and Mac OS X.

Another option is to intercept I/O requests at the virtual machine's

operating system. This option is more complex than the others de-

scribed above and may require having a di�erent version for some

operating systems. Since our approach was conceived to work at the

block level instead of �le level, the options we have to intercept blocks

requests are blktap, dm-userspace and modifying directly guest oper-

ating systems. Dm-userspace is no longer maintained and modifying

guest's OS directly is a complex solution. This way, our solution

uses blktap to intercept block I/O requests.

In our study described at Chapter 3, the results for 4KB blocks

are very similar to 8KB blocks in terms of space saved, having in

account metadata's size and the redundant data found. In our im-

plementation 4 KB blocks are used because our storage �le system

is ext3 [43], which allows to de�ne block's sizes of 1KB, 2KB and

4KB. By choosing the default size of 4KB, the complexity of our

implementation is reduced and the performance is maximized. Nev-

ertheless, our code can be easily changed to work with 8KB blocks

if necessary.

Blktap allows I/O requests to be intercepted via a user space process.

We have modi�ed the Tap Aio driver to implement our Blktap driver.

Tap Aio implements a simplistic user space driver that intercepts I/O
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requests and redirects them to the correct address at the VM image.

I/O requests are processed asynchronously in batch.

Regarding our prototype, for each VM, a di�erent process is created

to intercept I/O requests. All these processes need to communicate

with the Share module process. This communication is necessary to

share identical data between VMs' virtual disks. The Share module

must have access to each VM's Translation table and Dirty Addresses

table. This is accomplished by sharing memory between the Share

module process and the processes intercepting I/O requests. The

mmap [44] function is used to share memory between two processes.

An independent memory region is created for each process that is

intercepting I/O requests. This region is shared with the daemon

process. Each of these memory regions contains the VM's Transla-

tion table and the Dirty Addresses table.

The VM's Translation table is implemented as an array, where the

indices act as implicit virtual addresses and the value pointed by

these indices represent the physical address. The Dirty Addresses

table is implemented as an array of bits. Each bit index represents an

implicit virtual address. The value pointed by the index, zero or one,

represents if that address needs to be processed or not. This data

structure introduces more overhead to the metadata's size; however,

this overhead is not signi�cant. If we have into account the data set

described in Chapter 3, where there are 29,530,586 4KB blocks, this

table's size is: 29, 530, 586× 1bit = 3.5MB.

To mark a physical address as copy-on-write, the high order bit of

that physical address is used. If that bit is one, then the address is

marked as copy-on-write.

5.2 Share Module

The Share module runs in an independent process. This process

creates an independent thread to share blocks for each VM. This
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thread has access to the shared memory where the VM's Transla-

tion table and the Dirty Addresses table are kept. This allows the

Share module to scan the Dirty Addresses table for blocks to be

shared, to update virtual addresses mappings at the VM's Transla-

tion table and to mark physical addresses as copy-on-write. In this

shared memory, there are also mutexes that are used to control the

concurrent accesses to both tables. To implement the Hot blocks'

set and Cold blocks' set, an array of bits is used for each. This array

is identical to the one used for Dirty Addresses table, described in

the previous section.

Glib's Hashtable [37] is used to implement the Hash-to-Address table

and SHA1 implementation of library openssl [49] is used to calculate

the signatures of the physical blocks' content. As stated in Venti

[18], the probability of a collision for a storage system with one

exabyte of data is less than 10−20, so we think that the use of SHA-1

hashes as unique identi�ers for the blocks is acceptable.

5.3 Garbage Collector Module

The Garbage Collector module runs in the same process as the Share

module. Each VM has two independent threads. One of them man-

ages unused blocks and the other is responsible for providing unused

blocks to the VM when a copy-on-write operation occurs. Both

these threads access concurrently the Free Blocks queue, which is

implemented as a FIFO queue.

To support the communication between the Garbage Collector's

threads and the processes intercepting I/O requests, an additional

data structure was introduced at the shared memory region. This

data structure is a bu�er of free blocks that is used by the I/O Inter-

ception process when it needs free blocks to complete a copy-on-write

operation. The Garbage Collector's thread is responsible for �lling

this bu�er when needed. This bu�er was chosen to minimize the
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waiting time to obtain an unused block. The size of the bu�er must

be adjusted to a value that minimizes the chance of this bu�er being

empty. Mutexes and condition variables are used in order to serial-

ize the accesses to the bu�er and to know when the bu�er is empty

or full. For each VM, there is one independent memory region and,

consequently, one bu�er of free blocks.

The other data structure that needs to be shared between the GC's

thread and the VM's I/O Interception process is the Free Cow queue.

This queue's size is variable, so the queue is not kept in the shared

memory regions. Instead, the mkfifo [42] function is used to create

a FIFO queue between the two processes, where physical addresses

are inserted and retrieved. The size of the elements that are inserted

in this queue is 64 bits, which assures that write and read operations

from this queue are atomic. Consequently, there is no need to worry

about concurrency control. Nevertheless, this FIFO queue's size

is restricted and, because of that, the queue is only used in the

communication process. The addresses are kept in another queue

at the GC process. This queue is implemented with our C library

and it is processed by the GC's thread that frees unused blocks that

resulted from COW operations. In this process, the Hash-to-Address

table is also used to check if physical addresses can be freed or are

still in use by other virtual addresses.

5.4 Loading Virtual Machines Images

VM images must be loaded into the physical storage (block device)

in a speci�c way required by our prototype. An application was

written by us to provide this functionality. This application requires

the VM's id to be speci�ed as parameter. This id is needed to copy

blocks from di�erent VM's without overlapping them at the physical

storage. This application is also responsible for generating the shared

memory �les that will be used between the I/O interception processes
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and the Share/Garbage Collector process. Additionally, all the data

structures that are at the shared memory are initialized with this

application. VM's id is also important to have an independent share

memory region for each VM. The blocks that will be initially loaded

into the Free Blocks queue, which is managed by the GC module,

are also chosen with this mechanism.

An additional feature that allows sharing the content of virtual ma-

chines images was also implemented. The algorithm described in

Chapter 4 only explores redundancy when the physical blocks are

modi�ed and, in some cases, there are some virtual machines blocks

that may never be written. This new feature marks all the VM's

virtual addresses to be shared at the Dirty Addresses Table, which

is loaded by this application. This will force the Share module to

exam, and when appropriate share, all these addresses. This will

only occur when the VM is started.

5.5 Prototype Optimizations

To decrease the overhead introduced by our prototype in the VMs'

I/O requests, two prototype optimizations were implemented.

Both I/O Interception module and Share module must access simul-

taneously the VM's Translation table. This requires a lock mecha-

nism. To optimize this lock mechanism, an approach that does not

requires locking the entire Translation table to modify only one en-

try was implemented. For our speci�c scenario, an approach that

uses one mutex per entry is not possible because the number of en-

tries in the Translation table is too big1. Our optimization uses a

prede�ned number of mutexes that are divided by the Translation

table's entries. This way, the probability of two concurrent accesses

to di�erent entries locking in the same mutex is reduced.

1For a VM image with 10 GB there are 2.621.440 entries in the VM's Trans-

lation table.
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Our second optimization improves the process of re�lling the bu�er

of free blocks with unused blocks. This re�lling operation is per-

formed by the Garbage Collector. Condition variables are used to

control when the bu�er's size drops and a new block is needed. In

the default approach the bu�er is �lled when its size drops by one

element. To improve this mechanism, the granularity of the re�ll op-

erations was changed. Instead of �lling the bu�er immediately when

an address is consumed, the bu�er is �lled when a speci�c number

of addresses are consumed. This way, the number of times that the

GC module needs to �ll the bu�er is reduced and, consequently, the

number of times the bu�er needs to be locked because the producer

and consumer are accessing it concurrently is also reduced.
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Chapter 6

Experimental Evaluation

This chapter discusses the performance of our prototype. Three

di�erent benchmarks are presented as well as the results of running

them in our prototype and in Tap Aio.

6.1 Tests Description

The main purpose of these benchmarks is to test the viability of

our prototype and architecture to eliminate duplicated data in a

virtualized scenario. This is achieved by measuring the VM's I/O

requests throughput and latency, the CPU and RAM usage at the

Dom 0 and the data being shared.

The three benchmarks used in our evaluation are:

Bonnie++ Benchmark

Bonnie++ is a stress benchmark that tests I/O requests throughput

by using di�erent sets of tests.

In our case, Bonnie++ runs in each VM and executes the following

tests:

Sequential Write � Three di�erent tests write data sequentially.

51
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One uses putc stdio macro and another uses the write function

to write blocks. The third test rewrites the data by reading it

with the read function, modifying it and writing it again with

the write function.

Sequential Read � Two di�erent tests read data sequentially. The

�rst uses the getc stdio macro and the other uses the read

function to read blocks.

Random Seeks � In this test several processes run in parallel and

use the lseek function to go to di�erent locations in the �le.

These locations are given by a uniform distribution. When the

location is chosen the �le's block is read with the read function.

In 10% of the cases the block is modi�ed and written back with

the write function.

Bonnie++ benchmark also executes �le creation tests that we do not

use for our evaluation. Bonnie++ is not intended to test algorithms

like ours. This benchmark writes several times the same content.

This means that our algorithm will achieve share ratings that are

not realistic and our share module will be overloaded. In addition,

bonnie does not have any test that writes data blocks in a random

way and follows a distribution that is not uniform. This means that

all the blocks are written with the same probability. To test the

e�ciency of the Hot and Cold sets of blocks, described in Section

4.3, some blocks must be written more frequently than others.

Write Benchmark

A write benchmark was implemented with two objectives. First, a

realistic amount of duplicated data to be written is needed to be

simulated. This is important to test if the prototype is sharing an

expected amount of data and the share module is running with a

realistic charge. Second, a scenario where some blocks are written

more frequently than others is also necessary to be simulated. By
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having a non uniform distribution is possible to test our algorithm's

mechanism that shares blocks that are not expected to be rewritten

several times.

The write benchmark is written in C and is aimed at running in each

VM. In each VM, several processes that write data into a �le, which

is unique for each process, can be spawned. The number of processes

and the �le's size are con�gurable. All the write requests are done

with pwrite [46] function and use a block's size of 4KB. The location

for the write operation is given by NURand function from TPC-C

benchmark [51]. This function generates a distribution where there

are few blocks that are written several times and most blocks are

written few times. In Figure 6.1 this distribution is exempli�ed by

showing the number of blocks for each write frequency. These values

were extracted from a run of our benchmark and belong to one of

the processes that wrote 269,882 blocks into a 2 GB �le.
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Figure 6.1: NURand distribution.

For generating the content of the 4KB blocks written by our bench-

mark, a distribution identical to the one found in the GSD's data,

described in Chapter 3, is used. The results obtained from the GSD's

study for the �xed size block approach with a block's size of 4Kb
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are used to simulate this identical distribution. This allows having

a more realistic scenario for the blocks' content that should be writ-

ten. Consequently, a better approximation to the expected values of

redundancy found by our prototype can be achieved. Of course this

is only an approximation because we do not control the other blocks

that are being written by the VMs while our algorithm is running.

Additionally, some blocks are rewritten several times, which also

di�cult the prediction of the expected sharing rate because shared

blocks can be modi�ed and the share must be broken.
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Figure 6.2: Redundancy distribution: Blocks with less than twenty

�ve duplicates.

Figures 6.3 and 6.2 show the number of blocks, with a certain number

of duplicates, that can be found in a typical run of our benchmark.

In this run three di�erent VMs that executed our benchmark ap-

plication were used. In each VM, 4 processes that wrote blocks in

�les with a size of 2 GB were spawned. Each application ran for

30 minutes and the amount of data written in the three VMs was

approximately 24 GB. In this �gure, the number of blocks without

duplicates, which is 5,222,288, is not described. If we compare these
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Figure 6.3: Redundancy distribution: Blocks with more than twenty

�ve duplicates.

values with the ones described in Section 3.1, we conclude that this

distribution is identical to the one we got from GSD's data set. Table

6.1 compares the values obtained in this distribution with the ones

found in GSD's data set for the total number of blocks, the num-

ber of blocks that do not have any duplicate, the number of unique

blocks, the number of identical copies found, the average number of

duplicates per block and the average number of copies that a dupli-

cated block has. By analyzing these values, we can conclude that

they are proportional to the ones extracted from the GSD's study.

Finally, the amount of time that the benchmark will run can be

de�ned as parameter.

Read Benchmark

A read benchmark was implemented to evaluate the overhead in-

troduced in VMs' I/O read requests. More speci�cally, this bench-
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Table 6.1: Benchmark redundancy results: Comparison with GSD's

results.

GSD's data set Write Benchmark Factor

Total Blocks 29,530,586 6,299,922 4.68

Blocks Without Duplicates 22,610,369 5,222,288 4.32

Unique Files/Blocks 24,449,410 5,555,557 4.40

Blocks to Eliminate 5,081,176 744,365 6.82

Duplicates per Regular Block 0.23 0.17 1.36

Duplicates per Duplicated Block 2.76 2.23 1.23

mark's purpose is to measure read requests throughput and latency

for a scenario where the VMs' Translation tables are initialized in a

realistic way and the Share module is not actively sharing addresses.

RAM and CPU usage are also measured.

This benchmark resembles the write benchmark in some functional-

ities and it is also implemented in C. One instance of the benchmark

runs in each VM and several processes that will perform I/O re-

quests in an independent �le can be spawned for each benchmark

instance. The number of processes and �le's size is de�ned as pa-

rameter. First, these processes write data to the �le with the pwrite

function. The position and content, of these requests, are calculated

by using the same distributions used in the write benchmark. These

write operations are important to achieve a realistic initialization of

the VMs' Translation tables. The amount of time that the processes

write data is de�ned as parameter.

After the write operations are completed, the application waits a

certain amount of time, also de�ned as parameter, to start the read

operations. This is necessary to ensure that when read requests start,

the Share module is not sharing addresses from the write requests

done before. However, when read requests are being performed, the

share module will share some addresses that were not written by the

benchmark application. Finally, after the waiting time has elapsed,
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the read operations are performed with the pread [45] function. The

location for the read operations is given by the NURand distribution

and the size of the blocks to read is 4KB. The time interval for

reading data is also de�ned as a parameter.

Test Environment

A server equipped with a AMD Opteron (tm) Processor 242, 4 GB

of RAM and a 500Gb partition provided by a HP StorageWorks

4400 Enterprise Virtual Array (EVA4400) with RAID 0 was used

for all the tests. In this server, we ran three VMs with Ubuntu 8.04

2.6.24-24-xen Kernel, 256 MB of RAM and 10 GB for their virtual

disks. The operating system used for Dom0 OS was Ubuntu 8.04

with 2.6.24-24-xen Kernel's version. In our server it was installed

Xen's version 3.3.

Each of the benchmarks ran in two distinct scenarios:

Tap Aio � In this scenario all the VMs use the Tap Aio driver that

comes by default with Xen 3.3. Tap Aio driver was chosen as

baseline because our Interception I/O module is a modi�cation

of this driver. The VM's images are copied into our global

storage but are independent from each other, meaning that

their data is not being shared.

Our Prototype � In this scenario we run our prototype at the Dom0.

We use our mechanism, described in Section 5.4, for loading

the VMs images into the storage.

Both scenarios were contemplated because we wanted to compare

the results extracted from our prototype with the ones extracted

from a baseline approach. This comparison allowed us to measure

our prototype's overhead.

The mechanism presented at Section 5.4, which is intended to share

VMs images while they are being loaded into the storage was not
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used because we wanted to evaluate the performance of our algo-

rithm for detecting duplicated data when VMs were running. This

mechanism makes it harder to understand what data is being shared

in runtime. However, this mechanism to share VMs images is only

expected to introduce some overhead while VMs are being started

and in the �rst scans of our Share and GC modules. After these

�rst scans the system behavior should be identical to the one we

evaluated.

The following values were considered for our prototype's static pa-

rameters:

• The interval between two consecutive runs of the share mod-

ule's algorithm is 3 minutes. With this values the share algo-

rithm runs approximately 6 times for each VM1, performing a

total of 18 times.

• The size of the Free COW queue that triggers the GC to pro-

cess is 20,000. For the cases where this value is not reached

in 5 minutes the GC processes the queue automatically. With

these values the GC runs approximately 5 times for each VM.

With this con�guration, the maximum size that this queue will

have in RAM is 156 KB. All the blocks stored at this queue are

potential blocks to be freed by the garbage collector. This way,

blocks that are hold in this queue represent potential wasted

space. With the value 20,000 for the queue's size, the max-

imum space wasted, in the worst case that occurs when the

queue is full, is 78.13 MB.

• The bu�er of free blocks has space for 1200 addresses. Regard-

ing RAM space, this choice does not occupy more that 10 KB

per bu�er. This bu�er needs to be �lled with addresses that

point to storage's unused blocks. This means that for each

1The value for the number of times each component runs in our tests was

calculated by running the benchmarks a few times with the appropriate settings.
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bu�er 4.68MB of the storage's free blocks are needed. This

value for the bu�er's size was chosen with the intent of never

having the bu�er empty. If the bu�er is empty and a free block

is needed there will be a signi�cant delay in the VM's I/O write

request.

• The number of mutexes per Page Table used is 100 and the �ll

size for the bu�er of free blocks is 400 blocks.

These values were chosen with the intent of having a minimum im-

pact on VMs' I/O requests throughput and latency. However, we

tried to keep these values acceptable in terms of the RAM and Stor-

age's size needed.

6.2 Bonnie++ Results

We ran one instance of Bonnie benchmark in each VM. Each of these

instances wrote/read 12 GB.

Bonnie++ ran for the Tap Aio scenario and for our fully optimized

prototype scenario (Mutex & Bu�er).

Table 6.2 shows the throughput results for both scenarios and the

percentage of overhead generated by our prototype. The throughput

values at this table represent the sum of the results obtained for the

three VMs. By looking at these results we can see that the four

tests that were executed in the middle generate more overhead. The

most important factor that explains this decrease in performance

is the amount of load that this benchmark introduces in our share

algorithm.

Table 6.3 shows the amount of data that was shared and relates

it with the amount of data written. With Bonnie benchmark our

algorithm shares 36% of the data. To explain this result is important

to understand that each sequential write test writes 4 GB of data

into �les with 1 GB. All these tests, including the random test, write
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Table 6.2: Bonnie++ benchmark I/O throughput results.

Tap Aio Mutex & Bu�er Overhead

Putc Test 73,285 KB/sec 67,517 KB/sec 8%

Write Block Test 162,483 KB/sec 124,520 KB/sec 24%

Rewrite Test 39,064 KB/sec 33,014 KB/sec 16%

Getc Test 35,549 KB/sec 27,388 KB/sec 23%

Read Block Test 106,119 KB/sec 84,400 KB/sec 21%

Random Seeks Test 304 KB/sec 290 KB/sec 5%

data into the same �les. In addition, the content written to the �les

is the same in each I/O write request. More concretely, when the

putc test �nishes there are 4GB of identical data that can be shared.

Then, all the other write tests will rewrite the same �les with the

same content, which means that sharing will be broken and redone

for all the �les' data, in each test. When the benchmark is over, 4 GB

of identical data are expected to be found. In our case, we have three

VMs, which means that is expected to be found 12 GB of redundant

data at the storage. Looking at the table's results, we see that

were found 12.9 GB. This value is slightly higher than the expected

one, because it is necessary to contemplate the data that was shared

between VMs and was not related with the benchmark. To conclude,

this value allows us to verify that our prototype sharing algorithm

is correct and to explain why this benchmark is not suited for our

prototype. By writing the same content and rewriting it in each

test, our Share module is overloaded, which decreases signi�cantly

the performance.

Table 6.3: Bonnie++ benchmark redundancy results.

Mutex & Bu�er

Space Saved 12.99 GB

Space Written 36 GB

Percent of Space Saved 36%
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Looking at the results in Table 6.2, the higher values for the over-

head are in the write block, rewrite, read with putc and read block

tests. This happens because these tests are running while our proto-

type is actively sharing data. For the putc test where our algorithm

has not started yet and for the random test where our algorithm has

already shared all the data from the write tests the overhead values

decrease. Despite these results, in average, our prototype introduces

15% of overhead in write and read requests for the Bonnie++ test,

which is not a negative result. Table 6.4 shows the average values

for CPU and RAM usage. The di�erence between RAM values can

be justi�ed with the data structures needed for the sharing process.

Regarding CPU usage, the di�erence between the two scenarios can

also be attributed to the load that is introduced to our share algo-

rithm by Bonnie++.

Table 6.4: Bonnie++ benchmark CPU and RAM results.

Tap Aio Mutex & Bu�er

Average CPU Usage 18.35% 41.30%

Average RAM Usage 26.91 MB 287.3 MB

6.3 Write Benchmark Results

Our write benchmark application ran in three VMs. In each VM, 4

processes were spawned and each wrote data into a �le with 2 GB.

The benchmark ran for 30 minutes.

For this benchmark only, we tested three versions of our prototype.

One of them did not use any optimization (Base), another one used

only the mutex optimization (Mutex) and the last one used the bu�er

and mutex optimizations (Mutex & Bu�er).

Table 6.5 shows the values for throughput, write requests latency,

RAM usage and CPU usage obtained for the four scenarios that were

tested. The throughput and latency values at this table represent the
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sum of the results obtained for the three VMs. The CPU and RAM

average values are extracted from the Dom0. Each of the optimiza-

tions improves the throughput value without increasing signi�cantly

the RAM and CPU usage. In fact, CPU average value when us-

ing both optimizations is smaller. This may be happening because

our prototype is batching requests for the bu�er of free blocks. By

taking this approach, the number of operations performed decreases

and consequently the computational power required is also reduced.

Our fully optimized approach also has an average CPU usage that

is acceptable when compared to the Tap Aio results. The increase

in RAM's usage is a consequence of having blocks being shared. In

fact, the di�erences between the values for each prototype's version

are justi�ed by larger throughput values that also increase the num-

ber of blocks that will be shared. In this case our fully optimized

approach uses signi�cantly more RAM than Tap Aio. This happens

because the data structures that will be used by our algorithm are

kept in memory. This value is acceptable for these tests and can

be decreased signi�cantly if some data structures like the Hash-to-

Address table and Free Blocks queue are stored partially on disk.

Finally, the throughput and write latency of our fully optimized ap-

proach are similar to the ones extracted from Tap Aio. The overhead

introduced by our prototype is less than 4% for this last comparison.

Table 6.5: Write benchmark results.

Tap Aio Base Mutex Mutex & Bu�er

Write Throughput (blocks/sec) 2952 2218 2598 2841

Write Latency 3.9 ms 5.1 ms 4.5 ms 4.1 ms

Average RAM usage 2.43 MB 220.3 MB 248.8 MB 252.45 MB

Average CPU Usage 18.9% 28.67% 31.30% 26.52%

Table 6.6 shows the amount of data that was shared by each version

of our prototype. The values are identical for the three scenarios

and the variations are justi�ed by the throughput values that each

version accomplished. Each of these version shared approximately
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25% of the data that was written. This percentage is slightly higher

than the one found in the GSD's data set that was around 16%.

Once again, the value for the amount of data that should be shared

is di�cult to calculate precisely. Nevertheless, this value seems to

be coherent with the expected one.

Table 6.6: Write benchmark redundancy results.

Prototype Mutex Mutex & Bu�er

Total Blocks Shared 1,128,817 1,229,958 1,327,355

Space Saved 4.31 GB 4.69 GB 5.06 GB

Space Written 15.23 GB 17.84 GB 19.51 GB

Percent of Space Saved 28% 26% 26%

6.4 Read Benchmark Results

Our read benchmark application ran in three VMs. In each VM, 4

processes were spawned and each wrote and read data from a 2 GB

�le. Write requests were performed for 10 minutes; then, there was

an interval of 10 minutes before starting the read operations, which

were performed for 20 minutes. The benchmark ran for the Tap Aio

scenario and for our fully optimized scenario (Mutex & Bu�er). In

both scenarios, approximately 1.5 GB of data was written in each

VM.

Table 6.7 shows the values for VM's read requests throughput and

latency and for the CPU and RAM usage. RAM values refer to the

entire run of the benchmark and CPU values refer only to the read

operations. Our prototype does not introduce a signi�cant amount of

overhead, 1%, in VMs' I/O read requests, for the evaluated scenario.

Regarding CPU usage, the average value increases 1%. The RAM

usage is explained, once again, by the metadata that is used by our

prototype to share identical data.

Table 6.8 shows the amount of data that was shared by our prototype
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Table 6.7: Read benchmark results.

Tap Aio Mutex & Bu�er

Read Throughput (blocks/sec) 882 875

Read Latency 13.5 ms 14 ms

Average RAM usage 2 MB 204 MB

Average CPU Usage 7% 8%

and the amount of data written for the three VMs. By Looking at

these values, 55% of the data was shared. This value is higher than

the values obtained in the other two benchmarks. This happens

because this benchmark writes less content than the other two, which

makes more visible the data shared by the VMs that was not written

by the benchmark.

Table 6.8: Read benchmark redundancy results.

Mutex & Bu�er

Space Saved 2.5 GB

Space Written 4.5 GB

Percent of Space Saved 55%

6.5 Summary

The results described above allow us to extract several conclusions.

Regarding Bonnie++ benchmark's results, we can conclude that this

benchmark is not suited to test algorithms like ours. This happens

because Bonnie++ writes exactly the same data for each write op-

eration, which overloads the sharing algorithm. Besides that, the

location where data is written is chosen with a uniform distribution,

which does not allows taking advantage of our mechanism to detect

blocks that are modi�ed frequently. Nevertheless, this benchmark

allows us to see how our prototype behaves in an adverse scenario

and to conclude that our prototype �nds almost all duplicated data
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and shares it.

Regarding read benchmark's results, we can conclude that our pro-

totype does not introduce signi�cant overhead in VMs' I/O read

requests in a scenario where the VMs' Translation table is initial-

ized in a realistic way and the Share module is not actively sharing

data.

From the write benchmark's results, we can extract the most mean-

ingful conclusions because it represents a realistic scenario where

there is an intensive charge of write requests to the storage. These

results allow us to conclude that with 7.62% of overhead in CPU

usage and 4% of overhead in I/O write requests our prototype can

save 26% of space in the storage.

Regarding the RAM usage, for all benchmarks, we think that is

possible, as future work, to improve its usage by choosing a better

approach to manage the data structures needed by our approach.
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Chapter 7

Conclusion

This dissertation introduces a solution to �nd and eliminate dupli-

cated data in a virtualized system. First, the e�ectiveness of two

techniques to �nd duplicated data was evaluated with the GSD's

data set, which contains personal �les from several researchers. One

of the techniques detects duplicated �les and the other detects dupli-

cated blocks with a �xed size. For our speci�c scenario, we concluded

that the block approach is better. This observation is still true when

the space overhead introduced by the metadata necessary to elim-

inate duplicated data is taken in account. Three di�erent block's

sizes were used and the results, in terms of space saved, were simi-

lar. This study was essential to de�ne a realistic benchmark to test

our prototype.

A solution to detect and eliminate redundancy between virtual disks

of VMs, which are running in the same physical machine and sharing

a common storage, was presented. Our solution does not use a typ-

ical scan approach to detect duplicated data at the storage. Instead

it uses a dynamic approach that intercepts I/O write requests from

the VMs to their virtual disks and uses this information to share

identical data. With this approach, we reduce the computational

power that would be necessary by using a scan method. We also

minimize the overhead introduced into the I/O write requests, by
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delaying the process of calculating the blocks signatures and sharing

them. Our architecture is composed by three modules and each has

a di�erent purpose. The I/O interception module intercepts VMs'

I/O requests and redirects them to the correct physical address. This

module keeps a list of all the blocks that were written, which will be

consumed by our Share module. The Share module is responsible for

processing each element of that list and sharing it. At this module,

an additional mechanism was introduced to prevent the sharing of

blocks that are modi�ed frequently. Besides these modules, there is

a Garbage Collector module responsible for distributing free blocks

to the I/O Interception module and collecting unused blocks that re-

sult from the sharing process and from the copy-on-write operations.

The copy-on-write operations are fundamental to prevent VMs from

modifying blocks that are being shared.

We also presented a prototype that uses Xen and implements the

architecture described above. This prototype contemplates a new

mechanism that was not introduced in our architecture. This mech-

anism is used to load the VMs' images into the global storage and

allows sharing data contained in VMs images that is never written.

Two optimizations were introduced in our prototype with the in-

tent of increasing the throughput of VMs' write and read requests.

In fact, these optimizations were crucial to achieve I/O throughput

rates that are identical to the ones obtained from a baseline approach

were no deduplication is performed.

Finally, we benchmarked our prototype using a distribution to gen-

erate the content to be written that resembles the distribution of

GSD's data set. The TPC-C NURand function was used to calcu-

late the �le's position where read and write operations are executed.

From these benchmarks, we concluded that our prototype shares

identical data between several VMs without introducing a signif-

icant amount of overhead in the CPU usage and in I/O requests

throughput and latency. Regarding RAM usage, the value is accept-
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able for our study purpose. In fact, RAM usage can be improved

signi�cantly by using an optimized approach to store the metadata

used by our prototype.

To conclude, this document presents a solution to �nd and eliminate

duplicated data in a virtualized scenario, which is not addressed, as

far as we know, by any commercial or open-source product.
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Chapter 8

Future Work

This work addresses the challenge of deduplication between VMs

running in the same physical host. As future work, our algorithm

can be adapted to a distributed environment where virtual disks

from VMs, running in di�erent physical machines, are shared. Our

approach was designed to be easily adaptable to this new scenario.

The two main remaining challenges are: the need of a distributed

Hash-to-Address table, shared by all the physical machines; and a

distributed system to manage the global storage's free blocks. This

last module is responsible for collecting and retrieving storage's un-

used blocks from the GC module that is running in each physical

node. This way, there is a distinct instance of the Share module and

GC module running in each physical node, interacting with these

two new mechanisms. Solutions for both these problems are already

documented. A Distributed Hash Table [19, 21] may be used to

implement the distributed Hash-to-Address table. An �extend� ap-

proach, identical to the one described in Section 2.4 from Parallax,

can be used to manage the storage's unused blocks.

A dynamic scenario, where the VMs are created, started and stopped

while our algorithm is running, can be also addressed as future work.

In our prototype, VMs can be stopped and resumed, but the number

of VMs is de�ned statically when the Share module starts. Regard-
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ing the dynamic creation of new VMs, a mechanism that calculates

if the storage has enough space for that VM's virtual disk and re-

ports the new VM to the Share and Garbage Collector modules is

necessary. One possibility is to use the garbage collector module to

handle the virtual disk's space allocation. The process of stopping

and resuming VMs can also be improved. In our work, we are not

concerned with the loading or unloading of VM's data structures,

present at the share and GC modules, when the VMs are resumed

or stopped respectively. The resume and stop VM's operations must

have in account the loading/unloading of data structures like VM's

Translation table, Dirty Addresses table and Free COW queue, in

order to optimize memory consumption. The occurrence of failures

in our modules and in VMs is also important to consider in a future

version.

Both Hash-to-Address table and Free Blocks queue are kept in mem-

ory in our implementation. However, they can grow signi�cantly

for large data sets. As future work, an approach where these data

structures are kept on disk and a cache mechanism is used can be

designed.

The solution proposed by VMware ESX Server [55] describes a hint

mechanism that is used to reduce the number of addresses marked

as copy-on-write. This mechanism allows marking only as copy-on-

write the addresses that are really being shared. In our work, we

also have physical addresses, which are not actually being shared,

marked as copy-on-write. A similar mechanism can be created for

our approach.

As discussed in chapter 4, our algorithm does not address the issue of

maintaining some redundant data to provide a fault-tolerant storage

service. In section 3.2, we introduced two ideas to achieve this goal

but they are not currently being used.

Some of the process of detecting duplicates can be adapted and used

to optimize data transmission. An approach that uses the Hash-to-
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Address table to check what data is already at the storage and sees

what parts of the request are not worth uploading can be imple-

mented.

A study concerning the impact of the modi�cation of the static

parameters, used in our approach, is also important to be accom-

plished. All these variations will represent a trade o� between the

RAM needed, the Storage's space needed and the overhead intro-

duced to the VM's I/O requests. This study is important to un-

derstand how the modi�cation of one parameter interacts with the

others, as well as to understand the best combinations for di�erent

workloads.

Finally, there is also the TRIM solid-state-drive command that al-

lows the operating system to communicate with a solid-state-drive

controller and pass information about what data blocks are no longer

in use [52]. For now this solution is in its early stages but, in the

future, it can be useful to simplify our Garbage Collector mechanism.



74 CHAPTER 8. FUTURE WORK



Bibliography

[1] M. Armbrust, A. Fox, R. Gri�th, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and

M. Zaharia. Above the clouds: A berkeley view of cloud com-

puting. Technical report, University of California at Berkeley,

2009.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. War�eld. Xen and the art

of virtualization. In SOSP '03: Proceedings of the nineteenth

ACM symposium on Operating systems principles, pages 164�

177. ACM, 2003.

[3] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and

T. Kraska. Building a database on s3. In SIGMOD '08: Pro-

ceedings of the 2008 ACM SIGMOD international conference

on Management of data, pages 251�264. ACM, 2008.

[4] A. Z. Broder. Some applications of rabin's �ngerprinting

method. In Sequences II: Methods in Communications, Secu-

rity, and Computer Science, pages 143�152. Springer-Verlag,

1993.

[5] R. Buyya, C. S. Yeo, and S. Venugopal. Market-oriented cloud

computing: Vision, hype, and reality for delivering it services as

computing utilities. In HPCC '08: Proceedings of the 2008 10th

IEEE International Conference on High Performance Comput-

75



76 BIBLIOGRAPHY

ing and Communications, pages 5�13. IEEE Computer Society,

2008.

[6] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: making

backup cheap and easy. In OSDI '02: Symposium on Operating

Systems Design and Implementation, pages 285�298. USENIX

Association, 2002.

[7] B. Eckel. Thinking in Java. Prentice Hall PTR, 1998.

[8] T. E.Denehy and W. W. Hsu. Duplicate management for refer-

ence data. Technical report, IBM Research, 2003.

[9] R. P. Goldberg. Survey of virtual machine research. Computer,

7(6):34�45, 1974.

[10] B. W. Kernighan and D. M. Ritchie. The C Programming Lan-

guage. Prentice Hall, second edition, 1988.

[11] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey. Redun-

dancy elimination within large collections of �les. In ATEC

'04: Proceedings of the annual conference on USENIX Annual

Technical Conference, pages 5�5. USENIX Association, 2004.

[12] U. Manber. Finding similar �les in a large �le system. In Usenix

Winter 1994 Technical Conference, pages 1�10. USENIX Asso-

ciation, 1994.

[13] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. J. Feeley,

N. C. Hutchinson, and A. War�eld. Parallax: virtual disks for

virtual machines. In Eurosys '08: Proceedings of the 3rd ACM

SIGOPS/EuroSys European Conference on Computer Systems

2008, pages 41�54. ACM, 2008.

[14] G. Milos, D. G. Murray, S. Hand, and M. Fetterman. Satori:

Enlightened page sharing. In 2009 USENIX Annual Technical

Conference. USENIX Association, 2009.



BIBLIOGRAPHY 77

[15] A. Muthitacharoen, B. Chen, D. Mazieres, and D. M. Eres. A

low-bandwidth network �le system. In In Proceedings of the

Symposium on Operating Systems Principles (SOSP'01), pages

174�187. ACM, 2001.

[16] D. Nurmi, R. Wolsky, C. Grzegorczyk, G. Obertelli, S. Soman,

L. Youse�, and D. Zagorodnov. Eucalyptus: A technical re-

port on an elastic utility computing architecture linking your

programs to useful systems. Technical report, University of

California Computer Science Department, 2008.

[17] C. Policroniades and I. Pratt. Alternatives for detecting redun-

dancy in storage systems data. In ATEC '04: Proceedings of

the annual conference on USENIX Annual Technical Confer-

ence, pages 6�6. USENIX Association, 2004.

[18] S. Quinlan and S. Dorward. Venti: A new approach to archival

storage. In FAST '02: Proceedings of the Conference on File

and Storage Technologies, pages 89�101. USENIX Association,

2002.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized

object location and routing for large-scale peer-to-peer systems.

In IFIP/ACM International Conference on Distributed Systems

Platforms (Middleware), pages 329�350. ACM, Nov. 2001.

[20] J. E. Smith and R. Nair. The architecture of virtual machines.

Computer, 38(5):32�38, 2005.

[21] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for

internet applications. In SIGCOMM '01: Proceedings of the

2001 conference on Applications, technologies, architectures,

and protocols for computer communications, pages 149�160.

ACM, 2001.



78 BIBLIOGRAPHY

[22] M. Szeredi. Filesystem in user space. http://fuse.

sourceforge.net/. accessed 5th October, 2009.

[23] A. Tridgell and P. Mackerras. The rsync algorithm. Technical

report, Australian National University, 1998.

[24] (Unattributed). Amazon ebs documentation. http://aws.

amazon.com/ebs/. accessed 15th September, 2009.

[25] (Unattributed). Amazon ec2 documentation. http://aws.

amazon.com/ec2/. accessed 15th September, 2009.

[26] (Unattributed). Amazon s3 documentation. http://aws.

amazon.com/s3/. accessed 15th September, 2009.

[27] (Unattributed). Amazon simple db documentation. http://

aws.amazon.com/simpledb. accessed 15th September, 2009.

[28] (Unattributed). Amazon web services used in drop-

box. http://developer.amazonwebservices.com/

connect/entry!default.jspa?categoryID=89&externalID=

1955&fromSearchPage=true. accessed 10th September, 2009.

[29] (Unattributed). Blktap documentation. http://wiki.

xensource.com/xenwiki/blktap. accessed 5th October, 2009.

[30] (Unattributed). Box.net documentation. http://www.box.

net/info. accessed 10th September, 2009.

[31] (Unattributed). Data domain documentation. http://www.

datadomain.com/products/. accessed 15th September, 2009.

[32] (Unattributed). Dm-userspace documentation. http://wiki.

xensource.com/xenwiki/DmUserspace. accessed 5th October,

2009.

[33] (Unattributed). Dropbox documentation. http://www.

getdropbox.com/. accessed 10th September, 2009.

http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://aws.amazon.com/ebs/
http://aws.amazon.com/ebs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/simpledb
http://aws.amazon.com/simpledb
http://developer.amazonwebservices.com/connect/entry!default.jspa?categoryID=89&externalID=1955&fromSearchPage=true
http://developer.amazonwebservices.com/connect/entry!default.jspa?categoryID=89&externalID=1955&fromSearchPage=true
http://developer.amazonwebservices.com/connect/entry!default.jspa?categoryID=89&externalID=1955&fromSearchPage=true
http://wiki.xensource.com/xenwiki/blktap
http://wiki.xensource.com/xenwiki/blktap
http://www.box.net/info
http://www.box.net/info
http://www.datadomain.com/products/
http://www.datadomain.com/products/
http://wiki.xensource.com/xenwiki/DmUserspace
http://wiki.xensource.com/xenwiki/DmUserspace
http://www.getdropbox.com/
http://www.getdropbox.com/


BIBLIOGRAPHY 79

[34] (Unattributed). Emc avamar documentation. http://www.

emc.com/products/detail/software/avamar.htm. accessed

15th September, 2009.

[35] (Unattributed). Exagrid documentation. http://www.

exagrid.com/products/exagrid_product_line.asp. ac-

cessed 15th September, 2009.

[36] (Unattributed). Freedup documentation. http://www.

freedup.org/. accessed 5th October, 2009.

[37] (Unattributed). Glib hash tables module documenta-

tion. http://library.gnome.org/devel/glib/unstable/

glib-Hash-Tables.html. accessed 5th October, 2009.

[38] (Unattributed). Google app engine datastore documen-

tation. http://code.google.com/appengine/docs/python/

datastore/. accessed 15th September, 2009.

[39] (Unattributed). Google app engine documentation. http:

//code.google.com/appengine/docs/. accessed 15th Septem-

ber, 2009.

[40] (Unattributed). Google docs documentation. http://docs.

google.com/support/bin/topic.py?hl=en&topic=15114.

accessed 10th September, 2009.

[41] (Unattributed). Ibm protect tier documentation. http://

www-07.ibm.com/vn/storageinnovations/index2.html#2.

accessed 15th September, 2009.

[42] (Unattributed). Mk�fo linux manual page. http://linux.die.

net/man/3/mkfifo. accessed 5th October, 2009.

[43] (Unattributed). Mkfs.ext3 linux manual page. http://linux.

die.net/man/8/mkfs.ext3. accessed 10th October, 2009.

http://www.emc.com/products/detail/software/avamar.htm
http://www.emc.com/products/detail/software/avamar.htm
http://www.exagrid.com/products/exagrid_product_line.asp
http://www.exagrid.com/products/exagrid_product_line.asp
http://www.freedup.org/
http://www.freedup.org/
http://library.gnome.org/devel/glib/unstable/ glib-Hash-Tables.html
http://library.gnome.org/devel/glib/unstable/ glib-Hash-Tables.html
http://code.google.com/appengine/docs/python/ datastore/
http://code.google.com/appengine/docs/python/ datastore/
http://code.google.com/appengine/docs/
http://code.google.com/appengine/docs/
http://docs.google.com/support/bin/topic.py?hl=en&topic=15114
http://docs.google.com/support/bin/topic.py?hl=en&topic=15114
http://www-07.ibm.com/vn/storageinnovations/index2.html#2
http://www-07.ibm.com/vn/storageinnovations/index2.html#2
http://linux.die.net/man/3/mkfifo
http://linux.die.net/man/3/mkfifo
http://linux.die.net/man/8/mkfs.ext3
http://linux.die.net/man/8/mkfs.ext3


80 BIBLIOGRAPHY

[44] (Unattributed). Mmap linux manual page. http://linux.die.

net/man/3/mmap. accessed 5th October, 2009.

[45] (Unattributed). Pread linux manual page. http://linux.die.

net/man/2/pread. accessed 15th October, 2009.

[46] (Unattributed). Pwrite linux manual page. http://linux.

die.net/man/2/pwrite. accessed 15th October, 2009.

[47] (Unattributed). Python 2.6 on-line documentation. http://

docs.python.org/. accessed 5th October, 2009.

[48] (Unattributed). Rapidshare web page. http://www.

rapidshare.com/. accessed 10th September, 2009.

[49] (Unattributed). Sha-1 linux manual page. http://linux.die.

net/man/3/sha1. accessed 5th October, 2009.

[50] (Unattributed). Time machine web page. http://www.apple.

com/macosx/what-is-macosx/time-machine.html. accessed

15th October, 2009.

[51] (Unattributed). Tpc-c standard speci�cation, revision 5.5.

http://www.tpc.org/tpcc/spec/tpcc_current.pdf. ac-

cessed 15th October, 2009.

[52] (Unattributed). Trim overview. http://www.anandtech.com/

storage/showdoc.aspx?i=3531&p=10. accessed 10th October,

2009.

[53] (Unattributed). Fips 180-2, secure hash standard, federal infor-

mation processing standard (�ps), publication 180-2. Technical

report, National institute of standards and technology, Depart-

ment of Commerce, 2002.

[54] (Unattributed). Introduction to cloud computing architecture.

White paper, Sun Microsystems, Inc, 2009.

http://linux.die.net/man/3/mmap
http://linux.die.net/man/3/mmap
http://linux.die.net/man/2/pread
http://linux.die.net/man/2/pread
http://linux.die.net/man/2/pwrite
http://linux.die.net/man/2/pwrite
http://docs.python.org/
http://docs.python.org/
http://www.rapidshare.com/
http://www.rapidshare.com/
http://linux.die.net/man/3/sha1
http://linux.die.net/man/3/sha1
http://www.apple.com/macosx/what-is-macosx/time-machine.html
http://www.apple.com/macosx/what-is-macosx/time-machine.html
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.anandtech.com/storage/showdoc.aspx?i=3531&p=10
http://www.anandtech.com/storage/showdoc.aspx?i=3531&p=10


BIBLIOGRAPHY 81

[55] C. A. Waldspurger. Memory resource management in vmware

esx server. In Proceeedings of the 5th USENIX symposium on

Operating Systems Design and Implementation. USENIX Asso-

ciation, 2002.

[56] A. War�eld, R. Ross, K. Fraser, C. Limpach, and S. Hand. Par-

allax: managing storage for a million machines. In HOTOS'05:

Proceedings of the 10th conference on Hot Topics in Operating

Systems, pages 4�4. USENIX Association, 2005.

[57] L. L. You, K. T. Pollack, and D. D. E. Long. Deep store: An

archival storage system architecture. In ICDE '05: Proceedings

of the 21st International Conference on Data Engineering, pages

804�8015. IEEE Computer Society, 2005.


	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Problem Statement
	Objectives
	Contributions
	Dissertation Outline

	Related Work
	Finding and Eliminating Duplicated Data
	Remote Backup/Storage Services
	Cloud Services
	Virtualization Scenarios

	Redundancy Study
	Redundancy Detection
	Metadata

	Deduplication Architecture
	Overview
	Intercepting I/O Requests
	Share Module
	Garbage Collector Module

	Prototype
	Intercepting I/O Requests
	Share Module
	Garbage Collector Module
	Loading Virtual Machines Images
	Prototype Optimizations

	Experimental Evaluation
	Tests Description
	Bonnie++ Results
	Write Benchmark Results
	Read Benchmark Results
	Summary

	Conclusion
	Future Work
	References
	João Tiago Medeiros Paulo.pdf
	Página 1
	Página 2
	Página 3


