
Efficient Epidemic Multicast in
Heterogeneous Networks�

José Pereira1, Rui Oliveira1, and Luı́s Rodrigues2

1 University of Minho
{jop, rco}@di.uminho.pt

2 University of Lisbon
ler@di.fc.ul.pt

Abstract. The scalability and resilience of epidemic multicast, also called prob-
abilistic or gossip-based multicast, rests on its symmetry: Each participant node
contributes the same share of bandwidth thus spreading the load and allowing for
redundancy. On the other hand, the symmetry of gossiping means that it does not
avoid nodes or links with less capacity. Unfortunately, one cannot naively avoid
such symmetry without also endangering scalability and resilience. In this paper
we point out how to break out of this dilemma, by lazily deferring message trans-
mission according to a configurable policy. An experimental proof-of-concept
illustrates the approach.

1 Introduction

Epidemic multicast protocols, also known as probabilistic or gossip-based, have been
proposed for information dissemination due to their scalability to large number of par-
ticipants and high reliability [BHO+99, EGH+01, PRM+03]. They share at their core a
simple procedure: Each item that is received by a node is relayed to a small random sub-
set of other nodes. It can be shown that a message spreads exponentially fast and that
the probability that all nodes are informed can be made as large as desired, although
not 1, by adjusting configuration parameters [EGKM04]. The same approach has been
used for other purposes such as aggregation and topology management [vRBV03, JB06,
JKvS03].

The advantages of epidemic multicast stem from its symmetry: Each participant
node contributes the same share of bandwidth thus spreading the load and allowing
for large redundancy. On the other hand, the symmetry of gossiping means that it does
not avoid nodes or links with less capacity, thus being hard to deploy in large and het-
erogeneous networks. Unfortunately, one cannot naively avoid such symmetry without
also endangering scalability and resilience. Existing proposals address this by using ex-
plicit knowledge of topology to avoid redundancy on selected links [LM99] or create
an additional structured overlay, restricting gossip to subsets of participants [GKG05].

In this paper we point out how to break out of this dilemma without abandoning the
simple gossiping procedure. This is achieved by lazily deferring message transmission

� This work was partially supported by project “P-SON: Probabilistically Structured Overlay
Networks” (POS C/EIA/60941/2004).

R. Meersman, Z. Tari, P. Herrero et al. (Eds.): OTM Workshops 2006, LNCS 4278, pp. 1520–1529, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Epidemic Multicast in Heterogeneous Networks 1521

according to a configurable policy, which has a profound impact in resources used by
different nodes and links. A prototype implementation allows the evaluation of several
proof-of-concept policies, illustrating the approach.

The rest of this paper is organized as follows. In Section 2 we discuss different gos-
sip strategies. In Section 3 we propose a multicast protocol that combines eager and
lazy push gossip and speculate how this can be used to improve resource usage. Sec-
tion 4 presents a proof-of-concept using the NeEM protocol implementation. Finally,
Section 5 concludes the paper by discussing the conclusions and major open issues.

2 Background

Several variants of gossiping exist [KSSV00]. A first variant is pull gossiping. A node
that wants to know something, contacts another node and asks for the news (e.g. “What’s
new?”). If the target node has learned something recently it, replies (e.g. “Italy won the
world cup.”). A straightforward optimization, called two-phase pull is to ask first news
titles (e.g. “What’s new?”, “The world cup has a winner.”) and then, selectively, pull
each interesting item (e.g. “Tell me who it is.”). The lazy variant is useful when the
payload is large enough to offset the additional round-trip and control message overhead.
This last option has been implemented in the USENET news protocol (NNTP) with the
NEWNEWS and ARTICLE commands [KL86].

Alternatively, each node that knows new data contacts another node and tells it the
news. Each node does this a limited number of times for each item. This is called push
gossiping. An optimization of the push strategy, lazy push, is to defer the transmission
of the payload. A node will therefore contact another node and identify the data (e.g. “I
know who won the world cup.”). If the data is unknown, full transmission is required
(e.g. “Really? Tell me!”). The originator will then complete the transmission (e.g. “It
was Italy.”). Again, this is useful when the payload is large enough and it is likely that
the data is already known. Both approaches have been implemented by NNTP [KL86].
Eager push is done with the POST command. Lazy push is done with the IHAVE com-
mand.

NNTP has however a very strict policy on which mechanism to use between each pair
of hosts. First, for each connection it distinguishes between a server and a client, requir-
ing that only the client issues commands. Namely, between two nodes, the client issues
NEWNEWS and ARTICLE to download news and IHAVE to upload recent news. The
POST command, and thus push, is reserved for user agent nodes, when uploading a
message to a single server. This makes sense in the administratively configured, and
mostly static, topology of NNTP.

3 Hybrid Push Gossip

We are now interested in combining the two push gossip strategies in an epidemic mul-
ticast protocol to improve its performance in heterogeneous networks. Specifically, dur-
ing a gossip round, when forwarding a message we choose eager or lazy push indepen-
dently for each target. Before introducing the algorithm, we discuss the expected impact
on reliability and speculate about possible performance advantages.

1522 J. Pereira, R. Oliveira, and L. Rodrigues

3.1 Expected Impact on Reliability

The reliability of epidemic multicast is characterized by mathematical formulas that
depend on gossip configuration and on fault probability [EGKM04]. Although the pro-
posed changes don’t have an impact on gossiping at an abstract level, lazy transmission
impacts fault probability, as the additional round-trip and resulting increased latency,
widens the window of vulnerability to network faults.

In detail, lazy transmission requires 3 individual packets exchanged in contrast with
the single transmission required for eager push. Considering that each packet trans-
mission, or eager push, is lost with a non-zero probability εe regardless of its size, and
assuming that each transmission is an independent event, the probability of a lazy trans-
mission being dropped is εl = 1− (1− εe)3 and thus εe < εl. This should be accounted
for when configuring protocol parameters, but has a very low impact for realistically
small values of εe.

However, the probability of small control messages being lost might be smaller that
the probability of loosing the entire payload. Furthermore, the probability of several
messages being dropped between the same pair of nodes in a short period of time cannot
be considered independent, as messages are dropped due to congestion or faulty links.
Therefore it is likely that εl < 1 − (1 − εe)3 by a fairly large margin, although εe < εl

should always hold. This is especially true in the NeEM protocol used in Section 4, due
to its use of TCP/IP [PRM+03], which will perform retransmission of spurious dropped
packets.

3.2 Expected Impact on Performance

Intuitively lazy gossip is useful as it reduces the likelihood of transmitting the pay-
load multiple times to the same target node. Considering the exponential nature of epi-
demic dissemination, which starts slowly, has a fast expansion phase and then termi-
nates slowly again, eager gossip is less interesting during the last rounds, when a large
share of target nodes have already received the message. Eager gossip is at the last
rounds responsible for a large overhead, as each node receives multiple copies of the
message. Likewise, lazy push is less useful during the first rounds when only a small
share of target nodes has received the message and thus will certainly have to request
transmission.

An obvious conclusion is that one should switch from an eager to a lazy strat-
egy based on round number. This has been exploited in the original pbcast proto-
col [BHO+99], although the preferred eager mechanism in pbcast is not gossip and
the lazy mechanism is two-phase pull gossip. Based on identical arguments, it has been
proposed that an eager push mechanism is used initially, and then switched to a pull
mechanism [KSSV00].

In contrast, our proposal is based on independently configuring each transmission
of a single gossip round: For each of the nodes chosen as targets for gossiping some
message, one wants to query a configurable policy module for the appropriate strategy.
Roughly, given a set of targets, the policy module partitions it in a lazy set and an eager
set, basing its decision on some knowledge it possesses about the system and on the
message itself.

Efficient Epidemic Multicast in Heterogeneous Networks 1523

1 proc MULTICAST(d) do
2 FORWARD(MKID(), d, 0)

3 proc FORWARD(i, d, r) do
4 DELIVER(d)
5 K = K ∪ {i}
6 W [i] = ∅
7 if r < m do
8 P = PEERSAMPLE(f)
9 (E, L) = SPLIT(P, d, r)
10 for each p ∈ E do
11 SEND(MSG(i, d, r + 1), p)
12 C[i] = (d, r)
13 for each p ∈ L do
14 SEND(IHAVE(i), p)

15 upon RECEIVE(MSG(i,d, r), s) do
16 if i �∈ K then
17 FORWARD(i, d, r)

18 upon RECEIVE(IHAVE(i),s) do
19 if i �∈ K then
20 W [i] = W [i] ∪ {s}

21 periodically, for some (i, s) : s ∈ W [i] do
22 SEND(IWANT(i), s)
23 W [i] = W [i] \ {s}

24 upon RECEIVE(IWANT(i),s) do
25 (d, r) = C[i]
26 SEND(MSG(i, d, r + 1), p)

Fig. 1. Hybrid push gossip protocol

This approach has a more subtle impact on performance, which is not as easy to
grasp. To help your intuition we make two assumptions, that we will not use later when
evaluating the protocol. The first assumption is that the latency of a lazy round is much
larger than the latency of an eager round.1 If a source node s transmits a message m
eagerly to a target t1 and lazily to another target t2, it is likely that t2 ends up receiving
m relayed eagerly through t1 after several hops, instead of directly from s. This means
that nodes such as t2 will not request lazy transmission from s.

The second assumption is that message payload is so large that the overhead of lazy
push, namely, the advertisement and request messages, is negligible.2 Therefore, we
conclude that traffic in the link from s to t2 is negligible when compared to traffic in
the link from s to t1. Gossip strategy selection can therefore be used to divert the bulk
of the traffic from lesser capable network links, as long as each node knows the cost of
each link according to some interesting metric.

3.3 Algorithm

The algorithm to achieve this is presented in Figure 1. It uses the following variables
in each node: a set K of known messages, initially empty; a map W of known source
node sets for each message identifier, initially empty; a map C, holding the payload
and round number for each message identifier, initially empty. It assumes also a peer
sampling service providing an uniform sample of other nodes [JGKvS04]. A message
m can be sent to a node p using the SEND(m, p) primitive and received by handling
the RECEIVE(m, p) up-call. The strategy for each transmission is encapsulated in the
SPLIT primitive described below.

1 This is true to a certain extent, due to the additional round-trip required to request and perform
the actual transmission plus some implementation dependent scheduling delay.

2 This is most likely true in practice, although it depends on the application.

1524 J. Pereira, R. Oliveira, and L. Rodrigues

In detail, the algorithm works as follows. The application calls procedure MUL-
TICAST(d) to multicast a message with payload d (line 1). This simply generates an
unique identifier and forwards it (line 2). The identifier chosen must be unique with
high probability, as conflicts will cause deliveries to be omitted. A simple way to imple-
ment this is to generate a random bit-string with sufficient length. Handling of messages
received from other nodes is similar (line 15), although it is now necessary to check for
and discard duplicates using the set of known identifiers K (line 16) before proceeding.

The forwarding procedure FORWARD(i, d, r) (line 3) uses the message identifier i,
the payload d and the number of times, or rounds, the message has already been relayed
r, which is initially 0. It starts by delivering the payload locally using the DELIVER(d)
up-call. Then the message identifier is added to the set of previously known messages
K (line 5) and the set of known sources W [i] is cleared (line 6). These avoid multiple
deliveries, as described before, and stop all retransmission requests.

Actual forwarding occurs only if the message has been forwarded less than m times
(line 7) [Kol03]. Usually, using only an eager push mechanism, this would reduce to
querying the peer sampling service to obtain a set of f target nodes and then sending
the message, as in lines 8 and 11. Constants m and f are the usual gossip configuration
parameters [EGKM04]. However, we use the SPLIT primitive (line 9) to partition the
set P of node addresses in two, an eager set E and a lazy set L. Peers in set L will
be sent only a message advertisement that does not contain the payload (line 14). Note
that the only correctness requirement on the implementation of this primitive is that if
(E, L) = SPLIT(P, d, r), then E ∪ L = P and E ∩ L = ∅. This ensures that each
message is gossiped exactly f times, although some of them lazily.

Upon receiving a message advertisement for an unknown message, its source node
is recorded (line 20). Periodically, a message identifier and source pair (i, s) is chosen
(line 21) and a message requesting its transmission is sent (line 22). The source node is
removed from W [i], thus ensuring that it is used only once. Finally, when a node receives
a retransmission request (line 24) it looks it up in the cache and transmits the payload
(line 26). Note that a retransmission request can only be received as a consequence of a
previous advertisement and thus the message is guaranteed to be locally known.

For simplicity, we do not show how identifiers are removed from set K or messages
from C, preventing them from growing indefinitely. This problem has been studied be-
fore, and efficient solutions exist ensuring with high probability that no active messages
are garbage collected [EGH+01, Kol03].

4 Proof-of-Concept

To assess the viability of our proposal we built and experimentally evaluate a prototype.
We start by lifting the assumptions used in the previous section, on latency and on size
of payload, by using a homogeneous network and a relatively small message of 256
bytes. Experiments are then conducted with several selection strategies.

4.1 Experimental Setting

The protocol is built on an open source and lightweight implementation of the NeEM
protocol [PRM+03] that uses the java.nio API for scalability and performance[SP06].

Efficient Epidemic Multicast in Heterogeneous Networks 1525

Briefly, NeEM uses TCP/IP connections between nodes in order to avoid network con-
gestion. When a connection blocks, messages are buffered in user space, which then
uses a custom purging strategy to improve reliability. The result is a virtual connection-
less layer that provides improved guarantees for gossiping.

This implementation was selected as NeEM 0.5 already supports eager and lazy
push, although the later is selected only based on a message size and age threshold.
Message identifiers are probabilistically unique 128 bit strings. The change required
was to remove the hard-coded push strategy and query the strategy module during each
gossip round.

The assumptions used in the previous section, on latency and on size of payload,
are lifted by using a homogeneous network in which all nodes and links are equal,
and a relatively small message payload of 256 bytes. To evaluate the impact of the
proposed approach, we do however force nodes to behave as if they had diagnosed
an heterogeneous network by implementing several strategies, which impose different
static assumptions on network capacity:

ADSL Assume that half of the nodes have asymmetric connections with limited up-
link bandwidth to all other nodes. These nodes use only lazy push. The other, as-
sumed have symmetric connections, use only eager pushing.

“Reverse” ADSL Assume that half of the nodes have asymmetric connections with
limited down-link bandwidth to all other nodes. Messages directed at these nodes
always use lazy pushing. Messages to others are eagerly pushed.

Two ISPs Assume that each half of the nodes is in a different network, with a costly con-
nection between them. Messages traversing to a different network are lazy pushed.
Otherwise, within the network, are eagerly pushed.

We have also tested NeEM in its original configuration, which captures the obvious
intuition that eager push should be used in the initial rounds. As a baseline, we have
also configured the protocol to always do lazy push and always do eager push.

We then ran 200 protocol nodes in a machine with 2 AMD Opteron processors
and 4GB RAM. The protocol was configured with gossip fanout of 11 and overlay
fanout of 15. These correspond to a probability 0.995 of atomic delivery with 1%
messages dropped, and a probability of 0.999 of connectedness when 15% of nodes
fail [EGKM04]. Request for retransmissions are done with a uniform random interval
between 0 and 200 ms. Each run consists of a 30 second warm-up period, while the
overlay is formed and settles down, a 100 second test period, while 200 messages are
transmitted with a 500ms interval, one by each node, and finally a 10 second cool-down
period. All bytes transmitted, messages relayed and messages delivered during the 100
second period are recorded for later processing.

While tests run, there are at least 1500 TCP/IP sockets active, corresponding to 3000
open file descriptors. As each NeEM instance uses only one thread, there are 200 pro-
tocol threads plus 200 application threads running. We observe that this corresponds
to approximately 50% processor load and about 1GB memory. This includes extensive
logs performed on every I/O operation.

1526 J. Pereira, R. Oliveira, and L. Rodrigues

Results were confirmed by repeating them and running similar experiments in dif-
ferent hardware and software configurations with identical conclusions. Significance of
the results is also improved by the size of the samples: Each run considers 40000 mes-
sage deliveries, over 20000 TCP/IP connections, and close to half a million network
packets transmitted.

4.2 Results

We collected several different metrics presented in Figure 2. All are presented as em-
pirical cumulative distribution functions: The x-axis shows the metric and the y-axis
shows the ratio of samples that were measured less or equal any specific value. A small
variance is thus depicted as a close to vertical line and a multi-modal distribution as
staircase function.

In detail, Figures 2(a) and 2(b) show the amount of network resources used by each
message delivery, respectively, the average number of bytes sent and received. Given
that each message carries 256 bytes payload, this clearly shows the amount of over-
head. Figure 2(c) shows end-to-end delivery latency measured at the application level,
considering all deliveries to all nodes. As a side effect, a large slant indicates high jitter.
This provides a measurement of quality of service.

Figure 2(d) is computed as follows. For each delivered message, we take the path
from sender to delivery. Then, we truncate the first and last nodes (which are invariably
the sender and the target). We then count how many times each node appears in such
paths that lead to delivery. The result for each node is divided by the number of mes-
sages that it has delivered. This gives us a measure of how much a node contributes to
the effort required to spread messages. This should be compared with the amount of
bytes transmitted, to determine whether a large amount of bytes is a large contribution
or simply overhead.

We start by discussing the symmetric protocols: baseline eager and lazy push, as
well as NeEM 0.5 default. These use the same strategy for all transmissions in a gossip
round. The lazy push strategy achieves low network traffic at the expense of offering
also the worst latency. In contrast, the eager push strategy results in a very large number
of bytes transmitted, while achieving second best latency. Most interestingly, the relay
count is close, showing that most of bytes transmitted are simply redundancy.

The NeEM 0.5 default is an interesting compromise, as it is the strategy that gen-
erates the lowest network traffic while providing good latency to half of deliveries, i.e.
those that are served during the initial push gossip phase. It provides also extremely
good fairness when distributing the load. Actually, the average number of bytes trans-
mitted is very close to the absolute minimum of a single payload transmission (256
bytes) plus 11 headers (11 × 20 bytes). When compared with lazy push, half of the
processes getting the entire payload earlier should also improve reliability.

The Two ISPs test shows how effective the technique can be: Compared with the
eager push run, the overhead is cut in half with little impact in delivery latency. Better
yet, the traffic on assumed inter-ISP links is severely reduced, even when compared to
lazy push. This is shown in Table 1, which depicts the amount of data transmitted during
the lifetime of a connection. Only the Two ISPs produces a statistically significant mean
difference, as can easily be confirmed by running a test with a confidence level of 0.95.

Efficient Epidemic Multicast in Heterogeneous Networks 1527

0 500 1000 1500 2000 2500 3000

0
20

40
60

80
10

0

bytes

%
 n

od
es

Lazy
Eager
Default
ADSL
Rev. ADSL
2 ISPs

(a) Bytes sent per message delivered.

0 500 1000 1500 2000 2500 3000

0
20

40
60

80
10

0

bytes

%
 n

od
es

Lazy
Eager
Default
ADSL
Rev. ADSL
2 ISPs

(b) Bytes received per message delivered.

0 200 400 600 800 1000

20
40

60
80

ms

%
 d

el
iv

er
ie

s

Lazy
Eager
Default
ADSL
Rev. ADSL
2 ISPs

(c) End-to-end delivery latency.

0 2 4 6 8 10 12

0
20

40
60

80
10

0

bytes

%
 n

od
es

Lazy
Eager
Default
ADSL
Rev. ADSL
2 ISPs

(d) Relevant relays per message.

Fig. 2. Experimental results

This happens as these links are seldom used to convey actual data, but only lazy push
advertisements.

We now look at the ADSL and “Reverse” ADSL strategies. As expected, there is a
sharp contrast between the two halves of nodes, but there are some unexpected results.
In the first case, ADSL, half of the processes send a much lower amount of bytes, while
the others produce a large amount of overhead. Actually the later use the exact same
strategy as in the eager push experiment, but surprisingly, the amount of data transmitted
is lower. The fact that some processes are using lazy push reduces the amount of data
transmitted by the remaining processes that use always eager push.

This can be explained by deliveries occurring after a larger number of rounds, in
average, as more hops through symmetric processes are required. This happens because
asymmetric processes contribute later than they would in the eager push scenario, thus
implicitly increasing the share of the remaining. A larger number of processes thus
delivers messages in round m and does not gossip again, reducing network usage. A
small number of processes has to wait for lazy transmissions, resulting in a longer tail
in latency distribution. This is confirmed by Figure 2(d), where a number of processes
does not contribute at all to deliveries, while others contribute a much larger share.

1528 J. Pereira, R. Oliveira, and L. Rodrigues

Table 1. Bytes transmitted in each link type for each strategy

Intra-ISP Inter-ISP Statistical
Samples Mean Std. Dev. Samples Mean Std. Dev. sign. (0.95)

Lazy Push 11264 1195.98 1147.79 11154 1192.83 1159.21 no
Two ISPs 11348 4119.17 3720.95 11207 859.10 908.83 yes

Eager Push 11545 5364.82 4781.49 11260 5337.21 4812.57 no

In the second case, “Reverse” ADSL, half of the processes receive almost no over-
head, as they are targeted always using lazy gossip. This has also a mild impact in
number of bytes transmitted, as receiving messages earlier causes more effective trans-
missions to be performed. This is confirmed by Figure 2(d) which surprisingly shows a
result very similar to the ADSL scenario. This leads to the interesting conclusion that
the effect of a node p itself choosing eager gossip is similar to the effect of all other
nodes choosing eager gossip when targetting p.

Also surprising is that the “Reverse” ADSL results in the best overall latency, even
than always using eager push. This might be explained by the reduced overhead while
still performing a large number of eager transmissions and thus deserves some further
exploration as an alternative to the intuitively obvious approach used by default by
NeEM 0.5.

5 Discussion

In this paper we propose that eager and lazy push gossip are combined within the same
round by encapsulating the choice in a configurable strategy module. This proposal is
aimed at better matching resource usage with resource availability in epidemic multi-
cast, thus improving performance in heterogeneous networks.

Although the presented experiments use simple policies, that build on static global
knowledge of the network, they show that relevant results can be obtained (i.e. reduction
of backbone traffic in the Two ISPs test) and that it is possible to control both the amount
of data received and sent (i.e. the ADSL and “Reverse” ADSL tests). They also point
out some surprising consequences of the approach, namely, how nodes are indirectly
affected by other node’s choices and how even a seemingly trivial policy produces a
large impact in latency.

Note also that the proposed experimental framework, despite simple, is not the best
case scenario. An heterogeneous network would help, for instance, by delaying lazy
push on slower links thus further highlighting the impact of laziness. This is being
addressed by testing on a realistic large scale network infrastructure.

Finally, what is the best policy and how to implement it deriving the required knowl-
edge about the system in a scalable and efficient fashion, is still an open question.
There are previous examples of how this can be achieved, namely, by building on local
knowledge extracted from the network [PRPO04] and by using gossip itself to build
global knowledge [RSP+03, JB06, MKG03, GKG05].

Efficient Epidemic Multicast in Heterogeneous Networks 1529

References

[BHO+99] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
multicast. ACM Trans. Computer Systems, 17(2), May 1999.

[EGH+01] P. Eugster, R. Guerraoui, S. Handrukande, A.-M. Kermarrec, and P. Kouznetsov.
Lightweight probabilistic broadcast. In Proc. IEEE Intl. Conf. Dependable Systems
and Networks (DSN), 2001.

[EGKM04] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie. From epidemics to
distributed computing. IEEE Computer, May 2004.

[GKG05] I. Gupta, A.-M. Kermarrec, and A.J. Ganesh. Efficient and adaptive epidemic-style
protocols for reliable and scalable multicast. IEEE Trans. Parallel and Distributed
Systems, 2005.

[JB06] M. Jelasity and O. Babaoglu. T-Man: Gossip-based overlay topology manage-
ment. In Proc. 3rd Intl. Ws. Engineering Self-Organising Applications (ESOA’05).
Springer-Verlag, 2006.

[JGKvS04] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. The peer sampling
service: Experimental evaluation of unstructured gossip-based implementations. In
Proc. 5th ACM/IFIP/USENIX Intl. Conf. Middleware, 2004.

[JKvS03] M. Jelasity, W. Kowalczyk, and M. van Steen. Newscast computing. Technical
Report IR-CS-006.03, Vrije Universiteit Amsterdam, 2003.

[KL86] B. Kantor and P. Lapsley. RFC 977: Network News Transfer Protocol. Internet
Engineering Task Force, 1986.

[Kol03] B. Koldehofe. Buffer management in probabilistic peer-to-peer communication
protocols. In Proc. IEEE Symp. Reliable Distributed Systems (SRDS), 2003.

[KSSV00] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spread-
ing. In IEEE Symp. Foundations of Computer Science, 2000.

[LM99] M.-J. Lin and K. Marzullo. Directional gossip: Gossip in a wide area network. In
Proc. European Dependable Computing Conf. (EDCC), 1999.

[MKG03] L. Massoulié, A.-M. Kermarrec, and A. Ganesh. Network awareness and failure
resilience in self-organising overlays networkss. In Proc. IEEE Symp. Reliable
Distributed Systems (SRDS’04), 2003.

[PRM+03] J. Pereira, L. Rodrigues, M. J. Monteiro, R. Oliveira, and A.-M. Kermarrec. NeEM:
Network-friendly epidemic multicast. In Proc. IEEE Symp. Reliable Distributed
Systems (SRDS), 2003.

[PRPO04] J. Pereira, L. Rodrigues, A. Pinto, and R. Oliveira. Low-latency probabilistic broad-
cast in wide area networks. In Proc. IEEE Symp. Reliable Distributed Systems
(SRDS’04), October 2004.

[RSP+03] L. Rodrigues, S.Handurukande, J. Pereira, R. Guerraoui, and A.-M. Kermarrec.
Adaptive gossip-based broadcast. In Proc. IEEE Intl. Conf. Distributed Systems
and Networks (DSN), 2003.

[SP06] P. Santos and J. Pereira. NeEM version 0.5. http://neem.sf.net, 2006.
[vRBV03] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and scalable tech-

nology for distributed system monitoring, management, and data mining. ACM
Trans. Computer Systems, 21(2):164–206, May 2003.

	Introduction
	Background
	Hybrid Push Gossip
	Expected Impact on Reliability
	Expected Impact on Performance
	Algorithm

	Proof-of-Concept
	Experimental Setting
	Results

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

