
Using Distributed Balanced Trees Over DHTs for Building

Large-scale Indexes

Nuno Lopes and Carlos Baquero
{nuno.lopes,cbm}@di.uminho.pt

DI/CCTC, Universidade do Minho, Portugal
October, 2006

Abstract

DHT systems are structured overlay networks capable of

using P2P resources as a scalable storage platform for

very large data applications. However, their efficiency

expects a level of uniformity in the association of data to

index keys that is often not present in inverted indexes.

Index data tends to follow non-uniform distributions, of-

ten power law distributions, creating intense local storage

hotspots and network bottlenecks on specific hosts. Cur-

rent techniques like caching cannot, alone, cope with this

issue.

We propose a new distributed data structure based on

a decentralized balanced tree to balance storage data and

network load more uniformly across all hosts. The ap-

proach is composable with standard DHTs and ensures

that the DHT storage subsystem receives an uniform load

by assigning fixed sized, or low variance, blocks.

1 Introduction

Distributed Hash Tables (DHTs) are structured over-
lay networks capable of efficiently storing and locat-
ing objects from a given key. Systems like Chord,
Pastry and CAN [16, 14, 12] are scalable towards
the total number of hosts, requiring only logarith-
mic storage space and network messages for locating
any key. An hash function is used to uniformly dis-
tribute keys to hosts so that key load is balanced.
However, even with a perfect key to host distribution,
hot spots created by data or query asymmetries may
occur. When a single key is accessed very often, a net-

work bottleneck appears on the host storing that key.
This situation known as “query flash crowd” can be
minimized with caching schemes [15]. On the other
hand, storage hot spots occur when very large objects
of skewed size are stored on individual DHT keys. Al-
though storage is often not a critical resource, due to
the current trend on secondary storage capacity, stor-
ing such large objects creates an additional network
bottleneck on the hosts mapping these keys. These
network bottlenecks cannot be eliminated by caching,
here, as caching is effective only when reading data
and not when new data is being inserted into the
system. Furthermore, solutions that dynamically re-
distribute keys across hosts [8, 11] are also unable to
eliminate the storage hot spots because the storage
unbalance is due to a single key containing a very
large object.

Several applications have been using DHTs as a
scalable platform for storing application data [4, 18,
2, 17]. However, this application data is sometimes
highly skewed, generating large data objects and in-
ducing the aforementioned problems in the DHT stor-
age. These large objects are either created from sin-
gle indivisible objects or from grouping many smaller
individual items. Single large objects are supported
on file-system based DHT systems [4] by splitting the
large file into multiple smaller pieces, storing each one
as a DHT object. Modifications on the large file are
done by creating DHT objects with the new data and
appending these DHT keys to the history log of the
file.

1

There are however other kind of applications where
a very large object is made of multiple smaller in-
dependent items that must be treated individually.
Consider, for example, a set structure which must not
contain repeated items. This is the case when stor-
ing a textual inverted index directly over the DHT,
where text keywords (DHT keys) are mapped to doc-
ument reference sets (DHT objects) [10, 13, 18]. Be-
cause the distribution on the document reference set
size typically follows a power-law distribution, some
keywords can have a very large document reference
set [21]. This large set, made of several document
references, maps into a very large size DHT object
which will cause a storage hot spot on the host stor-
ing the object. This problem is not unique to textual
inverted indexes. In fact, other index data sets may
also suffer from unbalanced load distribution, creat-
ing skewed size objects [2].

We propose a solution for load balancing DHTs
when storing (decomposable) objects of non-uniform
size. We developed a new DEcentralized Balanced
tree (DEB) tree algorithm capable of converting a
very large object into multiple bounded size pieces
suited for being stored and searched as objects over
DHTs. We used the DEB algorithm to build a textual
inverted index that runs over any DHT implementa-
tion that provides a Key Based Routing (KBR) inter-
face [5]. Our results show a more uniform distribu-
tion of storage and network resources over hosts. Al-
though we only applied this algorithm for building a
textual index, the algorithm offers the same function-
ality found on balanced trees including range-queries,
making it also capable of building any generic (non-
textual) index.

Our paper is organized as follows: Section 2 shows
an overview of the system, Section 3 describes the
DEB tree algorithm and Section 4 the textual index
system. Section 5 shows our evaluation results, and
Section 6 presents related work. We conclude in Sec-
tion 7.

2 System Overview

We present a P2P indexing system as an application
of our DEB tree algorithm. Although we use DEB

• INSERT (keyword, doc location): status

• SEARCH (keywordlist): doc locationset

Figure 1: The global index interface for user applica-
tions.

trees for indexing text data, the algorithm offers a
generic interface and could be used for any indexing
data set.

In order to access the global index, a host must
first join the system. After joining the system, the
host contributes with storage and network bandwidth
to the system while at the same time accessing the
global index functionality. By using a DHT based
structured overlay network, we leverage scalable rout-
ing and dynamic membership management.

2.1 Index Model and User Interface

A textual inverted index stores relations between text
words (the vocabulary) and sets of document loca-
tions (the occurrences) [1] in the form:

keyword 7→ {document location}SET .

Since a single keyword can occur on multiple docu-
ments, we store a set of document locations for each
keyword. Document locations are just single opaque
objects capable of locating a document over the sys-
tem. The pair 〈host address, docIdlocal〉 is an exam-
ple of a simple location scheme that globally identifies
a document by the host where it is stored and a local
identification number. Other location schemes could
be used, like an URL link or the document content
hash value, provided the location of the document
can be determined from the hash value [10, 17].

The index is made accessible to system peers
through the interface on Figure 1. User applications
contact the local index library through this interface
either requesting the addition of a new document into
the index or requesting for documents that contain a
specific keyword (or keywords). The index insert op-
eration adds a new relation between a keyword and a
document. Clients are required to call this operation
for each association they intend to insert on the global

2

KBR

Block Layer

Index Layer

Route(key, msg)

Network

Insert(tree block, item)

Client Application

Insert(keyword, doc_loc)

KBR

Block Layer

Deliver(key, msg)

Data

Figure 2: The system is built with a base DHT over-
lay network for managing hosts membership in a scal-
able way. Each host of the system contains three
components: a key-based routing (KBR) layer, the
block storage module and the client index interface.

index. The index search operation retrieves the list of
documents associated with a keyword. We only con-
sidered the and Boolean Query operation for multi-
ple keyword queries, although the remaining boolean
operators could also be implemented [1]. The and op-
erator applies the set intersection to all the keywords
occurrence sets, returning the list of documents that
contain all keywords.

2.2 Layered Architecture

The system architecture, depicted in Figure 2, is com-
posed by the index layer that presents the index in-
terface to client applications, the tree management
layer that implements our distributed algorithm and
the routing layer responsible for routing messages be-
tween hosts. The index layer receives requests from
client applications and converts them into tree based
operations to be executed by the tree layer.

We store the index data, the occurrence sets, as
DEB tree instances where each tree contains the doc-
ument locations for a single index keyword. All DEB
trees are independent from each other and stored side
by side on the system. Since a tree is composed by
many pieces, named tree blocks, distributed across
several hosts, a single index operation may require
the access to several tree blocks, and therefore, sev-
eral different hosts. The calling host follows an iter-
ative model, calling tree operations on the necessary

• BLOCK-INSERT (blk key, item): status

• BLOCK-GET (blk key): block

Figure 3: The tree layer interface for index opera-
tions.

tree blocks until the index operation is finally com-
pleted.

The tree layer implements the decentralized tree
operations and is responsible for storing the block
data on hosts. The tree layer interface to the index
layer and for intra-block communication is depicted
in Figure 3. All tree operations are block oriented,
i.e., they require a block to work on and are executed
locally on the host storing the block. This design
differs from the two cycle invocation pattern, get-
execute-put, found in other layered systems where
clients fetch the entire block data, perform some data
modification at the client and then write back the new
data on the storing host [2, 20]. Although the get-
execute-put design is compatible with the standard
put and get DHT interface, it uses one more DHT ac-
cess to complete the tree operation. This extra DHT
operation not only increases latency, for an operation
that could be otherwise executed on the server side,
but also increases data conflicts when two clients ac-
cess and modify the same block concurrently.

Our design avoids the concurrency issue by serializ-
ing operations on the server side (the host responsible
for storing the block) while using only a single block
access to execute the tree operation. Furthermore,
executing block operations over a single operation re-
quest reduces latency by half to the client host. This
design is not compatible with the standard DHT in-
terface available on every DHT implementations, like
the OpenDHT system for example. Instead, the DEB
tree algorithm requires a key based routing interface
that is present (either explicitly or implicitly) on all
DHTs. If this routing interface is not available, the
algorithm could also be adapted to run under the
get-execute-put model with minor changes.

The Key Based Routing (KBR) layer main purpose
is to route messages efficiently between hosts given a
key. It’s interface is defined by the single function:

3

ROUTE(key, message), that given a key will deliver
the message to the host responsible for key [5]. Each
tree block has it’s own unique identifier, that can be
used as the key parameter for this function. This
function is therefore used by the index layer opera-
tions and by block layer management operations to
send a message to a specific tree block, given it’s key.

2.3 System Availability

Our system inherits the fault-tolerance offered by
typical DHT systems. Churning influences negatively
DHT routing and data availability. We assume the
system is stable by filtering unstable hosts and creat-
ing a stable low churn environment. Unstable hosts
may still access the index, by proxying their requests
through the index layer of overlay peers. Clients can
re-insert index relations to rebuild index data in case
all replicas of a tree block (DHT object) fail. Tree
internal dependencies can also be rebuilt from re-
announces, which will be described on the following
section. In case a block message sent from an index
layer client is lost, messages are simply retransmitted
after a time-out period.

3 Decentralized Balanced

Trees

We will now describe our DEB tree implementation.
This tree algorithm was based on the B+-tree de-
sign [3] and shares the high-availability requirements
present on B-link trees [7]. However, unlike the B-link
tree algorithm which was designed for a cluster based
architecture with global system view and central-
ized environment, our algorithm was designed for be-
ing deployed on wide-area systems requiring neither
global knowledge nor centralized entities. Moreover,
by choosing a block oriented algorithm, we could eas-
ily adapt it to a scalable storage DHT system which
provides a key-based access to data while having a
bounded logarithmic block access cost on the num-
ber of stored items.

3.1 Tree Structure

The tree structure, just like in the B+-tree design,
is composed by a root block and child blocks. Each
block can have child blocks associated to it, which is
called an internal block, or not, which is then called a
leaf block. Leaf blocks store data items and are all at
the same tree level (any leaf is accessed from the root
block with the same number of block hops). Internal
blocks serve exclusively for locating leaf blocks and
do not contain any data, instead they contain child
block keys. All blocks contain a parent’s field with
the key to the upper level block that has themselves
as a child block. To improve availability, each block
also stores the key to the next sibling block, following
the B-link design.

The size of any block is bounded by the tree’s de-
gree t which defines the minimum (t − 1) and max-
imum (2t − 1) number of elements allowed inside a
block [3]. For internal blocks the degree influences
the number of child block keys it contains. For leaf
blocks it influences the number of data items the
block stores.

In addition to the previous fields, each block con-
tains the minimum and maximum limits, represent-
ing the interval of data the block is responsible for.
The root block has an infinite interval, covering all
data. Child blocks have a non overlapping sub-
interval such that the sum of all block intervals (de-
fined by it’s limits) from the same tree level equals
the infinite interval. Internal blocks also store the
limits of each child block such that the sum of all
children block limits should be equal to the parent
block limits.

3.2 Block Identification Scheme

Each tree block is identified by an unique key and
stored on the DHT using the hash value of it’s key.
Since we store all tree blocks under the same name
space, the DHT hash domain, we must ensure all
blocks will have an unique identification. Since DHT
hosts cannot rely on any centralized entity, a new
block identification must be generated from an al-
ready valid block key autonomously and be itself also
globally unique. An additional restriction is that

4

since valid block keys are already in use, generating
a new key from a previous valid key must not alter
the previous key.

The block key must be unique within the tree to
which belongs but also distinguishable from other
trees. We achieve the uniqueness outside the tree
by importing the index keyword as part of the key.
The index keyword uniquely identifies the tree a block
belongs to. Within the tree itself, each block is iden-
tified by the level of the tree and the minimum limit
field. Since there cannot be two blocks with over-
lapping intervals, the minimum limit operates as the
distinct value for blocks at the same level. The fi-
nal structure for the identifier is the following tu-
ple: 〈keyword, level, minlimit〉. The tree level is 0
by definition for the tree’s root block. Leaf blocks
always have the level 1. The remaining levels are in-
cremented from the leaf level until the top. In order
to keep track of the tree’s overall level, the root block
uses an additional integer field containing the current
tree level.

Lets present a numerical example showing a new
identifier generation from the following identifier
〈abc, 3, 2〉, a block of the “abc” keyword at level 3
with the limits (2,8). The new identifier will be given
a minimum limit value of 6, and so it’s value would
be 〈abc, 3, 6〉. This example used numbers as limits
but in our case, the limit values are of the same type
as the data items stored on the tree, which would be
document locations.

3.3 Index Client Requests

The operations requested by the client index layer
on tree blocks are item insertions (or removals) and
fetching data. These operations use the single block
operation request pattern described previously to re-
duce the caller’s latency. By placing the operation
execution on the host storing the block, the opera-
tion must finish within the call context. In order to
maintain high availability on data blocks these oper-
ations must never block or stop responding to clients,
even due to background maintenance operations.

The insert item operation, described in Figure 4
receives a data item from the caller and the block
into which the item should be stored. If the block is a

proc block-insert (blk-key, item):
block ← fetch block with key: blk-key from local storage
if item ∈ block.limits:

if block is leaf:
add item to block.data
if size(block.data) >= block.tfactor*2:

launch split(block)
return 〈ack〉

else:
blk-child-key ← fetch child block key whose limits

contain item
ret message 〈forward, blk-child-key〉

else:
ret 〈error, item not within limits〉

Figure 4: Pseudo-code for the block layer insert item
function.

leaf and the item is within the block’s limits then the
operation is successful. If the block is internal, a reply
forwarding the caller to a child block key is sent back,
provided there is a child block whose limits contain
the item. The same is valid for the next sibling block.
If the item is outside the block’s limits and the block
doesn’t know of any other block capable of handling
this item then an error message is sent back. The
remove item operation is similar to the insert item
except for the removal of the item and for launching
the merge operation if the block size gets below the
threshold value.

The fetch operation is used to retrieve the block’s
items to the caller. It’s implementation is too simple
and we’ll skip it’s presentation. It consists in fetching
the block data from the local storage and return the
block items (for leaf block) or the block child keys
and limits (if internal) back to the caller.

3.4 Block Management Operations

Block management operations are used within the
tree layer to create, split or merge blocks. These op-
erations are called from inside a block or between two
blocks. Again, the KBR layer is used to locate the
target block and deliver the request message to it.
These operations must run on the background caus-
ing minimal interference with front side operations,

5

Parent

Block New Sibling

Childs

Block

Childs

Parent

New
1

2

3

Figure 5: The splitting of a block involves creating
a new sibling block, transferring half the contents
to it and updating block references on the proxim-
ity blocks. Dashed arrows represent old references
removed while highlighted arrows represent new ref-
erences that are created during the operation.

the operations requested by the index layer.

When a block reaches it’s maximum capacity, 2t−1
items, the block starts a split operation that will di-
vide it’s items between itself and the new block. This
is how the B+-tree algorithm maintains all blocks
with the same approximate storage load. The reverse
would happen when the block reaches t − 1 items,
it’s minimum capacity, where it would merge with
another block and be removed; we did not address
here the merging case as we don’t expect trees to
switch between a very large number of stored items
into only a few items often. Although the B+-tree al-
gorithm establishes hard limits on the block size due
to the secondary storage physical block size limit, our
implementation does not impose strict limits and in
practice tolerates transient limit overflows as storage
is not strict on hosts. The block size value is lo-
cal to each host, as the decision to split starts from
the overloaded host. Each host could use a different
block size according to the available storage and this
value could even be dynamic during time. There is
however a dependency between storage capacity and
bandwidth use, as more data implies more network
load.

The split algorithm considers two different cases:
sibling split (that occurs on non-root blocks) and root
block splitting. Non-root blocks split by creating a
new sibling block and transferring half the contents
into it. If the block is a leaf, only data items, i.e.
document locations, will be transferred; on non-leaf
blocks data includes child block references and their
set ranges. Figure 5 shows a non-root block splitting
where a block starts the operation by creating a new
block id locally and sending a create block message
request to the host responsible for the new key (mes-
sage 1 in Figure). The host receiving the message
will create a new block using the key and data pro-
vided by the splitting block. Although the block does
not exist on the host, the host can establish that he
is effectively responsible for such key using the KBR
layer and create an empty block data before process-
ing the message. It is the new block that will send a
message to it’s parent requesting to be inserted as a
new child block (message 2 in Figure) and in case of
being also an intern block, sending a message to each
of it’s children identifying itself as their new parent
(message 3 in Figure).

After receiving confirmation messages from the
parent and child blocks involved, the new block
replies with an acknowledgment message to the split-
ting block and starts accepting client requests nor-
mally. Upon receiving the acknowledge message, the
splitting block resumes normal operation.

While waiting for the new block to confirm the op-
eration, the splitting block continues to process index
operations in order to be responsive to clients. How-
ever, it will not start any concurrent split.

The root block splitting creates a new tree level,
increasing the tree’s height by one. Since the root
does not have a parent block, the split operation is
simpler and for space saving we omit the details.

3.5 Data Repairing

To tolerate host failures we need to replicate block
data over a group of hosts. DHTs devise a simple
form of data replication. Our application offers the
same data consistency present on other DHT-based
systems that depend directly on the DHT correctness
properties. Because we assumed that our system is

6

mostly stable, we expect data consistency to be high.

In the event of block data loss due to the failure
of all available replicas, we are able to partially re-
construct the block data. If the lost block is a leaf,
data can be recovered by making clients refresh their
data on the index. This refreshing is capable of re-
constructing all the leaf blocks on the index. Internal
blocks can be rebuild by making their children send
a periodic announcement to the parent. By adding
an extra field on each block, the maximum limit of
the parent block, and including the parent’s block
key and the extra parent’s maximum limit, each child
can simply restore the structure properties of a par-
ent block. As all children send their announcements,
the parent’s internal data, the child keys and their
limits are fully restored. Each internal block is then
partially replicated on it’s children replicas.

However this recovery only restores a single par-
ent level block, it cannot restore parents recursively
unless all children are available. Another approach
to be used in conjunction with the previous one is to
reconstruct the tree from the root block. Assuming
that all internal blocks of a tree were lost, including
the root block, the tree could be reconstructed again
by having leaf blocks or lower level blocks reinsert
their references recursively on the root block and de-
scend the tree until finding their parent block. The
level field on the block keys could be used by the root
block to determine the original tree size and create
internal blocks at appropriate levels.

4 Textual Indexing System

We will now present our textual inverted index sys-
tem. The index operations amount to inserting ref-
erences and searching for keywords. These opera-
tions are available at the client’s host and issue mul-
tiple block requests on the tree layer to accomplish
the initial index operation. Clients use an iterative
model for accessing blocks, requesting a block level
operation (listed in Figure 3) to be executed at some
specific block and waiting for the reply before issu-
ing another block request. Client block requests are
atomic, in the sense that they depend only on the tar-
get block’s state to produce an answer. This design

procedure insert (keyword, doc-location):
blk-key ← getRootBlockKey (word)
route (blk-key,〈 insert, doc-location〉)
answer ← wait for returning message
while answer 6= ’ack’:

blk-key ← get forward block from answer
route (blk-key,〈insert, item〉)
answer ← wait for returning message

end while

Figure 6: Simple pseudo-code for the index insertion
procedure.

increases block availability to clients because requests
can be serviced as soon as they arrive to the target
block’s host. Clients have the responsibility to finish
the index operation, i.e., calling all necessary blocks
to conclude it.

4.1 Document Insertion

For inserting a document into the index system, peer
clients use the INSERT (keyword,doc location) func-
tion, which adds a document location to a keyword
occurrence set. The client must call the INSERT
function for every 〈keyword, document〉 pair it wishes
to index.

Tree insertion is made first by locating the block
responsible for storing the item and then by insert-
ing it on the block’s data. If the tree only contains a
single block, the root block, then the operation fin-
ishes after accessing this block. For trees with more
levels, the client must first find the correct leaf block,
as items are only stored at the tree bottom level, by
making a vertical traversal starting at the tree root
block and following child block references. The oper-
ation terminates after locating the correct leaf block
and receiving the acknowledgment of the insertion.
Figure 6 shows a simple pseudo-code for the inser-
tion operation on the client index layer. The block
side code either replies with an ack message indicat-
ing the operation succeeded or with a forward mes-
sage pointing the client to a child block (see Figure
4). When receiving a forward message the client re-
issues the insert request for the new block reference

7

recursively until receiving the final acknowledgment.
The removal of a document location from a group of
keyword occurrences is made just like for the inser-
tion case, except that instead of adding the item, the
item is removed from the block’s data.

4.2 Multiple Keyword Search

Queries on index systems follow a multiple keyword
distribution, using the and Boolean Query operator
for returning the set of document locations that are
common to all the query keywords Basically the op-
eration applies the set intersection to all the keyword
occurrence sets in order to obtain the final result set.
To perform the set intersection, the client would need
to fetch all the occurrence sets and then perform a
local intersection on the fetched data to determine
the final result set. The major disadvantage of this
simple technique is requiring the client to retrieve the
complete sets before applying the intersection oper-
ator. Fetching a complete large occurrence set uses
network bandwidth to retrieve data that may not be
necessary to effectively answer the query.

In order to prevent the full retrieval of large sets,
we implemented an incremental approach based on
a recursive breadth-first traversal of trees. Our in-
cremental retrieval enables the use of two heuristics
named early-pruning and term sorting to reduce the
overall number of block access necessary to answer
the query. Our objective in using an improved in-
cremental approach instead of a simpler sequential
approach is to reduce the network load imposed on
the system while obtaining the same (correct) final
result.

We implemented the incremental retrieval in the
following way. Data items (in this case document lo-
cations) are stored on blocks according to the block’s
limits, that is, each block is responsible for a piece
of the data domain. All blocks share the data limit
concept, either internal or leaf. If the block is a leaf,
it will store data items contained inside it’s limits.
If the block is internal it will contain references to
child blocks whose data is also contained inside the
block’s limits also. The algorithm starts by gath-
ering the root block keys of all keywords and place
them inside a tuple containing the complete data do-

main interval]−∞,∞[. Note that by definition, the
root block’s limits are equal to this domain interval.
Then the algorithm starts iterating over the block
list and fetching blocks using the BLOCK-GET op-
eration one at a time. If a leaf block is found, the
algorithm stores the intersection of the block’s data
items with the already fetched items, initially empty.
If the block found is internal, the algorithm creates
new sub-intervals from the current interval in use (ini-
tially the complete data domain), one for each child’s
limit interval. These new intervals keep the blocks
to visit, leafs and item information already gathered
from previous accesses, as long as they are contained
inside the new sub-interval. The algorithm repeats
this procedure recursively, accessing blocks and cre-
ating more sub-intervals until no more blocks are left
to visit and all leafs were accessed. The final result
set is the union of each sub-interval items.

Li et al. [9] proposed the use of an adaptive set in-
tersection algorithm to reduce the amount of network
communication used to calculated the intersection of
sets. Inspired by the adaptive set intersection pro-
posal and the fact that the intersection for an empty
set with any other set will always be empty, we de-
vised an heuristic called early-pruning to reduce the
number of block accesses when using the incremental
retrieval. The heuristic basically stops further re-
trieval of blocks for a specific sub-interval if at least
one leaf block was accessed and the temporary set is
already empty. This heuristic is effective in select-
ing the branches of large trees to visit according to
items already found on smaller trees while pruning
the remaining branches.

Another interesting technique used by database en-
gines to reduce the number of data access when de-
termining the intersection of sets is term re-ordering.
Term re-ordering consists in selecting the order by
which sets are evaluated (or accessed), starting from
the smaller sets and then proceeding into the larger
ones. We implemented the term sorting heuristic by
changing the order in which root blocks were accessed
initially on the incremental algorithm. Term size was
determined by the number of levels each keyword tree
had, since each host does not have a global view of
the index. This knowledge was gathered from previ-
ous accesses to keyword trees and used locally at the

8

index layer.

4.3 Internal Block Caching

All the previous operations require at least one access
to the root block of trees. The index insert operation
targets the leaf block responsible for the data item to
be inserted and query operations make full breadth-
first traversal of trees, both starting from the tree
root block. This pattern creates a network bottle-
neck on hosts storing root blocks and higher level
tree blocks. We address such limitation by caching
internal top level blocks at clients. Caching internal
blocks allows the client to determine the target leaf
block locally without having to traverse vertically the
tree and therefore reducing the network load placed
on top level blocks.

As internal blocks are used exclusively for locat-
ing relevant leaf blocks, which is where index oper-
ations are effectively executed, caching does not in-
terfere with the outcome of normal index operations
besides reducing the number of accesses made by in-
dex clients. Furthermore, the larger a tree is, the less
probability higher level blocks have of being modi-
fied and of becoming outdated on caches. We do not
cache leaf blocks, as they contain the real tree data
and are subject to modifications by index insertions.

5 System Evaluation

We will now evaluate the DEB tree algorithm im-
plementation on a textual document collection. The
algorithm offers two basic operations: document ref-
erence insertion and keyword search. The evaluation
focus on the scalability of the solution when com-
pared to the equivalent linear DHT mapping for both
storage and network resources.

5.1 Setup

Our DEB tree implementation was deployed on a cus-
tom made discrete event simulator implementing a
simplified SSF framework written in python. Our
simulator used the co-routine python extension to
simulate concurrency without any threads library.

The communication between hosts and message rout-
ing, the Network and KBR layers, were simulated.
Although our experiments ran over this network sim-
ulated environment, the algorithm implementation
could be placed on top of a real DHT system for de-
ployment. We opted for the simulation model to test
the algorithm under a controlled environment with a
larger number of hosts.

A small collection of text news documents was used
as the data set for the simulation. The collection is
made of about 10000 documents with 3kb size each
on average.

5.2 Index Insertion

The simulation of the insertion procedure consisted
in 1000 hosts inserting references for all the docu-
ments concurrently on the index. Each host was given
10 unique documents to insert. The format used to
represent the document reference on the index was
the object 〈host address, docIdlocal〉, containing the
unique identification of the host where the document
is stored and a document identification.

The primary purpose of DEB trees is to balance
the storage load across hosts. We evaluated the algo-
rithm performance by changing the tree’s block size
value. We used a very large block size (shown as +∞)
to represent the case of a direct mapping of the in-
dex on the DHT. This very large block will never be
full and consequently never split, creating exclusively
single root block trees. The other sizes represent the
block maximum size for each simulation.

We will now look at the effective load each host
received. We assumed a perfect mapping between
blocks and hosts. First, we calculated the hash value
of the block’s key. Then, we assigned a host to the
block giving it’s hash value. Each host received an
equal size share of the hash domain. The number
of blocks inside each share is dependent on the hash
function, but assumed to be evenly distributed. Fig-
ure 7 shows the cumulative distribution function for
the storage load. We represent storage load as the
number of stored items inside blocks. The infinite
block size case shows the less uniform distribution.
On the other side, the smaller block sizes show an al-
most perfect load distribution. However, very small

9

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

+oo 256 128 64 32 16 8 4

S
to

re
d

In
de

x
Ite

m
s

(p
er

 H
os

t)

Block Size

1st pct, avg, 99th pct

Figure 7: The storage load distribution (the 1st per-
centil, average and 99th percentil of the number of
stored items) on hosts for different block sizes.

sizes tend to over-split trees, creating excessive in-
ternal blocks and increasing the load on the system.
This is the case of the tree with block size 4. The best
balanced and smallest average load tree has block size
32.

The Figure 8 shows the number of insert messages
received by hosts for different block sizes. The di-
rect mapping case (block size equals +∞) shows a
high variation between the minimum and maximum
loaded hosts. This is due to large objects that receive
much more messages than smaller ones and overload
some hosts, while hosts that group smaller blocks re-
ceive far less messages. As the block size starts to
decrease, the variation continues to be present, al-
though at a higher load average. This happens be-
cause smaller size blocks split more often and increase
the tree height. As the DEB tree requires a vertical
traversal of the tree for every item insertion, more
blocks have to be accessed to complete the opera-
tion, one block per tree level. The Figure 9 shows
the results of the same insertion procedure with client
cache enabled on hosts. As expected, the variation
between the minimum and maximum loaded hosts
has decreased significantly for any block size. The
simulation with the very large block size, containing
only single root block trees, is identical to the pre-

 0

 5000

 10000

 15000

 20000

 25000

+oo 256 128 64 32 16 8 4

In
se

rt
io

n
M

es
sa

ge
s

R
ec

ei
ve

d
(p

er
 H

os
t)

Block Size

1st pct, avg, 99th pct

Figure 8: The network load distribution (the 1st per-
centile, average and 99th percentile on the number of
messages received) for different block sizes when in-
serting 10k documents into the index without cache.

 0

 5000

 10000

 15000

 20000

 25000

+oo 256 128 64 32 16 8 4

In
se

rt
io

n
M

es
sa

ge
s

R
ec

ei
ve

d
(p

er
 H

os
t)

Block Size

1st pct, avg, 99th pct

Figure 9: The network load distribution (the 1st per-
centile, average and 99th percentile on the number
of messages received) for different block sizes when
inserting 10k documents into the index with cache.

10

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

H
os

ts
 (

%
)

Block Requests

inc
early

sort-loc
sort-loc-cache

sort-glob

Figure 10: A cumulative distribution function (CDF)
of the number of block requests (messages received)
on hosts for the different searching methods with a
block size of 32 items.

vious simulation without cache because cache only
acts on internal blocks. As block sizes get smaller,
caching reduces the extra load caused by accessing
the top level blocks on larger trees. As a consequence
the network load is better distributed across hosts.

5.3 Index Searching

The index searching procedure starts from a fully
loaded index on the system. A single host process a
list of multiword queries issuing getBlock operations
on several tree blocks and gathering the results. We
generated 20000 queries with a multiple keyword dis-
tribution from the original text collection set. Each
individual keyword follows the same frequency dis-
tribution found on the document collection. We also
shuffled the query keyword frequency so that popu-
lar keywords on documents would not match popular
keywords on queries. The shuffling prevents the al-
gorithm from benefiting with the same distribution
on both inserts and queries. Search performance was
measured as the load distribution imposed on hosts.
We counted the load as the number of index items
replied to the caller.

We will first show the impact of our query op-
timizations on the system bandwidth. Figure 10

shows the cumulative distribution function (CDF) of
the number of block requests (messages) received at
hosts, according to the query optimizations used for
a block size of 32 items. The worst result appears
on the basic incremental method (label inc) , which
traverses all trees in a breadth-first order. Then, the
early-pruning method (label early) which improves
the basic incremental method by stopping the re-
trieval of further blocks that cannot contribute to the
final result set. We improve further by adding a key-
word term reordering (label sort-loc) that starts by
accessing smaller trees first and leaving larger trees
to the end. This term reordering works in conjunc-
tion with early-pruning to interrupt block retrieval as
soon as the final result set can be computed but be-
fore retrieving all tree blocks if possible. The term re-
ordering method was originally developed for global
knowledge, so we also simulated a variation (label
sort-glob) that supplied the client with the system
global index keyword frequency. This experiment al-
lowed us to determine the maximum possible gain
from using this heuristic, although it cannot be used
in real systems.

Finally we look at the impact of caching for the
query methods on Figure 10. We implemented the
reference cache procedure over the local term re-
ordering heuristic (label sort-loc-cache). When
comparing it to the same query method without
cache (label sort-loc), one observes that although
cache reduced the overall load, it was only marginally
and it had not removed the highest load some hosts
received. This performance can be explained by
noticing that this cache was operating only on in-
ternal blocks, having no effect on leaf accesses. As
queries follow a skewed distribution, it can happen
that frequent accesses to (the same) popular key-
words (for queries) require the retrieval of leaf blocks
so often that create the previous host load asymme-
try. Since this cache method does not cache leafs, the
hosts storing leaf block data for popular keywords are
overloaded with requests and hence the high number
of messages received at some hosts. A solution for
this query “flash crowd” was already addressed in [15]
and could also be implemented on the index client.

Figures 11 and 12 shows the distribution of the
network load on hosts as function of the block size.

11

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

H
os

ts
 (

%
)

Block Requests

+oo
256
128

64
32

Figure 11: A cumulative distribution function (CDF)
on the number of block requests (messages received)
on hosts for the different block sizes using the local
term re-ordering search method with cache.

We simulated the execution of the query data set de-
scribed before using the incremental query method
with early-pruning, local term re-ordering and ref-
erence cache for different block sizes and the direct
DHT mapping case (+∞). The Figure 11 shows the
CDF on the number of block request messages re-
ceived on hosts while the Figure 12 shows the 1st
and 99th percentiles and average on the quantity of
items replied to the client per host. The direct DHT
mapping case shows a small number of requests re-
ceived per host, however because all data is contained
within a single block, the load difference between the
1st and 99th percentile varies within three orders of
magnitude. As the block size decreases, the num-
ber of messages received at each host increases but
the variation between the percentiles is diminishing,
contributing to a more uniform load distribution on
hosts. The number of messages received by hosts in-
crease because blocks have smaller size, storing less
data and causing tree splits, creating more blocks.
Larger trees force the client to access more blocks
to retrieve data. However, because the block size is
smaller, each block request causes a smaller impact
on the network load of each host (the quantity of data
items transmitted back to the client). This figure also
shows that our algorithm uses slightly less network

 100

 1000

 10000

 100000

 1e+06

 1e+07

+oo 256 128 64 32

Q
ua

nt
ity

 In
de

x
Ite

m
s

S
en

t

Block Size

1st,avg,99th

Figure 12: The network load distribution (the 1st
percentile, average and 99th percentile on the quan-
tity of index items replied to the client) on hosts. The
YY axis is in logarithmic scale.

bandwidth on average and with a better uniform dis-
tribution across hosts to execute the same query data
set when compared to the direct DHT mapping.

6 Related Work

The related work is separated in two major groups:
keyword searching and tree based algorithms. Key-
word searching systems use an index to store the re-
lations between keywords and document references
(also known as the occurrence sets). The index
can be local to each host (partition-by-document)
or shared among all hosts, each containing a part of
the global index (partition-by-keyword) [9]. Our al-
gorithm assumes a partition-by-keyword design and
we will only compare it to other systems using the
same design. Overcite [17], a P2P implementation of
the Citeseer system with keyword searching, uses a
partition-by-document design for their search func-
tionality. The major difference with the two designs
is that partition-by-document requires client searches
to contact all peers while partition-by-keyword only
requires contacting the host containing the keyword
part of the index.

Previous work on textual inverted indexes over

12

DHTs did not handle the storage hot-spot problem
we have identified [10, 6, 13]. They store the in-
verted index directly over the DHT, causing the stor-
age unbalancing of some hosts that also results in
network bottlenecks. Our algorithm creates an ad-
ditional layer that automatically balances the stor-
age load and consequentially the bandwidth used for
creating the index over the DHT hosts. Tang and
Dwarkadas [18] also proposed to store the index di-
rectly over the DHT, however they dealt with the
storage hot-spot by using a constant factor balancing,
distributing items for the same index key through a
fixed interval of DHT keys. This constant factor dis-
tribution does not take into account the final object
size forcing clients to access all DHT keys inside the
interval to manipulate data for the index keyword.
Our algorithm adapts dynamically to the object size,
ensuring a uniform storage distribution among hosts
whether the object is small or very large.

We will now compare our work to other tree based
P2P systems. Brushwood is a system that builds a
distributed tree over a structured overlay to store
data with locality properties [19]. Brushwood is
bound to the Skip Graphs routing algorithm and
just like the previous systems it does not handle the
storage hot-spot problem, where a very large key
would always be stored on a single host, overloading
it. The main difference between Brushwood and our
DEB tree implementation is that our algorithm is not
bound to any particular DHT implementation, but
instead relies on the basic Key Based Routing inter-
face, which is present over all DHTs. There are other
systems that just like Brushwood are also bound to
a single DHT implementation, restricting the scala-
bility of their solution to the underlying DHT imple-
mentation.

Chawathe et al. proposed the use of a Prefix Hash
Tree (PHT) for building a layered index structure
over a generic DHT for storing (x, y) coordinates of
wireless access points [2]. Tree nodes are identified
by a prefix which is taken from the data inserted into
the tree. However, all the data assigned to the same
item identifier (and consequently the same prefix) is
stored under the same DHT object, leading to the
storage hot spot issue. The main difference of the
PHT to our algorithm is that our structure is not

sensible to skewed data. The PHT, in order to adapt
to data variations, places leaves at different tree lev-
els, but even so it places items with the same prefix
under the same DHT object. Our tree blocks adapt
dynamically to the identifier distribution and always
create a balanced tree, i.e, a tree where all leafs are at
the same tree level and theoretically have a uniform
storage size distribution. We also differ on the over-
all system design in which PHT uses a single system-
wide tree to store the index while our system stores
the index over many (smaller) trees.

Zheng et al. presented a Distributed Segment Tree
(DST) algorithm designed to support range-queries
over a generic DHT [20]. Range queries are queries
that should retrieve all data items that fall within a
specified identifier interval. Tree blocks are identi-
fied by static range limits over the identifier space.
Static range limits are incapable of handling skewed
data identifiers properly. For example, if many data
items have the same identifier, or are contained in-
side a very small identifier space, they all will be as-
signed to the same tree node and consequently the
same DHT object, creating a storage hot spot at this
DHT object. The main difference of DST to our al-
gorithm is that our node range is defined dynamically
according to the data distribution and tend to create
the best storage distribution, even with skewed data.
Although we are not presenting our algorithm as a
range-query structure, it shares with DST the basic
structure to be able to execute them.

7 Conclusion

We have identified a problem over P2P indexing sys-
tems, the storage hot-spot, that while not being re-
strictive in itself (today’s storage is not a limitation
on most settings) creates additional network load
that limits the current systems scalability. We im-
plemented a Decentralized Balanced Tree algorithm
capable of converting very large objects made of mul-
tiple items into bounded sized pieces suitable to be
stored over any DHT system using a Key Based Rout-
ing interface. By designing an algorithm that relies
on a commonly available DHT interface, we were not
bound to any particular implementation and are able

13

to choose the most suitable DHT according to our re-
quirements on memory/routing usage.

Our algorithm was based on Balanced trees which
are used by database engines to index data. Again,
the decision to base our algorithm on a well tested
structure let us benefit from previous research on
query optimization techniques and efficient generic
index functionality (like range-queries) that were al-
ready available on the B-tree design and are also
present on our algorithm.

We evaluated our algorithm on a concurrent sim-
ulated environment with a textual distributed index
system to determine it’s balancing properties on both
storage and network resources for a highly skewed
data set. The results show that the algorithm is capa-
ble of balancing storage load perfectly and reducing
the network load variation by half when compared to
a direct DHT use for inserting data into the index.
Querying the index also revealed a more uniform net-
work load distribution, reducing the standard devi-
ation from three orders of magnitude to one, when
comparing our algorithm, with query optimization
techniques, to the direct DHT case.

Acknowledgments

We wish to acknowledge the insightful comments and
suggestions made by Sylvia Ratnasamy and Rodrigo
Rodrigues under the 1st ACM Eurosys Authoring
Workshop.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Informa-
tion Retrieval. ACM Press, NewYork, 1999.

[2] Y. Chawathe, S. Ramabhadran, S. Ratnasamy,
A. LaMarca, J. Hellerstein, and S. Shenker. A case
study in building layered dht applications. In Proceedings
of the ACM SIGCOMM’05 Conference, pages 97 – 108,
2005.

[3] T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, 1989.

[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with cfs. In
Proceedings of the 18th ACM Symposium on Operating
System Principles, Alberta, Canada, October 2001.

[5] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and
I. Stoica. Towards a common api for structured peer-
to-peer overlays. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS’03), Berke-
ley, USA, February 2003.

[6] O. Gnawali. A keyword-set search system for peer-to-
peer networks. Master’s thesis, Massachusetts Institute
of Technology, May 2002.

[7] T. Johnson and P. Krishna. Lazy updates for distributed
data structures. In Proceedings of the 1993 ACM SIG-
MOD international conference on Management of data,
1993.

[8] D. Karger and M. Ruhl. Simple efficient load balancing
algorithms for peer-to-peer systems. In Proceedings of
the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03), Berkeley, CA, USA, February 2003.

[9] J. Li, B. Loo, J. Hellerstein, M. Kaashoek, D. Karger, and
R. Morris. On the feasibility of peer-to-peer web index-
ing and search. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS’03), Berke-
ley, USA, February 2003.

[10] Overnet website. http://www.overnet.com/.

[11] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load balancing in structured p2p systems. In
Procs of the 2nd Intl. Workshop on Peer-to-Peer Systems
(IPTPS’03), Berkeley, CA, USA, February 2003.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network.
In Proceedings of the ACM SIGCOMM’01 Conference,
pages 161–172, 2001.

[13] P. Reynolds and A. Vahdat. Efficient peer-to-
peer keyword searching. In Proceedings of the 4th
ACM/IFIP/USENIX International Middleware Confer-
ence, Brazil, 2003.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-
to-peer systems. In Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Plat-
forms, Germany, 2001.

[15] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer
caching schemes to address flash crowds. In Procs of the
1st Intl. Workshop on Peer-to-Peer Systems (IPTPS’02),
Cambridge, MA, USA, March 2002.

[16] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable Peer-To-Peer lookup ser-
vice for internet applications. In Proceedings of the ACM
SIGCOMM’01 Conference, pages 149–160, 2001.

[17] J. Stribling, J. Li, I. G. Councill, M. F. Kaashoek, and
R. Morris. Overcite: A distributed, cooperative citeseer.
In Proceedings of the 3rd Symposium on Networked Sys-
tems Design and Implementation (NSDI’06), 2006.

14

[18] C. Tang and S. Dwarkadas. Hybrid global-local indexing
for efficient peer-to-peer information retrieval. In Proceed-
ings of First Symposium on Networked Systems Design
and Implementation, San Francisco, USA, March 2004.

[19] C. Zhang, A. Krishnamurthy, and R. Wang. Brushwood:
Distributed trees in peer-to-peer systems. In Proceedings
of the 4th International Workshop on Peer-to-Peer Sys-
tems (IPTPS’05), New York, USA, February 2005.

[20] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed
segment tree: Support of range query and cover query
over dht. In Electronic publications of the 5th Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS’06),
California, USA, February 2006.

[21] G. Zipf. Human Behaviour and the Principle of Least
Effort. Addison-Wesley, 1949.

15

