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Abstract

Aggregation of data values plays an important
role on distributed computations, in particular over
peer-to-peer and sensor networks, as it can provide
a summary of some global system property and di-
rect the actions of self-adaptive distributed algo-
rithms. Examples include using estimates of the
network size to dimension distributed hash tables
or estimates of the average system load to direct
load-balancing.

Distributed aggregation using non-idempotent
functions, like sums, is not trivial as it is not easy
to prevent a given value from being accounted
for multiple times; this is specially the case if no
centralized algorithms or global identifiers can be
used.

This paper introduces a novel technique, Ex-
trema Propagation, for distributed estimation of the
sum of positive real numbers. It is more expressive
than previous approaches as it encompasses sum-
ming naturals and counting. As a special important
case we show how it can be applied to network size
estimation.

The technique relies on the exchange of dupli-
cate insensitive messages and can be applied in
flood and/or epidemic settings, where multi-path
routing occurs; it is tolerant of message loss; it
is fast, as the number of message exchange steps
can be made just slightly above the theoretical min-
imum; and it is fully distributed, with no single
point of failure and the result produced at every
node.

1 Introduction

Aggregation is recognized as an important building
block for distributed applications in peer-to-peer or
sensor network infrastructures [18, 11, 12]. Aggre-
gating data values can provide a summary of some
global system property and play an important role
in directing the actions of self-adaptive distributed
algorithms.

Examples can be found when using estimates of
the network size to direct the dimensioning of dis-
tributed hash table structures [17], when setting a
quorum for voting algorithms [1], when estimates
of the average system load are needed to direct lo-
cal load-balancing decisions or when an estimate
of the total disk space in the network is required in
a P2P sharing system.

Distributed computation of aggregation func-
tions in a network is not trivial. Unlike aggrega-
tion in a tree [14, 13], where each value is guar-
anteed to contribute only once, in a graph it is not
easy to prevent a given value from being accounted
for multiple times; this is specially the case if no
centralized algorithms or global identifiers can be
used. Thus, calculating general non-idempotent
functions (e.g.COUNT, SUM, AVG) is problematic
and we are restricted to idempotent functions that
are duplicate insensitive (e.g.MIN , MAX ) [15, 2].
Aggregation functions that can be made duplicate
insensitive have the advantage of being usable un-
der multi-path routing.

This paper introduces a novel technique, Ex-
trema Propagation, for distributed estimation of the
sum of positive real numbers. It is a probabilis-
tic technique that exchanges duplicate insensitive
messages and thus can be applied in flood and/or
epidemic settings, where multi-path routing occurs,
and is tolerant of message loss.
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This technique has some important properties:
the precision is controlled by message size, inde-
pendently of network size; it is fast: the num-
ber of message exchange steps can be made just
slightly above the theoretical minimum; it is fully
distributed, with no single point of failure, and the
result is produced at every node. As a special
important case (and for presentation purposes) we
show how this technique can be applied to network
size estimation.

2 Network Size Estimation

In order to simplify the description we concentrate
on a specific counting problem:How many nodes
are present in a given network?Moreover, we aim
for a distributed assessment of such estimate and to
have it available at every node after a short number
of message exchange steps.

Our assumptions are: (1) Each node can com-
municate with a set of neighbour nodes; (2) Each
node has access to a random number generator. We
also make use of some assumptions that, although
not necessary for this class of algorithms, simplify
the presentation and analysis: (a) messages are
not lost or corrupted; (b) the network is static and
completely connected; (c) connections are bidirec-
tional (the graph is undirected). Message loss is
addressed informally in a later section.

2.1 Minimum Number of Steps Towards
Estimation

Our technique avoids the construction of a tree, and
works directly on an unstructured network where
each node only needs to know its neighbours. It
should be noticed that tree construction over an un-
structured network would require a number of mes-
sage exchange steps proportional toD, the network
diameter (betweenD/2 andD, depending on the
node chosen for the tree root). Subsequent aggre-
gation along the tree would again require an identi-
cal number of message exchanges steps. Moreover,
such procedure would not tolerate link failures and
the calculated result would be available at just a
single node (the tree root, a single point of fail-
ure); dissemination to other nodes would require
further message exchange steps. Therefore, mak-

ing the result available at every node would take at
least3D/2 steps in the best case. A tree based algo-
rithm cannot reach the theoretical lower bound for
the number of steps, which can trivially be shown
to beD.

Proposition 1. LetD be the network diameter: the
maximum length of the shortest paths between two
nodes in the graph. Obtaining at every node an
estimate of the number of nodes needs at leastD
message exchange steps.

Proof. Consider two nodes,a andb, such that the
shortest path between them has lengthD. In order
to have ina an estimate of the network size that
takesb into account, one needs at leastD message
exchange steps.

Thus, the fastest estimations cannot be done in
less thanD steps (to be available at every node; it
can be made earlier at some nodes, and the aver-
age number of rounds across the network can be
less thanD). Our technique is close to optimal in
the number of steps, as it terminates in some small
steps above the theoretical minimum. As we will
see, this extra steps are needed just in the termina-
tion detection, as the estimate is already calculated
before, but cannot be reported as available.

2.2 Synopsis of the Estimation Technique

Our approach to estimation is based on finding
an idempotent message structure that allows the
counting of nodes. One trivial approach would be
the use of one unique identifier per node (an ad-
ditional assumption) and a protocol that collects
the set of all identifiers, aggregating by set union.
Such protocol would estimate inD steps, but cre-
ates messages that are linear with the network size.

Our technique avoids the need for unique identi-
fiers and aggregate sizes which depend on network
size [16]. It is based on idempotent operations on
numbers, more specifically the minimum function,
and the use of statistical inference.

The insight to our approach is the following: if
we generate a random real number in each node us-
ing a known probability distribution (e.g. Gaussian
or exponential), and aggregate across all nodes us-
ing the minimum function, the resulting value has
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a new distribution which depends on the number of
nodes.

The basic idea is then to generate a vector of ran-
dom numbers at each node, aggregate each compo-
nent across the network using the pointwise mini-
mum, and then use the resulting vector as a sample
from which to infer the number of nodes (by a max-
imum likelihood estimator).

We will show that if a vector ofK numbers is
generated per node, it is possible to provide an es-
timate N̂ of the network sizeN with a standard
deviation ofN/

√
K − 2. This means that the rel-

ative accuracy can be chosen independently of the
network size, and is determined byK.

If we want to enforce a maximum relative error
r = |N̂−N |/N with a confidence of95% we need
to makeK = 2+

(
1.96

r

)2
. For example, for an error

r = 10%, one needs to makeK = 387.
The focus of our technique is not accuracy but

speed: we do not aim for very low errors (e.g. 1%
would lead to large messages) but for a fast compu-
tation of an useful approximation that can serve as
input to some other algorithm (in some cases even
10% may be more than enough, only the order of
magnitude may be needed).

2.3 Basic Extrema Propagation

The basic algorithm that every node runs is shown
in Algorithm 1. Each node maintains a vectorx
of K numbers, initialized using functionrExp(1),
which returns a random number with an exponen-
tial distribution of rate parameter 1.

Algorithm 1 Basic Extrema Propagation
constK
var n, x[1..K]

Upon: Init
n← neighbours(self)
for all i ∈ 1..K do x[i]← rExp(1)
Sendx to everyp ∈ n

Upon: Receivem1..mj from all p ∈ n
for all l ∈ 1..j do

x← pointwisemin(x,ml)
end for
Sendx to everyp ∈ n

Upon: Query
return N̂(x)

The algorithm consists of a series of rounds to-
wards convergence. In each round every node
sends a message containing vectorx to its neigh-
bours, collects the corresponding messages from its
neighbours and computes the pointwise minimum
of x and all corresponding vectors received, updat-
ing x with the result.

Each node uses function̂N(x), which takes as
parameter the vector ofK aggregated minimums,
and returns an estimation of the number of partic-
ipants (network size). In this first version we do
not deal with termination and assume that a node
can be queried at any time, possibly before conver-
gence is reached, i.e. before we have collected the
pointwise minimum of every vector in the network.
Termination is addressed below.

3 Estimation Function

We first introduce the maximum likelihood estima-
tor N̂F used to estimate the unknown parameterN .
We then proceed with the theoretical study of its
main properties, namely bias and variance. The
likelihood function is obtained from the extreme
value theory, which is a branch of statistics deal-
ing with the extreme deviations from the median
of probability distributions. Next results deal with
deviations imposed by the minimum function, but
similar results can be easily derived for the maxi-
mum.

Proposition 2. LetFmin(x) = 1−(1−F (x))N be
the limiting distribution for the minimum of a large
collectionX1, ..., XN of random observations from
the same arbitrary distributionF (x) [7].

Given a vector ofK minimumsx[1], ..., x[K],
which are observed values fromFmin(x) distribu-
tion, then the maximum likelihood estimator for the
unknown parameterN is

N̂F = − K∑K
i=1 log{1− F (x[i])}

. (1)

Proof. The limiting density for the minimum is
fmin(x) = d

dxFmin(x) = Nf(x)(1 − F (x))N−1,
wheref(x) = d

dxF (x). According to the likeli-
hood method, we wish to maximize the function
L(N) =

∏K
i=1 fmin(x[i]), or equivalently, to max-

imize log L(N) where log L(N) = K log N +
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∑K
i=1 log f(x[i])+(N−1)

∑K
i=1 log{1−F (x[i])}.

From d
dN log L(N) = 0 one concludes that

N = − K∑K
i=1 log{1− F (x[i])}

.

We now concentrate on the special case of using
the exponential distribution forF (x) as it will lead
to a simple estimator. We will also derive a unbi-
ased estimator for this distribution. (The generic
estimatorN̂F above is not necessarily unbiased.)
We denote the exponential distribution with rate 1
by Exp(1).

Now, F (x) = 1 − e−x, x ≥ 0 and the corre-
sponding estimator forN becomes

N̂Exp =
K∑K

i=1 x[i]
.

Moreover,Fmin(x) = 1 − e−Nx, x ≥ 0, is an
exponential distribution with rateN , denoted by
Exp(N).

In order to correct the bias in̂NExp there is a
need for an auxiliary lemma.

Lemma 3. If X1, . . . , Xk are independent random
variables (r.v.’s) from distributionExp(N), then

a)
∑K

i=1 Xi is a r.v. from a gamma distribution
with shape and scale parameters equal toK
andN , respectively.

b) Furthermore, the next expectation and vari-
ance hold:

E

[
1∑K

i=1 Xi

]
=

N

K − 1

and

Var

[
1∑K

i=1 Xi

]
=

N2

(K − 1)(K − 2)
− N2

(K − 1)2
.

Proof. The proof for a) is straightforward from the
classic theory of Mathematical Statistics (see e.g.
[9]). The proof for b) considers the well known
resultsE[g(X)] =

∫
g(x)f(x)dx, wheref(x) is

the density function of r.v.X, andVar[g(X)] =
E[g(X)2]− E[g(X)]2.

It is now possible to introduce an unbiased esti-
mator forN .

Proposition 4. The estimator given by

N̂ =
K − 1

K
N̂Exp =

K − 1∑K
i=1 x[i]

(2)

is unbiased.

Proof. We need to prove that the expectationE[N̂ ]
is equal toN . Let Xi be the r.v. related to the
observed valuex[i]. First, by Lemma 3, one has

E[N̂Exp] = E

[
K∑K

i=1 Xi

]
= K

N

K − 1

and

E[N̂ ] = E
[
K − 1

K
N̂Exp

]
= N.

Proposition 5. Variance ofN̂ is given by

V ar[N̂ ] =
N2

K − 2
.

Proof. This proof is again straightforward from the
application of Lemma 3

Var[N̂ ] = (K − 1)2 Var

[
1∑K

i=1 Xi

]
=

N2

K − 2
.

We now generalize this result so that one can es-
timate a sum of positive reals. This new estimator
can be applied to a broad class of aggregations that
can be expressed by operations on sums, e.g.AVG.
Here the variance is determined by the magnitude
of the sum that is to be estimated.

Proposition 6. For 1 ≤ i ≤ N , let Xi be indepen-
dent r.v.’s from distributionExp(λi) with λi > 0,
and minimum(X1, . . . , XN ) a new r.v. from dis-
tribution Exp(

∑N
i=1 λi). Given a set ofK min-

imumsx[1], . . . , x[K], which are observed values
from Exp(

∑N
i=1 λi), then an unbiased estimator

for Sum =
∑N

i=1 λi is

Ŝum =
K − 1∑N
i=1 x[i]

with

V ar[Ŝum] =
Sum2

K − 2
.
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Proof. The proof is straight forward from the
proofs of Propositions 4 and 5, renamingN to
Sum.

For presentation purposes, the remaining sec-
tions will concentrate on the practical properties
and application of the estimator for network size,
N̂ . Nevertheless, most of the analysis is also appli-
cable to the more generiĉSum estimator.

4 Binary Encoding

In some application contexts, e.g. mobile ad-hoc
networks and sensor networks, message size has an
important practical impact both in speed and en-
ergy consumption.

Although precision is dictated by the choice of
K, there are some relevant design decisions in the
floating point encoding of the numbers in the vec-
tor. It is intuitive to see that, when aiming for a
precision of only a few percent, storing each value
naively as a float or double would probably be us-
ing a much higher precision than needed. There-
fore we tried encoding values with less precision.

After numerically studying several combinations
of bit allocations in a binary mantissa and exponent
encoding we have concluded that it is appropriate
to store only the exponent. Moreover, looking at
values that occur in a exponential distribution, and
the way that they contribute to the sum in the esti-
mator, even though there can be more than 20 bi-
nary orders of magnitudes in the values that occur,
a range of only 9 values in the exponent contributes
to 99.9% of the result.

Table 1 shows the relative cumulative contribu-
tion of values from higher to lower exponents oc-
curring in a exponential distribution. The expo-
nents shown, from 3 to -5 would be the ones con-
tributing almost exclusively to the sum, forN = 1
(1 node network). The distribution of minimums
for aN node network is also exponential, but with
the range of meaningful values scaled by1/N .
As N is unknown, we must use a range of ex-
ponents that is9 + log2(N). This leads to us-
ing 5 bits for storing the exponent, to account for
possibly large networks: 5 bits gives a range of
32 for the exponent; this means networks up to
232−9 = 223 nodes. (Using 4 bits would only al-
low up to216−9 = 27 = 128 nodes.)

exponent contribution (%)
3 0.350
2 10.26
1 42.64
0 74.99

-1 91.54
-2 97.53
-3 99.33
-4 99.82
-5 99.95

Table 1: Relative cumulative contribution.

A given real valuev in vectorx is encoded by
the integerfloor(log2 v), and when reconstructed
becomesv = 2floor(log2 v). Likewise, the base 2
discretization of vectorx is denoted byx.

Although N̂(x) was proved to be unbiased, the
coarser grain discretization due to encoding intro-
duces a bias in̂N(x). This bias can be corrected as
it is possible to calculate a scale factors(K) such
thatE[N̂(x)] ≈ E[s(K)N̂(x)].

We considered the possibility of choosing higher
bases for encoding, with the intent of reducing the
number of bits needed to encode the same range.
We can observe that in order to reduce one bit we
need to square the base. Thus, if we encode in 5 bits
for base 2, we can encode in 4 for base 4, and in 3
bits for base 16. However the bias correcting scale
factor for other basesb > 2 shows a non negligi-
ble dependence onN , with a periodic oscillation
on logb N . Although some additional corrections
can be devised, the total impact on accuracy does
not compensate the space savings on encoding bits,
sinceK would need to increase as well.

Calculation of the base 2 scale parameters(K),
was performed numerically and is depicted in Ta-
ble 2. This value shows a slight dependence onK.
This is due to a small change in the shape of the
distribution ofN̂ for small values ofK, since the
r.v. N̂ follows a Gamma distribution with shape
parameterK.

SinceK is known and configured in the pro-
tocol, and the relative periodic oscillations onN
are less than0.001 for base 2, one simply needs to
pick the appropriate scale factor for the usedK. In
short, under binary encoding the estimator forN
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K sample s(K) sd[s(K)]
10000 100 0.7212 0.0007
1000 1000 0.7212 0.0008
100 10000 0.7208 0.0008
10 100000 0.7161 0.0008

Table 2: Scale factors(K) and respective standard
deviation. 5 bits, base=2. Using 50 points andsam-
ple repetitions per point.

becomes:

s(K)
K − 1∑K
i=1 x[i]

,

wheres(K) is the scale parameter for a givenK as
depicted in Table 2.

From the results in Section 3 we can define a
metric that indicates the relative error of the esti-
mation. The metric is namedTRE (Theoretical
Relative Error) and is defined as follows:

TRE =

√
V ar[N̂ ]

N
=

1√
K − 2

.

This metric indicates how the estimation devi-
ates fromN as a proportion ofN .

In order to numerically measure the quality of
the estimator after encoded and scale corrected,
we define the following metric, namedORE (Ob-
served Relative Error)

ORE =

√PJ
i=1(N̂i−N)2

J

N
,

whereN̂i, for i = 1..J , is a set of observations of
the estimate of a givenN . Both metrics are defined
in terms of the MSE (Mean Square Error), since
Relative Errorcan be seen as

√
MSE
N .

In Table 3 we consider, for each chosen value for
K ∈ {10, 100, 1000, 10000}, a set of 200 values of
N ranging fromN = 1 to N = 220 ≈ 106. The
table shows how in each case the values forTRE
andORE compare. We can conclude that for prac-
tical purposes the observed values agree with the
theoretical values.

5 Termination Detection

Until now we have not addressed termination. In
the basic algorithm, nodes can be queried at any

K sample TRE ORE
10000 10 0.0100 0.0098
1000 100 0.0316 0.0328
100 1000 0.1010 0.1047
10 10000 0.3535 0.3651

Table 3: Theoretical and observed relative errors.
5 bits, base=2. Using 200 points fromN = 1 to
N = 220 andsamplerepetitions per point.

time, before we have taken into account the vectors
from every node in the network. If we query it too
soon, messages from distant nodes will not have
yet contributed and the estimate will be a number
smaller and unrelated to the network size.

As the algorithm collects vectors from all neigh-
bours, at each new round the algorithm takes into
account vectors from all nodes one hop further than
in the previous round; i.e. the “visibility radius” in-
creases at each round. In the worst case, for nodes
in the periphery of the network, afterD rounds,
whereD is the network diameter, all vectors will
have contributed. The problem is that, in general,
we will not know the network diameter in advance.

The intuition for the termination is as follows: at
each round we collect information from some new
nodes (all nodes that entered the expanded visibil-
ity radius); as each of these nodes contributes with
K random numbers, the probability that no new
minimum is obtained at any index in the vector (i.e.
that “no news” has arrived) is small; moreover the
probability that such “absence of news” occursT
times in a row is close to zero even for a smallT
(smallerT for largerK).

The termination of the algorithm is based pre-
cisely on the detection ofT (for some config-
urableT ) consecutive rounds where no component
changed in the vector stored locally. When that
happens the algorithm assumes that all nodes have
contributed and the result can be reported. The al-
gorithm including termination detection is shown
in Algorithm 2.

To find out which values ofT are appropriate, we
have simulated runs of the algorithm, each time un-
til x at each node converges to the global pointwise
minimum. In each run we have kept, at each node,
the maximum number of consecutive rounds with
no update inx before the value converges; we have
also kept the number of rounds needed for conver-
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Algorithm 2 With termination detection
constK, T
var n, x[1..K]
var oldx[1..K], nonews, converged

Upon: Init
nonews← 0
converged← False
n← neighbours(self)
for all i ∈ 1..K do x[i]← rExp(1)
Sendx to everyp ∈ n

Upon: Receivem1..mj from all p ∈ n
oldx← x
for all l ∈ 1..j do

x← pointwisemin(x,ml)
end for
if oldx 6= x then

nonews← 0
else

nonews← nonews + 1
end if
if nonews ≥ T then

converged← True
end if
Sendx to everyp ∈ n

Upon: Query & converged = True
return N̂(x)

gence.
We have simulated runs of the algorithm for sev-

eral networks with different topologies and sizes,
using different values forK. We have used three
network topologies: “2d” – proximity based net-
works (e.g. sensor networks) where nodes are
spread geographically and each node communi-
cates with others at some distance; “rand” – where
each node is linked with others at random; and “at-
tach” – which, like the web, follows a “preferen-
tial attachment” where some nodes are much more
popular than others. “2d” networks have a large di-
ameter and “attach” a small diameter, with “rand”
in between.

Table 4 shows, for differentK (10, 100 and
1000), and for the different topologies, each with
differentN (100, 1000 and 10000 nodes): the aver-
age across all nodes (AR) and the maximum (MR)
number of rounds for convergence, and the maxi-
mum number of consecutive rounds with no news
(NN) that was observed, while running 10 times the
algorithm for each combination ofK, topology and
N . The figures regard the version of the algorithm
that stores numbers as a 5 bits exponent in base 2;
using floating point numbers gave similar results.

The table shows that for “rand” and “attach” net-
works, the observed NN is quite small; for these
networks it will suffice choosing: forK = 1000,
T equal to 3 or 4; forK = 10 or K = 100, T
equal to 4 or 5. These values are conservative to-
wards ensuring that each node will have converged;
in fact we have observed that, for these topologies,
over 90% of the nodes getx updated every round
until convergence, and over 99% of the nodes see
at most one consecutive round with no news.

For “2d” networks, NN varies more considerably
with network size andK. More specifically, we
have observed a relatively linear dependence be-
tween NN and the network diameter. The diameter,
for 2d networks grows typically as the square root
of the number of nodes and can reach some con-
siderable size.K = 10 is not appropriate for 2d
networks, as it would be difficult to choose a value
for T . Even if we could make a choice of a large
enoughT , the extraT rounds would be a consid-
erable overhead (at least about 50%) over the aver-
age number of rounds necessary for thex vector to
converge; this overhead decreases to about 20% for
K = 100 and about 10% forK = 1000.
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K = 10
Top. N AR MR NN
2d 100 8.2 14 4
2d 1000 28.3 47 15
2d 10000 82.0 132 46
attach 100 2.8 5 2
attach 1000 3.8 7 2
attach 10000 4.6 8 2
rand 100 4.7 8 3
rand 1000 6.3 11 3
rand 10000 8.1 14 4

K = 100
Top. N AR MR NN
2d 100 9.5 14 2
2d 1000 31.5 47 5
2d 10000 95.4 139 18
attach 100 3.2 5 1
attach 1000 4.3 8 2
attach 10000 5.1 9 2
rand 100 5.5 8 2
rand 1000 7.2 11 2
rand 10000 9.2 15 4

K = 1000
Top. N AR MR NN
2d 100 9.8 14 1
2d 1000 33.4 47 2
2d 10000 101.7 140 10
attach 100 3.3 5 1
attach 1000 4.8 8 1
attach 10000 5.6 9 2
rand 100 5.7 8 1
rand 1000 7.9 12 2
rand 10000 10.0 15 3

Table 4: Average and maximum rounds for conver-
gence and maximum consecutive rounds with no
news

It should be pointed out that very large “2d” net-
works are unrealistic [8], and that these would lead
to large diameters (already around 140 hops in the
10000 node network used). Assuming that larger
than 10000 nodes “2d” networks will not occur, we
can chooseT = 19 for K = 100 andT = 11 for
K = 1000 (or T = 6 andT = 3 respectively for
up to 1000 nodes networks).

6 Message Loss and Slow Links

A strong point in our estimation technique is that it
is suitable to address scenarios where message loss
can occur. Contrary to techniques such as [11], that
cannot afford to loose messages, in ours the knowl-
edge in each message is made obsolete by subse-
quent ones: if a message fromA to B containing
vector x is lost, a subsequent message will have
contenty, wherey ≤ x (in pointwise order).

This means that our algorithm can be easily
modified to deal with message loss. The algo-
rithms presented send a message to all neighbours
and wait from messages from all neighbours. This
means that a single message loss will deadlock the
entire system. Some simple modifications to deal
with the problem are possible:

• A possibility is the use of a timeout. Normally
the algorithm would wait for messages from
all neighbours, but if more than some time
elapsed, it would proceed using the messages
received so far.

• Another possibility is to design the algorithm
to cope with the failure ofF messages, for
small F like 1 or 2, and make it wait from
messages from all neighbours minusF .

The second variation is interesting in another
point: it would make the algorithm robust to slow
links. Waiting from all minus e.g. 1 neighbour
means that if the last message would take much
more time to arrive it would not slow down the
starting of the next round. The vector in these late
messages could be accounted for (in the subsequent
round) in computingx, so that we do not ignore a
node whose messages are consistently the last one
to arrive. The possible increase in the number of
rounds would be balanced by faster rounds.
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In these variations each message would be
tagged with a round number, to distinguish mes-
sages from the current round from older rounds. A
combination of these possibilities would be to wait
for all neighbours until a timeout and then wait for
all still missing minusF .

A careful analysis of these variants, including
the impact ofF on convergence detection and al-
gorithm absolute running time due to faster rounds
is beyond the scope of this paper.

7 Related Work

In [10] a network size estimation technique is con-
structed by establishing successor relations among
nodes. Each node that enters the network needs to
be set as successor to an existing node selected uni-
formly at random. Under these conditions it is pos-
sible to provide coarse estimations of the network
size, ranging fromN/2 to N2.

Two network size estimation algorithms are pre-
sented on [16], in both cases the authors assume
that all nodes have unique identifiers and estimates
are calculated at an initiator node. The first algo-
rithm Hops Sampling Protocolis a gossip based
technique requiring a membership list chosen uni-
formly at random and the capability to establish
connections between arbitrary nodes.

The second approach,Interval Density, has
much lighter requirements and thus can be com-
pared with our solution. In this case, nodes have
randomized ids mapped into the interval[0, 1]. The
initiator collects the node ids that fall in a given
subregion of sizeI in the interval and estimates by
multiplying the number of received ids by1/I. The
weakness is that it is difficult to set an adequateI
sinceN is not known and that the transmitted data
is always a fraction ofN . For both algorithms the
achieved relative accuracy after optimizations was
5%.

The use of idempotent messages for duplicate in-
sensitive aggregations in sensor networks was pre-
sented in [4, 3, 15]. These papers make use of
a sketching technique developed by Flajolet and
Martin in [6] and recently enhanced in [5]. The
technique, referred to as FM sketches, was devel-
oped to estimate the number of distinct elements in
a multiset.

Our approach, building on extreme value statis-
tics, operates in the real domain and can estimate
sums of positive reals. FM sketches, builds on the
use of hash functions and bitmaps and is a discrete
technique than can estimate sums of positive inte-
gers. It follows that FM sketches are less general.

Although intrinsically different the two tech-
niques have important similarities. IfK is the
number of units dedicated to the estimation, both
estimate with a relative standard error of roughly
O(1/

√
K).

When considering the effect of binary encoding,
we observe that in [3, 4] the authors use the non en-
hanced FM sketches and thus would only be able to
encode in 5 bits a network size up to25. For prac-
tical uses they would need at least 16 bits per unit.
Considering the enhanced version of FM sketches
in [5], one could expect in 5 bits to be able to count
up to232 while we are limited to about223. How-
ever it is not clear how this version would adequate
to estimations of both small and large values ofN
since the technique was developed for large cardi-
nalities.

A different trade-off in network size estimation
can be found in the technique described in [11].
The approach starts by setting a valuev to 0 in all
nodes and to1 in a given node. Then the protocol
selects pairs of nodes and averages the values in the
nodes. When all values converge each node has an
estimate ofN in N̂ = 1/v. Message state can be
very small since one needs to encode a single real
with high precision. Convergence requires a num-
ber of message exchange steps much larger than the
network diameter and some atomicity and isolation
concerns must be taken into account. The proto-
col is very slow, with this factor having a greater
impact on network topologies with a large diame-
ter. However, this averaging approach can be well
suited for high precision estimates in small diame-
ter networks.

8 Conclusions

We have introduced Extrema Propagation, a new
approach to distributed aggregation, based on the
use of the statistical theory of extreme values. The
resulting unbiased estimators for exponential dis-
tributions lead to very simple algorithms and ef-
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ficient implementations. Being able to estimate
sums of positive reals, we are more expressive than
previous approaches: our technique encompasses
summing naturals and counting, constituting a new
building block for the construction of aggregate
functions.

The technique is fast: all nodes have correct es-
timates after, at most, a number of communication
steps equal to the network diameter, and in this
sense we operate at the theoretical minimum. The
approach to termination detection makes the esti-
mate available after a short additional number of
communication steps.

Finally, Extrema Propagation possesses an as-
sortment of interesting properties: it is fully dis-
tributed with no single point of failure and with
result produced at every node, it does not require
system-wide identifiers and it is suitable to tolerate
message loss.
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