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Abstract. Range queries, retrieving all keys within a given range, is
an important add-on for Distributed Hash Tables (DHTs), as they rely
only on exact key matching lookup. In this paper we support range queries
through a balanced tree algorithm, Decentralized Balanced Tree, that runs
over any DHT system.
Our algorithm is based on the B+-tree design that efficiently stores clus-
tered data while maintaining a balanced load on hosts. The internal struc-
ture of the balanced tree is suited for range queries operations over many
data distributions since it easily handles clustered data without losing
performance.
We analyzed, and evaluated our algorithm under a simulated environ-
ment, to show it’s operation scalability for both insertions and queries.
We will show that the system design imposes a fixed penalty over the
DHT access cost, and thus inherits the scalability properties of the cho-
sen underlying DHT.

1 Introduction

Distributed Hash Table (DHT) systems [1–4] are used as efficient distributed
dictionary implementations, offering a scalable and robust P2P framework that
efficiently locates objects given a key [5, 6]. However, such efficiency is achieved
by an exact key matching lookup interface. The discrete key lookup interface
uses an hash function on the key value to locate objects. This hash function
removes locality properties from keys which restricts it’s use for range queries.
A range query consists in retrieving all keys that fall within a specific range
interval. Range query is a desired feature when using data that is indexed by
contiguous values (consider for example, numeric spatial coordinates).

Previous systems have offered range queries by either using specially designed
structures [7–9] or building on top of generic DHTs [10–12]. Because the first
class of systems is bound to some particular basic storage structure, it offers a
limited solution that may not be as efficient as some DHT systems are. This
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makes the second class of systems, building a tree structure over a generic DHT,
the most flexible choice. By building on a generic DHT, one can choose the
best DHT implementation available for the system, while maintaining the range
query functionality. However, recent structures available in the literature: Prefix
Hash Tree (PHT) [10] and Distributed Segment Tree (DST) [12], are sensitive
to clustered data.

Clustered data is common on real data sets, in particular when data depicts
geographical placement of items that are tied to human activity. For instance,
the concentration of WiFi access points is clustered around cities and along roads
[10], so that sharing access point locations and querying for nearby access points
will yield a response depicting clustered data.

This steams from population concentration patterns, where clustered data
typically follows a power-law distribution, or a combination of power-laws cen-
tered on several focus points [13]. This common setting depicts a few higher
density key regions while most of the data is sparsely distributed across the key
domain.

In this paper we show that the Decentralize Balance tree (DEB tree) algo-
rithm, an algorithm based on the B+-tree design [14], offers a structure suitable
for storing clustered data on block oriented storage (in this case a DHT) while
supporting range queries without loss of performance.

The algorithm is capable of running on top of any generic DHT without
incurring in a significant overhead. Insertions can be reduced to O(1) complexity
in terms of DHT operation requests, if caching is used at clients. Each DHT
request cost depends on the DHT implementation selected. In this sense, the
scalability of the tree design closely follows the scalability properties of the used
DHT.

Query cost depends on the data stored on the index rather than on the range
size. Additionally, it is possible to parallelize the query operation, reducing la-
tency to a logarithmic factor on the stored data size in terms of DHT operations.

2 Related Work

Related work can be divided into two groups: range query systems with specific
underlying structures and range query systems using a tree structure over a
generic DHT interface. Due to space restrictions we will focus on the later group
and only provide a brief mention to some systems in the first group.

Mercury [7] supports multi-attribute range queries using a circular overlay,
similar to Chord, but without key hashing, so that locality is preserved. Skip
graphs [8] are a generalization of skip lists in which nodes are part of distributed
linked lists that form a distributed binary tree. Baton [15] builds a binary bal-
anced tree structure where each tree node is mapped into a peer host and main-
tains connections to the peers containing tree node neighbours.

All previous systems maintain a specific routing algorithm that offers loga-
rithmic cost in terms of network hops to access data. Our DEB-tree algorithm
assumes a generic DHT implementation is used. Such assumption enables the



use of one-hop DHTs [5, 6] or the use of specific DHTs to handle churn efficiently
[4] or efficient load-balancing extensions.

Chawathe et al. proposed the use of a Prefix Hash Tree (PHT) for building
a trie-based structure over a generic DHT [10]. The main difference between the
PHT and DEB tree is that our structure is not sensible to clustered data. The
PHT, in order to adapt to clustered data places leaves at different tree levels,
causing an irregular tree structure that has impact on the query performance.
Data is placed on tree nodes according to a prefix value, which is also used as the
block identification scheme. Since the identification scheme is independent from
the data itself, it is possible to access any tree block directly without knowing the
tree structure in advance. On the other hand, this independence between data
and block ids can create overloaded blocks storing a large number of objects
that share a common prefix value. Our algorithm adapts efficiently to clustered
data distributions, creating a balanced tree with bounded block sizes, but cannot
directly access any block without an initial tree traversal.

Zheng et al. presented a Distributed Segment Tree (DST) algorithm, also
running over a generic DHT [12]. This binary tree structure is static, where all
tree nodes have a pre-defined range limit. Static range limits are incapable of
handling clustered data properly, possibly generating either empty or overfull
nodes depending on the key distribution. Just like on the PHT, the block iden-
tification does not depend on the data, allowing direct access to any tree node.
This algorithm allows access to any block directly, a feature that is used on
queries to reduce the number of accesses by replicating data on additional tree
nodes. This design is very efficient for small queries, at the cost of using more
storage. However, when using clustered data, even queries for a small range can
produce large results, requiring additional accesses.

Our tree algorithm assigns node ranges dynamically according to the data
distribution, which tends to create a good storage distribution for data even
in presence of strong clustering. Furthermore, queries do not make redundant
accesses to the tree but instead access only the minimum amount of nodes nec-
essary to retrieve the (complete) answer.

3 Decentralized Balanced Tree

In this section, we will review the DEB tree algorithm, which was described in
[16], and show how it can be adapted under a generic DHT to support range
queries.

3.1 Tree Structure

The tree structure, following the B+-tree design, is made from leaf and internal
blocks. Leaf blocks contain data items stored on the tree while internal blocks
contain only references to children blocks. All leaf blocks are at the same tree
level, that is, all leaf blocks are at the same distance from the root. This feature



creates a logarithmic bound on the number of block accesses to reach any leaf
block.

To maintain high availability even during tree structure maintenance, each
block keeps a next block reference, that points to the consecutive block at the
same tree level [17]. The block size is bounded by the block’s maximum size
parameter s. Every block must have at least s/2 items and at most s items,
except the root block which only has the maximum bound [14]. Additionally, each
block contains a limit interval (minimum and maximum values) that specifies
the range of data the block is responsible for.

3.2 DHT mapping

We use a single DEB tree to store the entire index data. The support for mul-
tiple spaces or dimensions can be obtained using one of two methods: 1) using
multiple trees or 2) using a space-filling curve function. The support for multiple
trees requires the capability to distinguish blocks of different trees on the same
DHT key domain. A single tree can only store and compare values (or range
intervals) on a linear space. Storing n-dimensional data on the system is pos-
sible by mapping the n-dimensional space into a single-dimension space with a
space-filling curve [10].

Each tree block is stored on the DHT host responsible for the hash value
of the block id. Although block ids are generated dynamically, they must be
globally unique (on the DHT key domain) and not collide or force the change
of an already existing identification. This would require moving the block’s data
on the DHT and updating all the references on other blocks pointing to it.

The block identification is defined as the tuple: 〈level, minlimit〉, where the
level field identifies the tree level this block is and the minlimit distinguishes
the block inside the level.

3.3 Operation Request Model

Access to block data uses the typical put and get DHT interface. The modifi-
cation of a block’s content requires a three cycle procedure at the caller: get–
execute–put operations. For each block access, a get operation must be issued
to retrieve the block’s data from the DHT to the caller. If the data is modified,
an additional put operation must also be issued to store the new data on the
DHT. This design was used by both PHT and DST to implement a tree struc-
ture on top of a generic DHT, like the OpenDHT system [18]. However, unlike
the previous structures, the DEB algorithm does not support concurrency on
some operations. To operate correctly, the algorithm requires some mechanism
to detect concurrent modifications of the same object, in this case the block’s
content.

We propose a simple extension to the get and put semantics: to include
a logical time stamp parameter, so that concurrent puts can be detected and
prevented from happening. This extension would work as follows. When a get
is made, the current time stamp, an integer, is returned together with the data.



When a put is made, the caller sends an increased time stamp value, indicating a
modification. If another caller has, in the meantime, already putted a new value
for that key, the DHT host receiving the put request can detect that both puts
are concurrent and abort the second.

4 Index User Interface

In this section we will describe the two index operations available to the user:
insertions (or removals) and range queries. The user calls these operations to
store or retrieve data items from the system. Each client host must explicitly
store data in the system so that it can be later retrieved by range queries.

4.1 Insertion and Removal

The insertion operation stores a data item into the index. Data items consist on
two fields: 1) the location key, which places the item on the space and 2) the data
item value, that will be fetched if it’s location is contained inside range queries.
In order to insert a data item into the tree, the insertion operation must first
locate the correct leaf block by performing a top-down traversal of the tree and
then adding the new data to the leaf content’s. The removal of an item from the
tree is identical to the insertion except for the removal of the item on the leaf
block. When leaf blocks get full, the caller must also perform a split operation
on the block by transferring half of the data to a new block. We omit here the
details of the split operation.

Both insertion and removal operations are bound by the cost of vertically
traversing the tree, the tree height, which is O(log I) for I stored items in the
tree. Each tree access is equivalent to a get DHT call except for the leaf block
that requires both get and put calls. Any DHT call complexity depends on the
DHT implementation, ranging from O(log N) to O(1) for N hosts. Overall, the
insertion is bound either by O(log I log N) or O(log I), respectively.

4.2 Range Queries

A range query for the [s, t] interval consists in retrieving all the items on the
tree whose locations are contained in the interval. Since items are stored on leaf
blocks, the operation is divided in two steps: 1) locate the leaf blocks whose range
limits intersect [s, t] and 2) retrieve such blocks. The first step is identical to the
location step in the insertion case. This step complexity grows logarithmically
with the number of items inserted on the tree, which corresponds to the tree
height, O(log I). The second step involves geting the targeted leaves. The number
of gets used to retrieve the answer depends directly on the number of stored items
whose location keys are contained in the range interval (I[s, t]) and not on the
size of the query range itself. The size of I[s, t] depends on the distribution of
data and will be analyzed in more detail in the Simulation section.



The retrieval of all leaves can be made by following the next pointer at
each leaf starting at the first ordered leaf that contains s. The downside of this
approach is increasing the query latency. Recall that each block access requires
a DHT get call, whose complexity depends on the DHT implementation. To
reduce the query latency, it is possible to parallelize the block accesses by having
the client retrieve simultaneously all tree blocks of the same tree level that
intersect the range interval. This procedure reduces the latency to the tree height
(O(log I)), at the cost of additional concurrent block accesses. The number of
gets on leaves remain the same.

4.3 Internal Block Caching

User oriented operations, insertions and queries, always require a tree top-down
traversal from the root block to reach the target leaf block. We eliminate the
bottleneck on upper level blocks by caching internal blocks at the callers. Caching
reduces the top-down traversal cost while maintaining the operation’s correctness
as internal blocks serve only for location purposes. Furthermore, even if stale
cached versions are used, the caller either succeeds in finding the correct block
or detects it is using a stale cache entry. To reduce cache update overhead,
caching uses a passive update mechanism in which clients only refresh block
data after detecting tree inconsistencies.

Caching can reduce the cost of a vertical tree traversal from O(log I) to O(1)
when all internal blocks except leaves are already present at the client. In the
worst case, it incurs in constant overhead for the client to update it’s entire local
cache.

5 Simulation

We implemented the DEB tree algorithm over a custom-made simulator in
Python. The basic DHT functionality was simulated using a local storage. How-
ever, using a real DHT platform like OpenDHT would be quite straightforward
except for the concurrency issue already described.

The simulation data was synthetically generated using either uniform and
power-law distributions in order to determine the impact of clustered data on
the algorithm. In the clustered case we considered a small number of focus points
of clustering chosen uniformly at random.

Points are randomly allocated to the left and right of the focus points under
a Pareto distribution with density f(x) = kbk

xk+1 . We used a shape parameter
k = 0.5 and set the minimum x to be 1 by making b = 1. Each random value
obtained from the distribution was decremented by 1 (transforming the range
from [1,+∞[ to [0, +∞[) and either added, or subtracted, to the position of a
focus point. The resulting data set mimics the usual distribution of population
in a geographic linear space.
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Fig. 1. The data point distribution for a
five cluster configuration.
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5.1 Insertion

The insertion simulation consisted in placing 216 points within a 220 linear space
(≈ 106) into the system sequentially and determine the adaptation of the al-
gorithm to clustered and uniform data. We used two data distributions for the
insertion points: an uniform distribution and a five cluster distribution. Figures
1 and 2 show some details of an actual five cluster sample. The first Figure
shows the concentration of points in the linear space and the second shows rank
ordered point densities. Here we can observe the five clusters and the expected
linear decrease of point densities in a log-log scale, the graphical signature of
power-laws.

We ran the simulations for three maximum block sizes: 64, 256 and 1024
items, and repeated each experiment 50 times to exclude random variations.
The DHT is simulated and we assume that the DHT hash function uniformly
distributes blocks across the system hosts.

Figure 3 shows the ECDF on the (average) number of stored items per block.
The tree algorithm balances data perfectly, as we can see that simulations using
the same block size but with different data distributions, whether uniform or
clustered, tend to create identical ECDF’s. The block usage, the number of
stored items per block, varies between 50% and 100% of the block size with the
single exception of the root block. The largest block size case, 1024, shows two
clusters: one around half the block size and the other around the full block size.
This clustering is due to the number of inserted points being large enough to
split blocks but small enough to fill them completely. A greater number of points
(≈ 216) would make the 1024 line more similar in shape to the 256 and 64 lines.

To insert a single item on the tree, a vertical tree traversal is made, requiring
the access to one block for each level. The cost of insertions is therefore equal
to the tree height. The tree height h is defined by the expression h ≤ logt

n+1
2

where 2t is the block size and n is the number of stored items. We measured the
tree heights for all simulations, resulting in 3 levels for trees with block sizes of
64 and 256 items, and 2 levels for the 1024 item block size case.
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Block Data Gets Items/Gets
Size Dist. mean s-d mean s-d

64 unif 222.1 171.6 42.9 3.5
clust5 245.7 308.7 23.6 19.7

256 unif 59.2 46.1 152.9 25.1
clust5 63.6 77.4 82.3 81.2

1024 unif 15.2 11.4 559.8 142.1
clust5 16.9 20.2 306.2 314.0

Fig. 4. The simulation of a query
set over different storage distributions
(uniform and five clusters) and differ-
ent block sizes.

5.2 Range Query

We generated a set of 500 range queries using a middle point and a range size
around that middle point. The middle points were generated from an uniform
distribution on the linear space. The range size was generated from a normal
distribution with 0 mean and a standard deviation of 5% of the space length.
We measured query performance as the number of leaf blocks that had to be
retrieved in order to obtain a complete answer. We did not take into account
internal blocks since their cost is constant for all queries, equal to h − 1 DHT
accesses. Clients can cache internal blocks locally, removing the height traver-
sal cost. Furthermore, queries can be parallelized for each tree level, reducing
query latency to the tree height in the number of hops at the cost of increased
bandwidth.

Figure 4 shows the results of simulations with two different insertion point
distributions (uniform distribution and five cluster distribution) and three max-
imum block sizes: 64, 256 and 1024 items.

We used the same query set for all simulations. Measured the mean and
standard deviation of the number of DHT get calls (on leaf blocks) and the
ratio between items retrieved and gets made per query. Since we used the same
insertion set for simulations with the same insertion data distribution, these
simulations returned the same results no matter what the block size was (an
average of 9855 items for the uniform case and 10913 average items for the
clustered case).

As the block size increases, we see that the mean number of DHT gets nec-
essary to reply the query decreases, along with it’s standard deviation, since
larger blocks are capable of returning more data. The mean ratio also increases
because of the greater block capacity, where each get request returns more items.
However, the ratio’s standard deviation also increases, meaning that queries ob-
tain increasingly different amounts of items per get on each query. This can be
explained by the larger block capacity storage distribution, where the size of
blocks is distributed between half and full maximum size. Larger block capaci-



ties will generate blocks spawning a wider load variation, which is reflected on
the different number of items each block returns and consequently on the ratio’s
standard deviation.

Table 4 also compares the algorithm efficiency when running a query set on
point data created by an uniform distribution or a five cluster distribution. As
expected, the number of gets per query were about the same for both distri-
butions. However, the standard deviation was greater in the clustered case. An
uniform distribution is likely to return the same approximate number of items
for queries across all the linear space, whilst the same queries on a clustered
distribution are likely to have more disparity on the number of items returned
depending on the density of stored data at the query range area, hence the higher
standard deviation.

The item/get ratio mean is higher for the uniform case across all block sizes.
The standard deviation, on the contrary, is always significantly smaller. These
results show that the algorithm adapts perfectly to the storage data distribution.
When running over uniform data, the standard deviation is low because all
queries tend to receive the same amount of results. When running over clustered
data, the higher standard deviation shows that the algorithm returns different
amounts of data for the same query set, which is in accordance to the clustered
distribution of data with many sparse regions and a few highly dense regions.

6 Conclusion

In this paper we show how our DEB tree algorithm, which is based on balanced
trees, can easily provide a scalable range query implementation over generic DHT
systems.

The solution induces an even distribution of items per DHT block and con-
sequently balances the storage and network load on the hosts that support the
DHT. We have considered two opposite data sets, one with data uniformly dis-
tributed in space and another exhibiting highly clustered data. These two sce-
narios induce almost indistinguishable patterns of data allocation in the DHT,
depicting similar ECDFs.

Finally, we considered the effects of a typical range query scenario. Users
query for items (e.g. WiFi access points) within a given spatial distance of their
current location. The choice of maximum block size is the driving factor that
dictates the number of DHTs requests that are needed for a given usage pattern.
An optimal size must take into account not only the expected usage pattern,
but also the number of stored items and the combined effects of caching and
concurrent DHT gets.

This approach presents a clear advance over previous systems by providing a
design that is mostly insensitive to the presence of clustered data, while building
on of-the-shelf DHT middleware.
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