Title: Reconciliation in Files EveryWhere File System

Name: Marcos Bento, U. Nova de Lisboa

Additional authors: Nuno Preguiga (UNL), Carlos Baquero (U. Minho), J. Legatheaux Martins (UNL)

E-mail: marcosbento@gmail.com
Student: yes

In recent years, mobile computing environments
have been changing with the increasing use of different
types of portable devices with large amounts of stor-
age, ranging from mobile phones to laptops, and from
MP3 players and digital cameras to portable storage
devices, such as flash-disks. These devices can act as
sophisticated, large-capacity storage devices either at-
tached to a computer or directly connected to a net-
work. These devices allow users to always carry with
them (partial) replicas of their private data and of data
they are sharing with other users. Thus, the character-
istics of this new environment differs from the assump-
tion taken in older mobile data management systems.

The Files Everywhere system (FEW) is a distrib-
uted file system that manages files stored in computing
devices and portable storage devices. Users can group
related files in containers and share their containers
with other users. Users can create copies of contain-
ers in multiple storage devices. Additionally, tempo-
rary copies of recently used files are created in portable
storage devices. This approach, combined with an op-
timistic read any, write any model of data access, pro-
vides high data availability. Replicas are synchronized
using a peer-to-peer epidemic model.

The system integrates a new reconciliation mecha-
nism that executes in each replica independently. Unlike
reconciliation mechanisms used traditionally in distrib-
uted file systems, our approach relies completely on the
propagation of updates as semantic-rich operations. To
this end, as we intend to allow applications to continue
using the file system interface, when a user closes a file
that he has modified, the system infers the semantic-
rich operations comparing the original (as when the
user has opened the file) and the final states of the file.

Reconciliation is performed using operational trans-
formation (OT) algorithms [1]. These algorithms have
been developed originally for synchronous groupware
and allow replicas to converge independently by exe-
cuting, in each replica by a different order, a specially
transformed version of all operations. These techniques
allow replicas to always reflect all known updates and
guarantee eventual replica convergence without the use
of undo-redo techniques. These properties are partic-
ularly interesting in our peer-to-peer synchronization
model, as they allow each replica to immediately inte-
grate updates received from any other replicas.

50% T T

(fonﬂicté 1# U;‘Jdates‘ —»—‘
Unsolvable Conflicts / # Updates ---x---
40%

w
S
X

20%

% Operations

10% :
0 40 80 120 160 200 240 280
Files

0%

Figure 1. Gnuplot Project CVS log statistics
(conflicts include all concurrent updates).

Besides adapting the OT algorithm for an asynchro-
nous synchronization model, we have created a new set
of transformations for text files. As in reconciliation so-
lutions based on RCS (e.g. CVS), our solution also cre-
ated multiple versions when conflicts arise. However,
unlike those systems, it treats versions as first-class cit-
izens, allowing file access to files with versions and al-
lowing versions to evolve without creating additional
versions. This is important in a system that uses peer-
to-peer synchronization, as a user may want to delay
file conflict resolution to a later time but he may still
want to be able to observe the changes produced by
other users or even to change other parts of the file (or
even his version for a part that is in conflict).

In our poster, we will present the developed recon-
ciliation techniques. As motivation for the need of a so-
phisticated reconciliation solution, we will also present
some results from a CVS usage study (with results ob-
tained from sourceforge.net that show that in en-
vironment where users share files, conflicts are much
more frequent that reported in previous studies in dis-
tributed file system environments. Figure 1 exempli-
fies some of the results obtained — in this case, for files
with more than 25 updates (the top 100 files), 10% to
30% of updates correspond to concurrent updates and
5% to 15% updates correspond to unsolved conflicts.

References

[1] C. Sun and C. A. Ellis. Operational transformation in
real-time group editors: Issues, algorithms, and achieve-
ments. In Proc. CSCW’98, 1998.

