Leader Election in a Synchronous Ring

Paulo Sérgio Almeida

Distributed Systems Group
Departamento de Informática
Universidade do Minho
Motivation: token ring networks

- In a local area ring network a token circulates around;
- Sometimes the token gets lost;
- A procedure is needed to regenerate the token;
- This amounts to electing a leader;
The problem

- Network graph:
 - n nodes, 1 to n clockwise;
 - symmetry and local knowledge:
 - nodes do not know their or neighbor numbers;
 - distinguish clockwise and anti-clockwise neighbors.
 - notation: operations mod n to facilitate;

- Requirement:
 - eventually, exactly one process outputs the decision leader;
Versions of the problem

- The other non-leader processes must also output \textit{non-leader};
- The ring can be:
 - unidirectional;
 - bidirectional;
- Number of processes \(n \) can be:
 - known;
 - unknown;
- Processes can be:
 - identical;
 - have totally ordered \textit{unique identifiers} (UID);
Theorem

Let A be a system of $n > 1$ processes in a bidirectional ring. If all n processes are identical, then A does not solve the leader-election.

Proof.

Assume WLOG that we have one starting state. (A solution admitting several starting states would have to work for any of those). We have, therefore, a unique execution. By a trivial induction on r, the rounds executed, we can see that all processes have identical state after any number of rounds. Therefore, if any process outputs leader, so must the others, contradicting the uniqueness requirement.

- If all processes are identical, the problem cannot be solved!
- Intuition: by symmetry, what one does, so do the others;
Breaking symmetry

- Impossibility follows from symmetry;
- Must break symmetry; e.g. with unique UIDs;
- Symmetry breaking is an important part of many problems in distributed systems;
A basic algorithm – LCR

- LCR algorithm (Le Lann, Chang, Roberts);
- Uses comparisons on UIDs;
- Assumes only unidirectional ring;
- Does not rely on knowing the size of the ring;
- Only the leader performs output;
LCR informally

- Each process sends its UID to next;
- If a received UID is greater than self UID, it is relayed on;
- If it is smaller, it is discarded;
- If it is equal, the process outputs leader;
Algorithm parameterized on process index \(i \) and UID \(u \);

Message alphabet \(M = \mathbb{U} \), the set of UIDs;

Process state, \(\text{state}_i \):
- \(\text{send} \in M \cup \{\text{null}\} \), initially \(u \);
- \(\text{status} \in \{\text{unknown}, \text{leader}\} \), initially \(\text{unknown} \); output variable;

Message-generating function:

\[
msg_{i,u}((\text{send}, \text{status}), i + 1) = \text{send};
\]

State-transition function:

\[
\text{trans}_{i,u}((\text{send}, \text{status}), \text{msg}) = \begin{cases}
(\text{null}, \text{status}) & \text{if } \text{msg} = \text{null} \\
(\text{null}, \text{status}) & \text{if } \text{msg} < u \\
(\text{msg}, \text{status}) & \text{if } \text{msg} > u \\
(\text{null}, \text{leader}) & \text{if } \text{msg} = u
\end{cases}
\]
Proof of correctness

- Let m be the index of process with maximum UID u_m;
- Show two lemmas.

Lemma

Process m outputs leader in round n.

Lemma

Processes $i \neq m$ never output leader.

Theorem

LCR solves leader election.
Leader election in a synchronous ring

A basic algorithm

Proof of correctness - first lemma

Lemma

Process m outputs leader in round n.

Proof.

- For $i \neq m$, if after round r, $send_{i-1} = u_m$, then in round $r + 1$, $send_i = u_m$;
- For $0 \leq r \leq n - 1$, after r rounds, $send_{m+r} = u_m$;
- Node before m in ring is $m + n - 1$;
- After round $n - 1$, $send_{m+n-1} = u_m$;
- In round n, m receives u_m and outputs leader;
Proof of correctness - second lemma

Lemma

Processes $i \neq m$ never output leader.

Proof.

- A process i can only output leader if it receives $msg = u_i$;
- A non-null message can only be some u_j, from process j;
- As UIDs are unique, msg would have to originate in i and travel around the ring, including m;
- But as $u_i < u_m$, m does not relay msg, sending null instead;
- Therefore, msg cannot arrive at i, and i cannot output leader;
Halting and non-leader outputs

- LCR as presented does not halt;
- Processes other than leader stay in *unknown* status;
- Can be modified to halt and make others output *other*;
- When leader outputs, sends *halt* message and halts;
- When a process receives *halt*, passes it on and then halts;
- Processes that receive *halt* can output *other*;
- This transformation to halting and output in all processes is quite general, and can be applied in many scenarios;
other processes can output *other* as soon as they receive a UID greater than own;

but they cannot halt immediately; they must keep on relaying;

Arriving at output can be sometimes much sooner than halting;

but they are independent things;

sometimes a premature halt, forgetting to keep on reacting, can deadlock the rest of the system;
Halting and non-leader outputs formally

- Message alphabet: as before or \{halt\};
- Process states: as before or halted;
- Halting states: halted;
- status ∈ \{unknown, leader, other\};
- Message-generating function as before;
- State-transition function:

\[
\text{trans}_{i,u}((send, status), msg) = \begin{cases}
\text{halted} & \text{if } send = \text{halt} \\
(halt, status) & \text{if } msg = \text{halt} \\
(null, status) & \text{if } msg = \text{null} \\
(null, status) & \text{if } msg < u \\
(msg, other) & \text{if } msg > u \\
(halt, leader) & \text{if } msg = u
\end{cases}
\]
Leader election in a synchronous ring

A basic algorithm

Complexity

- **Time complexity:**
 - \(n\) rounds until leader elected;
 - \(2n\) rounds until last process halts;
 - And if processes know the size of the ring?

- **Communication complexity:**
 - Which configuration results in less messages? How many?
 - Which configuration results in more messages? How many?
 - \(O(n^2)\) messages in the worst case for both versions;
 - \(O(n \log n)\) messages in average;
HS – an algorithm with $O(n \log n)$ communication complexity

- HS algorithm (Hirshberg, Sinclair);
- Uses comparisons on UIDs;
- Assumes bidirectional ring;
- Does not rely on knowing the size of the ring;
- Only the leader performs output (can be overcome with transformation);
Processes operate in phases $l = 0, 1, 2, \ldots$;
In each phase, processes send token with UID in both directions;
Tokens in phase l intend to travel 2^l and turn back to sender;
If a received UID is greater than self UID, it is relayed on;
If it is smaller, it is discarded;
If it is equal, the process outputs leader;
HS formally

- Message alphabet: \(M = \{\text{out}\} \times \mathbb{U} \times \mathbb{N} \cup \{\text{in}\} \times \mathbb{U} \);

- Process state, \(\text{state}_i \):
 - \(s^- \in M \cup \text{null} \), initially \((\text{out}, u, 1)\);
 - \(s^+ \in M \cup \text{null} \), initially \((\text{out}, u, 1)\);
 - \(o \in \{\text{unknown, leader}\} \), output variable, initially \text{unknown};
 - \(l \): phase, initially 0;

- Message-generating function:
 \[
 \text{msg}_{i, u}((s^-, s^+, o, l), j) = \begin{cases}
 s^- & \text{if } j = i - 1 \\
 s^+ & \text{if } j = i + 1
 \end{cases}
 \]
s+ := null
s- := null
if message from i-1 is (out, v, h):
 case
 v > u and h > 1: s+ := (out, v, h-1)
 v > u and h = 1: s- := (in, v)
 v = u: o := leader
if message from i+1 is (out, v, h):
 case
 v > u and h > 1: s- := (out, v, h-1)
 v > u and h = 1: s+ := (in, v)
 v = u: o := leader
if message from i-1 is (in, v) and v != u:
 s+ := (in, v)
if message from i+1 is (in, v) and v != u:
 s- := (in, v)
if messages from i-1 and i+1 are both (in, u):
 l := l+1
 s+ := (out, u, 2^l)
 s- := (out, u, 2^l)
Problems with imperative description

- Imperative style makes it difficult to reason;
- Different places assign to the same variable;
- Are those cases mutually exclusive?
- If not, is the order in the program significant?
- Examples:
 - what if messages \((\text{out, v, 3})\) and \((\text{out, w, 1})\) arrived at a node?
 - what if messages \((\text{out, v, 1})\) and \((\text{in, w})\) arrived at a node?
 - in both cases, one would have to proceed, the other turn around;
 - two different specifications for same outgoing message;
 - in imperative description, the last assignment wins;
 - should not happen; but won’t it? should be proven;
- Algorithm depends on some combinations of incoming messages never occurring;
Alternative: functional description

- As we need to describe functions (message generation and state transition) . . .
 . . . why not adopt a functional style?
- Pseudo-code with functional flavour;
- Functions defined by cases, using pattern matching;
- Functions can be partial:
 - not all cases are covered;
 - can make functions simpler;
 - a separate proof shows those cases never happen;
 - proof would have to exist anyway, if correctness depends on it;
HS formally – state-transition function

\[
\text{trans}_{i,u}((s-, s+, o, l), ((out, u, h), (out, u, h))) =
\begin{cases}
(\text{null}, \text{null}, \text{leader}, l) & \\
(((out, u, 2^{l+1}), (out, u, 2^{l+1}), o, l + 1) &
\end{cases}
\]

\[
\text{trans}_{i,u}((s-, s+, o, l), (m-, m+)) \text{ when } \text{lasthop}(m-, m+) =
\begin{cases}
(\text{filter}_u(m-), \text{filter}_u(m+), o, l) & \\
(\text{filter}_u(m+), \text{filter}_u(m-), o, l) &
\end{cases}
\]

\[
\text{lasthop}((out, _, 1), _) = \text{true}
\]

\[
\text{lasthop}(_, (out, _, 1)) = \text{true}
\]

\[
\text{lasthop}(_, _) = \text{false}
\]

\[
\text{filter}_u((out, v, h)) \text{ when } v < u = \text{null}
\]

\[
\text{filter}_u((out, v, 1)) = (in, v)
\]

\[
\text{filter}_u((out, v, h)) = (out, v, h - 1)
\]

\[
\text{filter}_u((in, u)) = \text{null}
\]

\[
\text{filter}_u(m) = m
\]
HS – correctness

- Several steps in the proof;
- Safety:
 - At most one process decides to become leader;
- Termination:
 - Some process will decide to become leader;
HS – correctness

Lemma

A process with UID u only outputs leader when a message started at u travels the whole ring and arrives back at u.

Proof.

- a process with UID u only decides leader when receiving a message \(m = (\text{out}, u, ___) \);
- as all UIDs are different, the message started at u;
- as the message is outgoing, it has not turned back and travelled always in the same direction;
- therefore, the message travelled the whole ring.
Lemma

At most one process can become leader: the one with the maximum UID.

Proof.

- from the previous lemma, for a process with UID \(v \) to become leader, it must receive a message \((\text{out}, v, _\) that travelled the whole ring;
- such message must have been subject to the \(\text{filter}_u \) function for every other process;
- therefore, that message can only arrive at \(v \) if \(v \) is greater than all other UIDs.
Lemma

Process \(p \) with maximum UID \(u \) decides leader in round
\(n + 2 \times \sum_{l=0}^{m} 2^l \), with \(m \) the greatest integer such that \(2^m < n \).

Proof.

- messages \((out, u, _)\) started at \(p \) are always relayed; never discarded;
- for phases \(0 \leq l \leq m \), such messages are outbound \(2^l \) rounds, turn around, and take another \(2^l \) rounds until reaching \(p \), when a new phase starts;
- in the end of round \(n \) of phase \(m + 1 \), the outbound messages, which started with \(2^{m+1} \geq n \) possible hops, reach \(p \) before turning back and \(p \) decides leader.
Can we send less information in messages?

Algorithm phases proceed in lockstep;

Can we move some state that controls algorithm from messages to processes?

Example: number of hops in messages;
 - can we control turn around of messages with process state?

Insight:
 - everything happens in lockstep;
 - all messages travel with the same hops left;

Is it so? Must prove;
Lemma

In each round, all non-null messages are either outgoing with same remaining hops left, or incoming.

Proof.

- induction on the number of rounds;
- base case: all messages \((\text{out}, _, 1)\);
- inductive step: messages generated are either \textit{null}, the result of \textit{filter}() which preserves hypothesis, or \((\text{out}, _, 2^{l+1})\);
- induction hypothesis not enough . . .
Deriving a variant of HS with smaller messages

Proof.
(continued)
need to strengthen lemma and prove also that:

Lemma

All processes that start a new phase, do it in the same round.

Proof.

• proof both lemmas together: use both lemmas in the inductive step;
• not enough: why do processes start phase in same round? …
Proof. (Continued)
Need to strengthen lemma and prove also that:

Lemma

All surviving messages turn around in the same round.

Proof.

Use the three lemmas together in the inductive step.
In proving insight we learned much about algorithm;
Looks possible to control message relaying or turning back:
 - without having hops in messages;
 - without having direction in messages;
Sketch:
 - processes count rounds in each phase;
 - half-way through a phase, invert direction of messages;
 - at end of phase check if both messages received have self UID, to decide whether sending new messages;
 - processes keep counting phases and rounds, even after stopping sending new messages;
 - improvement: non-leader output can be decided earlier;
Message alphabet: \(M = \mathbb{U} \);

Process state, \(\text{state}_i \):
- \(s^- \in M \cup \text{null} \), initially \(u \);
- \(s^+ \in M \cup \text{null} \), initially \(u \);
- \(o \in \{\text{unknown}, \text{nonleader}, \text{leader}\} \), output variable, initially \(\text{unknown} \);
- \(l \): phase, initially 0;
- \(r \): round in phase, initially 1;

Message-generating function:
\[
msg_{i,u}((s-, s^+, o, l, r), j) = \begin{cases}
 s^- & \text{if } j = i - 1 \\
 s^+ & \text{if } j = i + 1
\end{cases}
\]
HS variant – state-transition function

\[\text{trans}_{i,u}((s-, s+, o, l, r), (m-, m+)) \text{ when } (r = 2^l) = \]
\[(\text{filter}_u(m-), \text{filter}_u(m+), o, l, r + 1)\]
\[\text{trans}_{i,u}((s-, s+, o, l, r), (u, u)) \text{ when } (r = 2 \times 2^l) = \]
\[(u, u, o, l + 1, 1)\]
\[\text{trans}_{i,u}((s-, s+, o, l, r), (m-, m+)) \text{ when } (r = 2 \times 2^l) = \]
\[(\text{null, null, nonleader, l + 1, 1})\]
\[\text{trans}_{i,u}((s-, s+, o, l, r), (u, u)) = \]
\[(\text{null, null, leader, l, r + 1})\]
\[\text{trans}_{i,u}((s-, s+, o, l, r), (m-, m+)) = \]
\[(\text{filter}_u(m+), \text{filter}_u(m-), o, l, r + 1)\]

\[\text{filter}_u(v) \text{ when } v < u = \text{null}\]
\[\text{filter}_u(m) = m\]
Leader election in a synchronous ring

An algorithm with $O(n \log n)$ communication complexity

HS – complexity

- **Time complexity:**
 - leader in round $n + 2 \times \sum_{l=0}^{m} 2^l$, with $m = \lceil \log_2 n \rceil - 1$;
 - $O(n)$, at most $5n$;

- **Communication complexity:**
 - a process sends new messages in phase l if receives both messages from phase $l - 1$;
 - messages must have survived 2^{l-1} filterings;
 - within any group of $2^{l-1} + 1$ consecutive processes, at most one sends new messages in phase l;
 - total number of messages during phase l bounded by:

$$4 \left(2^l \cdot \left\lfloor \frac{n}{2^{l-1} + 1} \right\rfloor \right) \leq 8n$$

 - total number of messages at most $8n(1 + \lceil \log_2 n \rceil)$;
 - communication complexity: $O(n \log n)$