
Leader Election in a Synchronous Ring

Paulo Sérgio Almeida

Distributed Systems Group
Departamento de Informática

Universidade do Minho

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 1

Leader election in a synchronous ring The Problem

Motivation: token ring networks

In a local area ring network a token circulates around;
Sometimes the token gets lost;
A procedure is needed to regenerate the token;
This amounts to electing a leader;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 2

Leader election in a synchronous ring The Problem

The problem

Network graph:
n nodes, 1 to n clockwise;
symmetry and local knwoledege:

nodes do not know their or neighbor numbers;
distinguish clockwise and anti-clockwise neighbors.

notation: operations mod n to facilitate;

Requirement:
eventually, exactly one process outputs the decision leader;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 3

Leader election in a synchronous ring The Problem

Versions of the problem

The other non-leader processes must also output non-leader;
The ring can be:

unidirectional;
bidirectional;

Number of processes n can be:
known;
unknown;

Processes can be:
identical;
have totally ordered unique identifiers (UID);

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 4

Leader election in a synchronous ring Impossibility for identical processes

Impossibility for identical processes

Theorem
Let A be a system of n > 1 processes in a bidirectional ring. If all n
processes are identical, then A does not solve the leader-election.

Proof.
Assume WLOG that we have one starting state. (A solution admiting
several starting states would have to work for any of those). We have,
therefore, a unique execution. By a trivial induction on r , the rounds
executed, we can see that all processes have identical state after any
number of rounds. Therefore, if any process outputs leader , so must
the others, contradicting the uniqueness requirement.

If all processes are identical, the problem cannot be solved!
Intuition: by symmetry, what one does, so do the others;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 5

Leader election in a synchronous ring Impossibility for identical processes

Breaking symmetry

Impossibility follows from symmetry;
Must break symmetry; e.g. with unique UIDs;
Symmetry breaking is an important part of many problems in
distributed systems;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 6

Leader election in a synchronous ring A basic algorithm

A basic algorithm – LCR

LCR algorithm (Le Lann, Chang, Roberts);
Uses comparisons on UIDs;
Assumes only unidirectional ring;
Does not rely on knowing the size of the ring;
Only the leader performs output;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 7

Leader election in a synchronous ring A basic algorithm

LCR informally

Each process sends its UID to next;
If a received UID is greater than self UID, it is relayed on;
If it is smaller, it is discarded;
If it is equal, the process ouputs leader ;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 8

Leader election in a synchronous ring A basic algorithm

LCR formally

Algorithm parameterized on process index (i) and UID (u);
Message alphabet M = U, the set of UIDs;
Process state, statei :

send ∈ M ∪ null , initially u;
status ∈ {unknown, leader}, initially unknown; output variable;

Message-generating function:

msgi,u((send , status), i + 1) = send ;

State-transition function:

transi,u((send , status),msg) =


(null , status) if msg = null
(null , status) if msg < u
(msg, status) if msg > u
(null , leader) if msg = u

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 9

Leader election in a synchronous ring A basic algorithm

Proof of correctness

Let m be the index of process with maximum UID um;
Show two lemmas.

Lemma
Process m ouputs leader in round n.

Lemma
Processes i 6= m never ouput leader .

Theorem
LCR solves leader election.

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 10

Leader election in a synchronous ring A basic algorithm

Proof of correctness - first lemma

Lemma
Process m ouputs leader in round n.

Proof.
For i 6= m, if after round r , sendi−1 = um, then in round r + 1,
sendi = um;
For 0 ≤ r ≤ n − 1, after r rounds, sendm+r = um;
Node before m in ring is m + n − 1;
After round n − 1, sendm+n−1 = um;
In round n, m receives um and outputs leader ;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 11

Leader election in a synchronous ring A basic algorithm

Proof of correctness - second lemma

Lemma
Processes i 6= m never ouput leader .

Proof.
A process i can only output leader if it receives msg = ui ;
A non-null message can only be some uj , from process j ;
As UIDs are unique, msg would have to originate in i and travel
around the ring, including m;
But as ui < um, m does not relay msg, sending null instead;
Therefore, msg cannot arrive at i , and i cannot output leader ;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 12

Leader election in a synchronous ring A basic algorithm

Halting and non-leader outputs

LCR as presented does not halt;
Processes other than leader stay in unknown status;
Can be modified to halt and make others output other ;
When leader outputs, sends halt message and halts;
When a process receives halt , passes it on and then halts;
Processes that receive halt can output other ;
This transformation to halting and output in all processes is quite
general, and can be applied in many scenarios;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 13

Leader election in a synchronous ring A basic algorithm

Halting and non-leader outputs; an improvement

other processes can output other as soon as they receive a UID
greater than own;
but they cannot halt immediately; they must keep on relaying;

Arriving at output can be sometimes much sooner than halting;
but they are independent things;

sometimes a premature halt, forgetting to keep on reacting, can
deadlock the rest of the system;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 14

Leader election in a synchronous ring A basic algorithm

Halting and non-leader outputs formally

Message alphabet: as before or {halt};
Process states: as before or halted ;
Halting states: halted ;
status ∈ {unknown, leader ,other};
Message-generating function as before;
State-transition function:

transi,u((send , status),msg) =



halted if send = halt
(halt , status) if msg = halt
(null , status) if msg = null
(null , status) if msg < u
(msg,other) if msg > u
(halt , leader) if msg = u

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 15

Leader election in a synchronous ring A basic algorithm

Complexity

Time complexity:
n rounds until leader elected;
2n rounds until last process halts;
And if processes know the size of the ring?

Communication complexity:
Which configuration results in less messages? How many?
Which configuration results in more messages? How many?
O(n2) messages in the worst case for both versions;
O(n log n) messages in average;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 16

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS – an algorithm with O(n log n) communication complexity

HS algorithm (Hirshberg, Sinclair);
Uses comparisons on UIDs;
Assumes bidirectional ring;
Does not rely on knowing the size of the ring;
Only the leader performs output (can be overcome with
transformation);

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 17

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS informally

Processes operate in phases l = 0,1,2, . . .;
In each phase, processes send token with UID in both directions;
Tokens in phase l intend to travel 2l and turn back to sender;
If a received UID is greater than self UID, it is relayed on;
If it is smaller, it is discarded;
If it is equal, the process ouputs leader ;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 18

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS formally

Message alphabet: M = {out} × U× N ∪ {in} × U;
Process state, statei :

s− ∈ M ∪ null , initially (out , u, 1);
s+ ∈ M ∪ null , initially (out , u, 1);
o ∈ {unknown, leader}, output variable, initially unknown;
l : phase, initially 0;

Message-generating function:

msgi,u((s−, s+,o, l), j) =

{
s− if j = i − 1
s+ if j = i + 1

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 19

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS – state-transition function in imperative pesudo-code

s+ := null
s- := null
if message from i-1 is (out, v, h):
case
v > u and h > 1: s+ := (out, v, h-1)
v > u and h = 1: s- := (in, v)
v = u: o := leader

if message from i+1 is (out, v, h):
case
v > u and h > 1: s- := (out, v, h-1)
v > u and h = 1: s+ := (in, v)
v = u: o := leader

if message from i-1 is (in, v) and v != u:
s+ := (in, v)

if message from i+1 is (in, v) and v != u:
s- := (in, v)

if messages from i-1 and i+1 are both (in, u):
l := l+1
s+ := (out, u, 2 l̂)
s- := (out, u, 2 l̂)

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 20

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Problems with imperative description

Imperative style makes it difficult to reason;
Different places assign to the same variable;
Are those cases mutually exclusive?
If not, is the order in the program significant?
Examples:

what if messages (out , v , 3) and (out ,w , 1) arrived at a node?
what if messages (out , v , 1) and (in,w) arrived at a node?
in both cases, one would have to proceed, the other turn around;
two different specifications for same outgoing message;
in imperative description, the last assignment wins;
should not happen; but won’t it? should be proven;

Algorithm depends on some combinations of incoming
messages never occurring;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 21

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Alternative: functional description

As we need to describe functions (message generation and state
transition) . . .
. . . why not adopt a functional style?
Pseudo-code with functional flavour;
Functions defined by cases, using pattern matching;
Functions can be partial:

not all cases are covered;
can make functions simpler;
a separate proof shows those cases never happen;
proof would have to exist anyway, if correctness depends on it;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 22

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS formally – state-transition function

transi,u((s−, s+,o, l), ((out ,u,h), (out ,u,h))) =
(null ,null , leader , l)

transi,u((s−, s+,o, l), ((in,u), (in,u))) =
((out ,u,2l+1), (out ,u,2l+1),o, l + 1)

transi,u((s−, s+,o, l), (m−,m+)) when lasthop(m−,m+) =
(filteru(m−), filteru(m+),o, l)

transi,u((s−, s+,o, l), (m−,m+)) =
(filteru(m+), filteru(m−),o, l)

lasthop((out , ,1),) = true
lasthop(, (out , ,1)) = true
lasthop(,) = false

filteru((out , v ,h)) when v < u = null
filteru((out , v ,1)) = (in, v)
filteru((out , v ,h)) = (out , v ,h − 1)
filteru((in,u)) = null
filteru(m) = m

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 23

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS – correctness

Several steps in the proof;
Safety:

At most one process decides to become leader;

Termination:
Some process will decide to become leader;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 24

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS – correctness

Lemma
A process with UID u only outputs leader when a message started at
u travels the whole ring and arrives back at u.

Proof.
a process with UID u only decides leader when receiving a
message m = (out ,u,);
as all UIDs are different, the message started at u;
as the message is outgoing, it has not turned back and travelled
always in the same direction;
therefore, the message travelled the whole ring.

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 25

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS – correctness

Lemma
At most one process can become leader: the one with the maximum
UID.

Proof.
from the previous lemma, for a process wiht UID v to become
leader, it must receive a message (out , v ,) that travelled the
whole ring;
such message must have been subject to the filteru function for
every other process;
therefore, that message can only arrive at v if v is greater then
all other UIDs.

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 26

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS – correctness

Lemma
Process p with maximum UID u decides leader in round
n + 2×

∑m
l=0 2l , with m the greatest integer such that 2m < n.

Proof.

messages (out ,u,) started at p are always relayed; never
discarded;
for phases 0 ≤ l ≤ m, such messages are outbound 2l rounds,
turn around, and take another 2l rounds until reaching p, when a
new phase starts;
in the end of round n of phase m + 1, the outbound messages,
which started with 2m+1 ≥ n possible hops, reach p before
turning back and p decides leader .

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 27

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Deriving a variant of HS with smaller messages

Can we send less information in messages?
Algorithm phases proceed in lockstep;
Can we move some state that controls algorithm from messages
to processes?
Example: number of hops in messages;

can we control turn around of messages with process state?

Insight:
everything happens in lockstep;
all messages travel with the same hops left;

Is it so? Must prove;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 28

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Deriving a variant of HS with smaller messages

Lemma
In each round, all non-null messages are either outgoing with same
remaining hops left, or incoming.

Proof.
induction on the number of rounds;
base case: all messages (out , ,1);
inductive step: messages generated are either null , the result of
filteru(), which preserves hypothesis, or (out , ,2l+1);
induction hypothesis not enough . . .

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 29

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Deriving a variant of HS with smaller messages

Proof.
(continued)
need to strengthen lemma and prove also that:

Lemma
All processes that start a new phase, do it in the same round.

Proof.
proof both lemmas together: use both lemmas in the inductive
step;
not enough: why do processes start phase in same round? . . .

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 30

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Deriving a variant of HS with smaller messages

Proof.
(Continued)
Need to strengthen lemma and prove also that:

Lemma
All surviving messages turn around in the same round.

Proof.
Use the three lemmas together in the inductive step.

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 31

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

Deriving a variant of HS with smaller messages

In proving insight we learned much about algorithm;
Looks possible to control message relaying or turning back:

without having hops in messages;
without having direction in messages;

Sketch:
processes count rounds in each phase;
half-way through a phase, invert direction of messages;
at end of phase check if both messages received have self UID, to
decide whether sending new messages;
processes keep counting phases and rounds, even after stopping
sending new messages;
improvement: non-leader output can be decided earlier;

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 32

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS variant

Message alphabet: M = U;
Process state, statei :

s− ∈ M ∪ null , initially u;
s+ ∈ M ∪ null , initially u;
o ∈ {unknown, nonleader , leader}, output variable, initially
unknown;
l : phase, initially 0;
r : round in phase, initially 1;

Message-generating function:

msgi,u((s−, s+,o, l , r), j) =

{
s− if j = i − 1
s+ if j = i + 1

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 33

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS variant – state-transition function

transi,u((s−, s+,o, l , r), (m−,m+)) when (r = 2l) =
(filteru(m−), filteru(m+),o, l , r + 1)

transi,u((s−, s+,o, l , r), (u,u)) when (r = 2× 2l) =
(u,u,o, l + 1,1)

transi,u((s−, s+,o, l , r), (m−,m+)) when (r = 2× 2l) =
(null ,null ,nonleader , l + 1,1)

transi,u((s−, s+,o, l , r), (u,u)) =
(null ,null , leader , l , r + 1)

transi,u((s−, s+,o, l , r), (m−,m+)) =
(filteru(m+), filteru(m−),o, l , r + 1)

filteru(v) when v < u = null
filteru(m) = m

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 34

Leader election in a synchronous ring An algorithm with O(n log n) communication complexity

HS – complexity

Time complexity:
leader in round n + 2×

∑m
l=0 2l , with m = dlog2 ne − 1;

O(n), at most 5n;

Communication complexity:
a process sends new messages in phase l if receives both
messages from phase l − 1;
messages must have survived 2l−1 filterings;
within any group of 2l−1 + 1 consecutive processes, at most one
sends new messages in phase l ;
total number of messages during phase l bounded by:

4
(

2l ·
⌊

n
2l−1 + 1

⌋)
≤ 8n

total number of messages at most 8n(1 + dlog2 ne);
communication complexity: O(n log n)

c©2007–2013 Paulo Sérgio Almeida Leader Election in a Synchronous Ring 35

	Leader election in a synchronous ring
	The Problem
	Impossibility for identical processes
	A basic algorithm
	An algorithm with O(n logn) communication complexity

