Leader Election in a Synchronous Ring

Paulo Sérgio Almeida

Distributed Systems Group
Departamento de Informática
Universidade do Minho
Motivation: token ring networks

- In a local area ring network a token circulates around;
- Sometimes the token gets lost;
- A procedure is needed to regenerate the token;
- This amounts to electing a leader;
Leader election in a synchronous ring

The Problem

The problem

Network graph:
- n nodes, 1 to n clockwise;
- symmetry and local knowledge:
 - nodes do not know their or neighbor numbers;
 - distinguish clockwise and anti-clockwise neighbors.
- notation: operations mod n to facilitate;

Requirement:
- eventually, exactly one process outputs the decision leader;
Versions of the problem

- The other non-leader processes must also output *non-leader*;
- The ring can be:
 - unidirectional;
 - bidirectional;
- Number of processes n can be:
 - known;
 - unknown;
- Processes can be:
 - identical;
 - have totally ordered *unique identifiers* (UID);
Let A be a system of $n > 1$ processes in a bidirectional ring. If all n processes are identical, then A does not solve the leader-election.

Proof.

Assume WLOG that we have one starting state. (A solution admitting several starting states would have to work for any of those). We have, therefore, a unique execution. By a trivial induction on r, the rounds executed, we can see that all processes have identical state after any number of rounds. Therefore, if any process outputs \textit{leader}, so must the others, contradicting the uniqueness requirement.

- If all processes are identical, the problem cannot be solved!
- Intuition: by symmetry, what one does, so do the others;
Breaking symmetry

- Impossibility follows from symmetry;
- Must break symmetry; e.g. with unique UIDs;
- Symmetry breaking is an important part of many problems in distributed systems;
A basic algorithm – LCR

- LCR algorithm (Le Lann, Chang, Roberts);
- Uses comparisons on UIDs;
- Assumes only unidirectional ring;
- Does not rely on knowing the size of the ring;
- Only the leader performs output;
LCR informally

- Each process sends its UID to next;
- If a received UID is greater than self UID, it is relayed on;
- If it is smaller, it is discarded;
- If it is equal, the process outputs leader;
LCR formally

- Algorithm parameterized on process index \((i)\) and UID \((u)\);
- Message alphabet \(M = \mathbb{U}\), the set of UIDs;
- Process state, \(\text{state}_i\):
 - \(\text{send} \in M \cup \text{null}\), initially \(u\);
 - \(\text{status} \in \{\text{unknown, leader}\}\), output variable, initially \text{unknown};
- Message-generating function:
 \[
 \text{msg}_{i,u}((\text{send}, \text{status}), i + 1) = \text{send};
 \]
- State-transition function:
 \[
 \text{trans}_{i,u}((\text{send}, \text{status}), \text{msg}) = \begin{cases}
 (\text{null}, \text{status}) & \text{if } \text{msg} = \text{null} \\
 (\text{null}, \text{status}) & \text{if } \text{msg} < u \\
 (\text{msg}, \text{status}) & \text{if } \text{msg} > u \\
 (\text{null, leader}) & \text{if } \text{msg} = u
 \end{cases}
 \]
Proof of correctness

Let m be the index of process with maximum UID u_m;
Show two lemmas.

Lemma

Process m outputs leader in round n.

Lemma

Processes $i \neq m$ never output leader.

Theorem

LCR solves leader election.
Proof of correctness - first lemma

Lemma

Process \(m \) outputs leader in round \(n \).

Proof.

- For \(i \neq m \), if after round \(r \), \(send_{i-1} = u_m \), then in round \(r + 1 \), \(send_i = u_m \);
- For \(0 \leq r \leq n - 1 \), after \(r \) rounds, \(send_{m+r} = u_m \);
- Node before \(m \) in ring is \(m + n - 1 \);
- After round \(n - 1 \), \(send_{m+n-1} = u_m \);
- In round \(n \), \(m \) receives \(u_m \) and outputs \textit{leader}.
Lemma

Processes \(i \neq m \) never output leader.

Proof.

- A process \(i \) can only output leader if it receives \(msg = u_i \);
- A non-null message can only be some \(u_j \), from process \(j \);
- As UIDs are unique, \(msg \) would have to originate in \(i \) and travel around the ring, including \(m \);
- But as \(u_i < u_m \), \(m \) does not relay \(msg \), sending null instead;
- Therefore, \(msg \) cannot arrive at \(i \), and \(i \) cannot output leader;
Halting and non-leader outputs

- LCR as presented does not halt;
- Processes other than leader stay in *unknown* status;
- Can be modified to halt and make others output *other*;
- When leader outputs, sends *halt* message and halts;
- When a process receives *halt*, passes it on and then halts;
- Processes that receive *halt* can output *other*;
- This transformation to halting and output in all processes is quite general, and can be applied in many scenarios;
Halting and non-leader outputs; an improvement

- other processes can output \textit{other} as soon as they receive a UID greater than own;
- but they cannot halt immediately; they must keep on relaying;

Arriving at output can be sometimes much sooner than halting;
- but they are independent things;
- sometimes a premature halt, forgetting to keep on reacting, can deadlock the rest of the system;
Leader election in a synchronous ring

A basic algorithm

Halting and non-leader outputs formally

- Message alphabet: as before or \{halt\};
- Process states: as before or halted;
- Halting states: halted;
- status ∈ \{unknown, leader, other\};
- Message-generating function as before;
- State-transition function:

\[
trans_{i,u}((send, status), msg) = \begin{cases}
 halted & \text{if } send = \text{halt} \\
 (halt, status) & \text{if } msg = \text{halt} \\
 (null, status) & \text{if } msg = \text{null} \\
 (null, status) & \text{if } msg < u \\
 (msg, other) & \text{if } msg > u \\
 (halt, leader) & \text{if } msg = u
\end{cases}
\]
Complexity

- **Time complexity:**
 - n rounds until leader elected;
 - $2n$ rounds until last process halts;
 - And if processes know the size of the ring?

- **Communication complexity:**
 - $O(n^2)$ messages in the worst case for both versions;
 - $O(n \log n)$ messages in average;
 - Which configuration results in less messages? How many?
 - Which configuration results in more messages? How many?
HS – an algorithm with $O(n \log n)$ communication complexity

- HS algorithm (Hirshberg, Sinclair);
- Uses comparisons on UIDs;
- Assumes bidirectional ring;
- Does not rely on knowing the size of the ring;
- Only the leader performs output (can be overcome with transformation);
Leader election in a synchronous ring

An algorithm with $O(n \log n)$ communication complexity

HS informally

- Processes operate in phases $l = 0, 1, 2, \ldots$;
- In each phase, processes send token with UID in both directions;
- Tokens in phase l intend to travel 2^l and turn back to sender;
- If a received UID is greater than self UID, it is relayed on;
- If it is smaller, it is discarded;
- If it is equal, the process outputs *leader*;
Leader election in a synchronous ring

An algorithm with $O(n \log n)$ communication complexity

HS formally

- **Message alphabet:** $M = \{\text{out}\} \times \mathbb{U} \times \mathbb{N} \cup \{\text{in}\} \times \mathbb{U}$;

- **Process state, state_i:**
 - $s_- \in M \cup \text{null}$, initially $(\text{out}, u, 1)$;
 - $s_+ \in M \cup \text{null}$, initially $(\text{out}, u, 1)$;
 - $o \in \{\text{unknown, leader}\}$, output variable, initially unknown;
 - l: phase, initially 0;

- **Message-generating function:**

$$msg_{i,u}((s-, s+, o, l), j) = \begin{cases}
 s_- & \text{if } j = i - 1 \\
 s+ & \text{if } j = i + 1
\end{cases}$$

©2007–2010 Paulo Sérgio Almeida
Leader election in a synchronous ring

An algorithm with $O(n \log n)$ communication complexity

HS – state-transition function in imperative pseudo-code

```plaintext
s+ := null
s- := null
if message from i-1 is (out, v, h):
    case
    v > u and h > 1: s+ := (out, v, h-1)
    v > u and h = 1: s- := (in, v)
    v = u: o := leader
if message from i+1 is (out, v, h):
    case
    v > u and h > 1: s- := (out, v, h-1)
    v > u and h = 1: s+ := (in, v)
    v = u: o := leader
if message from i-1 is (in, v) and v != u:
    s+ := (in, v)
if message from i+1 is (in, v) and v != u:
    s- := (in, v)
if messages from i-1 and i+1 are both (in, u):
    l := l+1
    s+ := (out, u, 2^l)
    s- := (out, u, 2^l)
```
Problems with imperative description

- Imperative style makes it unclear the functional dependence and makes it difficult to reason;
- Different places assign to the same variable;
- Are those cases mutually exclusive?
- Examples:
 - what if messages \((\text{out}, v, 3)\) and \((\text{out}, w, 1)\) arrived at a node?
 - what if messages \((\text{out}, v, 1)\) and \((\text{in}, w)\) arrived at a node?
 - in both cases, one would have to proceed, the other turn around;
 - two different specifications for same outgoing message;
- in imperative description, the last assignment wins;
- should not happen; but won’t it? should be proven;
- Algorithm depends on some combinations of incoming messages never occurring;
Alternative: functional description

- As we need to describe functions . . .
 . . . why not adopt a functional style?
- Pseudo-code with functional flavour;
- Functions defined by cases, using pattern matching;
- Functions can be partial:
 - not all cases are covered;
 - can make functions simpler;
 - a separate proof shows those cases never happen;
 - proof would have to exist anyway, if correctness depends on it;
Leader election in a synchronous ring

An algorithm with $O(n \log n)$ communication complexity

HS formally – state-transition function

\[
\text{trans}_{i,u}((s-, s+, o, l), ((\text{out}, u, h), (\text{out}, u, h))) = \\
(\text{null}, \text{null}, \text{leader}, l)
\]

\[
\text{trans}_{i,u}((s-, s+, o, l), ((\text{in}, u), (\text{in}, u))) = \\
((\text{out}, u, 2^{l+1}), (\text{out}, u, 2^{l+1}), o, l + 1)
\]

\[
\text{trans}_{i,u}((s-, s+, o, l), (m-, m+)) \text{ when } \text{lasthop}(m-, m+) = \\
(\text{filter}_u(m-), \text{filter}_u(m+), o, l)
\]

\[
\text{trans}_{i,u}((s-, s+, o, l), (m-, m+)) = \\
(\text{filter}_u(m+), \text{filter}_u(m-), o, l)
\]

\[
\text{lasthop}((\text{out}, _, 1), _) = \text{true}
\]

\[
\text{lasthop}(_, (\text{out}, _, 1)) = \text{true}
\]

\[
\text{lasthop}(_, _) = \text{false}
\]

\[
\text{filter}_u((\text{out}, v, h)) \text{ when } v < u = \text{null}
\]

\[
\text{filter}_u((\text{out}, v, 1)) = (\text{in}, v)
\]

\[
\text{filter}_u((\text{out}, v, h)) = (\text{out}, v, h - 1)
\]

\[
\text{filter}_u(m) = m
\]
HS – correctness

- Several steps in the proof;
- Safety:
 - At most one process decides to become leader;
- Termination:
 - Some process will decide to become leader;
Lemma

A process with UID u outputs leader when a message started at u travels the whole ring and arrives back at u.

Proof.

- a process with UID u only decides leader when receiving a message $m = (\text{out}, u, _)$;
- as all UIDs are different, the message started at u;
- as the message is outgoing, it has not turned back and travelled always in the same direction;
- therefore, the message travelled the whole ring.
Lemma

At most one process can become leader: the one with the maximum UID.

Proof.

- from the previous lemma, for a process with UID v to become leader, it must receive a message $(\text{out}, v, _)$ that travelled the whole ring;
- such message must have been subject to the filter_u function for every other process;
- the only way for the message to arrive non-null is v to be greater than all other UIDs.
Lemma

Process p with maximum UID u decides leader in round $n + 2 \times \sum_{l=0}^{m} 2^l$, with m the greatest integer such that $2^m < n$.

Proof.

- messages $(out, u, _)$ started at p are always relayed; never discarded;
- for phases $0 \leq l \leq m$, such messages are outbound 2^l rounds, turn around, and take another 2^l rounds until reaching p, when a new phase starts;
- in the end of round n of phase $m + 1$, the outbound messages, which started with $2^{m+1} \geq n$ possible hops, reach p before turning back and p decides leader.
Deriving a variant of HS with smaller messages

- Can we send less information in messages?
- Algorithm operates in lockstep;
- Can we move some state that controls algorithm from messages to processes?
 - Example: number of hops in messages;
 - can we control turn around of messages with process state?
- Insight:
 - everything happens in lockstep;
 - all messages travel with the same hops left;
- Is it so? Must prove;
Deriving a variant of HS with smaller messages

Lemma

In each round, all non-null messages are either outgoing with same remaining hops left, or incoming.

Proof.

- induction on the number of rounds;
- base case: all messages \((\text{out},_\text{,}1)\);
- inductive step: messages generated are either \text{null}, the result of \text{filter}_u(\text{)}, which preserves hypothesis, or \((\text{out},_\text{,}2^{l+1})\);
- induction hypothesis not enough . . .
Deriving a variant of HS with smaller messages

Proof.

(continued)

need to strengthen lemma and prove also that:

Lemma

All processes that start a new phase, do it in the same round.

Proof.

• proof both lemmas together: use both lemmas in the inductive step;
• not enough: why do processes start phase in same round? …
Deriving a variant of HS with smaller messages

Proof.

(Continued)
Need to strengthen lemma and prove also that:

Lemma

All surviving messages turn around in the same round.

Proof.

Use the three lemmas together in the inductive step.
Deriving a variant of HS with smaller messages

- In proving insight we learned much about algorithm;
- Looks possible to control message relaying or turning back:
 - without having hops in messages;
 - without having direction in messages;
- Sketch:
 - processes count rounds in each phase;
 - half-way through a phase, invert direction of messages;
 - at end of phase check if both messages received have self UID, to decide whether sending new messages;
 - processes keep counting phases and rounds, even after stopping sending new messages;
 - improvement: non-leader output can be decided earlier;
HS variant

- Message alphabet: $M = \mathbb{U}$;
- Process state, $state_i$:
 - $s- \in M \cup \text{null}$, initially u;
 - $s+ \in M \cup \text{null}$, initially u;
 - $o \in \{\text{unknown, nonleader, leader}\}$, output variable, initially unknown;
 - l: phase, initially 0;
 - r: round in phase, initially 1;
- Message-generating function:
 \[
 msg_{i,u}((s-, s+, o, l), j) = \begin{cases}
 s- & \text{if } j = i - 1 \\
 s+ & \text{if } j = i + 1
 \end{cases}
 \]
HS variant – state-transition function

\[\text{trans}_{i,u}((s-, s+, o, l, r), (m-, m+)) \text{ when } (r = 2^l) = \]
\[(\text{filter}_u(m-), \text{filter}_u(m+), o, l, r + 1) \]
\[\text{trans}_{i,u}((s-, s+, o, l, r), (u, u)) \text{ when } (r = 2 \times 2^l) = \]
\[(u, u, o, l + 1, 1) \]
\[\text{trans}_{i,u}((s-, s+, o, l, r), (m-, m+)) \text{ when } (r = 2 \times 2^l) = \]
\[(\text{null}, \text{null}, \text{nonleader}, l + 1, 1) \]
\[\text{trans}_{i,u}((s-, s+, o, l, r), (u, u)) = \]
\[(\text{null}, \text{null}, \text{leader}, l, r + 1) \]
\[\text{trans}_{i,u}((s-, s+, o, l, r), (m-, m+)) = \]
\[(\text{filter}_u(m+), \text{filter}_u(m-), o, l, r + 1) \]

\[\text{filter}_u(v) \text{ when } v < u = \text{null} \]
\[\text{filter}_u(m) = m \]
• **Time complexity:**
 - leader in round $n + 2 \times \sum_{i=0}^{m} 2^i$, with $m = \lceil \log_2 n \rceil - 1$;
 - $O(n)$, at most $5n$;

• **Communication complexity:**
 - a process sends new messages in phase l if receives both messages from phase $l - 1$;
 - messages must have survived 2^{l-1} filterings;
 - within any group of $2^{l-1} + 1$ consecutive processes, at most one sends new messages in phase l;
 - total number of messages during phase l bounded by:

$$4 \left(2^l \cdot \left\lfloor \frac{n}{2^{l-1} + 1} \right\rfloor \right) \leq 8n$$

• total number of messages at most $8n(1 + \lceil \log_2 n \rceil)$;
• communication complexity: $O(n \log n)$