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Asynchronous systems

Assume no bounds on:

clock drift

processing time

message passing time
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In practice

Tight synchronous limits are
dangerous:

Round time proportional to
mean delay

Low coverage or expensive
systems

Large synchronous limits are not useful:

Round time proportional to high percentile delay

Taking advantage of synchrony causes a very 
large performance penalty

Typical delay distribution
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In practice

Solutions for asynchronous systems might 
have better performance:

Round time proportional to mean delay

Even if more
message exchanges
are necessary

Typical delay distribution

high 
percentile
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In theory

Start with a synchronous reliable fully 
connected network 

Relax the system model:

Unbounded message loss

Large/unknown graph diameter

Dynamic graph

Example: Leader election
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Example: Leader election

Static known
participants

Can loose all messages

Synchronous
Unreliable clique

Asynchronous
Reliable clique

Synchronous
Reliable clique

Disconnected

Synchronous
Reliable connected
Unknown diameter

Synchronous
Reliable dynamic

Synchronous
Reliable static

Synchronous
Bounded unreliable

Clique
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Example: Leader election

Static known
participants

Can loose all messages

Synchronous
Unreliable clique

Asynchronous
Reliable clique

Synchronous
Reliable clique

Disconnected

Synchronous
Reliable connected
Unknown diameter

Trivial Possible Possible
(eventually)

Impossible

Synchronous
Reliable dynamic
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In theory

Asynchrony subsumes:

Heterogeneity

Dynamics

Uncertainty

Much simpler than handling them explicitly

Often considered an Universal model:

Widely applicable solutions
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Goals

How do we make sure that algorithms are 
correct?

Why are algorithms correct?
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Synchronous System

With synchronous 
rounds:

Simple proofs by 
induction

Local state easily 
reflects global state

delta
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Sample computation

An alarm clock program:
main: // line 1

cnt:=3 // line 2

while cnt>0: // line 3

sleep 1s // line 4
cnt := cnt-1 // line 5

ring // line 6



Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Observation

Select model variables and periodically 
observe the system:

1 2 3 41 5 3 4 5 3 4 5 3 6cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=? vcnt:=2 vcnt:=0

line:=1 line:=5line:=4 line:=3line:=4 line:=3 ...

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2
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Abstraction

Choose observation that allows reasoning on 
the desired properties:

1 2 3 41 5 3 4 5 3 4 5 3 6cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2
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Behaviors/Executions

Consider all possible sequences of chosen 
atomic actions:
vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...
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Safety properties

Nothing bad ever happens:

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

OK!

OK!

OK!

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4
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Liveness properties

Something good eventually(*) happens:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

(*) eventually = inevitavelmente ≠ eventualmente

OK!



Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Specification

Specification is a set of allowable behaviors:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

timeout timeout timeout ring

S=
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Goal 1: Is it correct?

Is there a convenient representation for 
specification sets?

Compact

Practical

How to prove safety and liveness properties?
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Specifications and automata

Specification is a set of allowable behaviors:

An automaton provides a compact and 
practical representation

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

timeout timeout timeout ring

S=
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I/O Automata

An I/O automaton A has five components:

sig(A), a triplet S of disjoint sets of actions:
in(S), the input actions

out(S), the output actions

int(S), the internal actions

states(A), a (possibly infinite) set of states 

start(A), a non-empty subset of states(A)

trans(A), a subset of
states(A) x acts(sig(A)) x states(A)

tasks(A), a partition of local(sig(A))
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Transitions

A transition is enabled in state s if there is 
some π,s' such that (s,π,s') ∈ trans(A)

Input transitions are required to be enabled 
in all reachable states of A

A state in which only input transitions are 
enabled is said to be quiescent
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Signature and State

Input:

none

Internal:

Timeout

Output:

Ring

States:

vcnt, integer,
initially 3

END, boolean,
initially false
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Transitions

Timeout:

Pre-condition:
¬END and vcnt>0

Effect:
vcnt := vcnt - 1

Ring:

Pre-condition:
¬END and vcnt = 0

Effect:
END := True

This is an equation,
not an attribution!
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Effects

Effect equation:

vcnt := vcnt - 1

Read this as:

“vcnt-after = vcnt-before – 1 and the state 
otherwise unchanged”

Could be written as:

vcnt-after + 1 = vcnt-before

vcnt-before - vcnt-after = 1

...
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Safe behaviors

Enumerating safe behaviors:

Start with a behavior for each state s in start(A)

For each transition (s,a,s') in trans(A) enabled 
for some state s at the end of any known safe 
behavior:

 Create a behavior with (a,s') appended

Repeat (possibly, for ever...)
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Safety properties

Proof of safety properties:

Invariant proof by induction

Strategies:

Strengthen the invariant

Include trace in state
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Invariants

Goal: Prove that always vcnt < 4 (safety!).

Proof by induction:

Base step: True for all initial states?
3<4: Yes!

Induction step: True for any next step?
Timeout transition:

– vcnt-after = vcnt-before - 1
– vcnt-before < 4

vcnt-after+1 < 4
vcnt-after < 3 < 4: Done

Ring transition:
– always vcnt-after = vcnt-before = 0
– 0<4: Done
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Example: Reliable channel

Send(m) Receive(m)

Reliable channel:

Unordered

FIFO
Why Receive(m) and
not m := Receive()?
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Example: Reliable channel

State:

transit, bag of M,
initially {}

Send(m), m∈M:

Pre-condition:
True

Effect:
transit :=transit + 
{m}

Receive(m), m∈M:

Pre-condition:
m in transit

Effect:
transit := transit - 
{m}
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Behaviors of a channel

{} {m1}
{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

Concurrency is modeled by alternative 
enabled transitions:

Sender and receiver

Within the channel (reordering)

send(...)

receive(...)

{m1,m2}

...

...
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Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

Some behaviors do not satisfy liveness:

If m is sent, eventually m is received

Some transitions don't get a fair chance to 
run:

receive(m1) and receive(m*) 

{} {m1}
{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...
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Fairness

Partition transitions in tasks:

Tasks:
For all m: {receive(m)}

Assume that no task can be forever 
prevented from taking a step

What about a FIFO reliable channel?
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Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

FIFO order excludes a number of behaviors

Only executions with a finite number of 
receive(m) steps are unfair

Fairness ensured by a single task:

{For all m: receive(m)}

{} {m1}
{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...
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Example: FIFO channel

State:

transit, seq. of M, 
initially <>

Send(m), m∈M:

Pre-condition:
True

Effect:
transit 
:=transit+<m>

Receive(m), m∈M:

Pre-condition:
m=head(transit)

Effect:
transit := tail(transit)

Tasks:

{For all m: 
receive(m)}
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Example: Token ring

Rotating token algorithm:

Mutual exclusion?

Deadlock freedom?
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Example: Token ring

State:

n is the number of nodes

token[0]=1

token[i]=0, for 0<i<n

Move(i):

Pre-condition:
token[i]=1

Effect:
token[i]:=0

token[(i+1) mod n]:=1
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Example: Token ring

Mutual exclusion:

There is at most one token in the ring (i.e. sum 
of token[i]≤1)

Proof by induction:

Base step:
∑token[i]=1 trivially true

Induction step:

∑token-before[i]≤1⇒∑token-after[i]≤1
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Example: Token ring

No starvation:

Eventually i gets the token at least k times 

Proof with a progress function:

Function from state to a well-founded set

Helper actions decrease the value

Other actions do not increase the value

Helper actions are taken until goal is met
(i.e. enabled and in separate tasks)

Invariant assertion
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Progress function

[1,0,0] [0,1,0] [0,0,1]
move(...)

3

[1,0,0] [0,1,0] [0,0,1]

2 1 0

Define progress function f as:

Target is non-negative integers

Value is ((k-1) x n + i - 1) - length(trace)

Example with n=3, k=2, and i=3:
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Summary

I/O Automata definition

Safety specification

Fairness specification

Proof strategies for:

Invariants

Trace properties
Safety

Liveness
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Conclusion

First goal achieved:

I/O Automata

Safety and liveness proofs

More:

Composition

Refinement
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Goal 2: Why is it correct?

With synchronous 
rounds, local state 
easily reflects global 
state

What about in an 
asynchronous system?

delta
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Example: Distributed deadlock

Remote invocation

All processes request and reply to 
invocations

A mutex is held while invoking remotely or 
handling remote invocations

Distributed deadlock possible when multiple 
processes invoke each other



Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Distributed deadlock

Deadlock-free run:
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Example: Distributed deadlock

Distributed deadlock:

blocked waiting for process 3...

blocked waiting for process 1...

blocked waiting for process 2...
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Example: Distributed deadlock

Instant observation is impossible:

blocked waiting for process 3...

blocked waiting for process 1...

blocked waiting for process 2...

31
2



Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Distributed deadlock

31 31
2

31
2

Deadlock detection with a “wait for” graph:
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Example: Distributed deadlock

A more complex deadlock-free run:
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Example: Distributed deadlock

23 23None

A deadlock-free WFG:



Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Distributed deadlock

12 12
3

12
3

A WFG with a ghost deadlock:
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Global Property Evaluation

All these problems are instances of the 
Global Property Evaluation (GPE) problem

Can it be solved in an asynchronous system?

Methods that can be used? Relative cost?
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Passive monitor process

Report all events to monitor:
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First try: Synchronous system

Global clock, δ upper bound on message 
delay

Tag events with real time

Consider events only up to t-δ
With synchronous rounds, this means using 
messages from the previous round!
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First try: Synchronous system

tt-δ
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Clock properties

What properties of a real-time clock make 
this approach correct?

RC(i) the time at which i happened
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Definition: Causality

Events i and j are causally related (i→j) iff:

i precedes j in some process p

for some m, i=send(m) and j=receive(m)

for some k, i→k and k→j (transitivity)

Events i and j are concurrent (i||j) iff neither 
i→j or j→i
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Causality

causally precedes

concurrent
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Clock properties

If i→j then RC(i)<RC(j)

For some event j:

When we are sure that there is no unknown i 
such that RC(i)<RC(j)

Then there is no i such that i→j

Can we build a logical clock with the same 
property?
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Second try: Logical clock

Tag events as follows:

Local events: increment counter

Send events: increment and then tag with 
counter

Receive events: update local counter to 
maximum and then increment

Use FIFO channels

Consider events only up to the minimum of 
maximum tags
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Second try: Logical clock

1

1

1 2 34 5 6

2 5 6 7

6 8

8

9 10

9

9

t
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Scalar clocks

Synchronous system (RC):
Delay δ to consistency

Asynchronous system (LC):

Possible unbounded delay to consistency

Blocks if some process stops sending messages
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Third try: Vector clock

Tag events with a vector as follows:

Local event at i: increment counter i

Send event at i: increment counter i and tag with 
vector

Receive event at i: update each counter to 
maximum and increment counter i
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Third try: Vector clock

[1,0,0] [2,1,0]

[0,0,1] [1,0,4]

[3,1,4]

[1,0,3]
[1,0,2]

[4,1,4] [5,1,4]

[1,0,5] [1,0,6]

[6,1,4]

[6,1,7]

[0,1,0] [1,2,5] [5,3,5] [5,4,5]

[7,1,4]

[6,1,8]

[5,2,6]
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Causal delivery

The monitor delivers events as follows:

With local vector l[...]

For some r[...] from i

Wait until:
l[i]+1=r[i]

For all j≠i: r[i]≤l[i]

The monitor is always in a consistent cut

Blocking can be avoided by forwarding past 
messages
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No reporting to monitor process

Reporting all events to a monitor causes a 
large overhead

Can a query be issued at some point in time?
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Fourth try: No reporting, synchronous

Monitor broadcasts tss in the future

At tss, each process:

Records state

Sends messages to all others

Starts recording messages until receiving a 
message with RC > tss

After stopping, sends all data to monitor
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Fourth try: No reporting, synchronous

tssAt tss!
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Fifth try: No reporting, logical clock

1

1

1 2 34 5 6

2 5 6 7

6 8

8

10 11

9

10

9

9

1110

At 8!
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Chandy and Lamport

Send a “Snapshot” message to some process

Upon receiving for the first time:

Records state

Relays “Snapshot” to all others

Starts recording on each channel until receiving 
“Snapshot”

Send all data to monitor
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Chandy and Lamport

1

1

1 2 34 5 6

2 5 6 7

6 8

8

10 11

9

11

9

9

1110

Snapshot!

10
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Global Property Evaluation

GPE requires no gaps in observed history, 
regarding causality

What properties can be evaluated?
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Cuts and consistency

A cut is the union of prefixes of process 
history

A consistent cut includes all causal 
predecessors of all events in the cut

Intuitive methods:

If a cut is an instant, there are no messages 
from the future

In the diagram, no arrows enter the cut

All events in the frontier are concurrent
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Consistent cuts

C' C
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Consistent global states

1

1

2 3

2 4
Σ

000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412
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Consistent global states

Σ
000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412

Includes the true 
sequence of states in 
the system

An observer within the 
system cannot deny 
any of the possible 
paths
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Stable predicates

Once true, always true

Examples:

Deadlock detection

Termination

Loss of token

Garbage collection

Can be evaluated periodically on snapshots
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Stable predicates

1

1

2 3

2 4
Σ

000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412
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Non-stable predicates

True in a subset of 
observable states

Some are possibly true: 
an observer in the 
system cannot deny 
having been true

The predicate does not 
hold on some paths

Σ
000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412
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Non-stable predicates

True in a subset of 
observable states

Some are definitely true: 
an observer in the 
system is sure of having 
been true

The predicate holds on 
all possible paths

Σ
000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412
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Non-stable predicates

Examples:

Total size of queues in the system

Number of messages in transit

Amount of memory used

Can be detected by full monitoring of all 
(relevant) events
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Conclusion

Second goal achieved:

Causality

Global predicate evaluation
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