

TituloDistributed Computing

José Orlando Pereira

HASLab / Departamento de Informática
Universidade do Minho

2011/2012

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Asynchronous systems

Assume no bounds on:

clock drift

processing time

message passing time

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

In practice

Tight synchronous limits are
dangerous:

Round time proportional to
mean delay

Low coverage or expensive
systems

Large synchronous limits are not useful:

Round time proportional to high percentile delay

Taking advantage of synchrony causes a very
large performance penalty

Typical delay distribution

high
percentile

mean
time

fr
eq

ue
nc

y

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

In practice

Solutions for asynchronous systems might
have better performance:

Round time proportional to mean delay

Even if more
message exchanges
are necessary

Typical delay distribution

high
percentile

mean
time

fr
eq

ue
nc

y

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

In theory

Start with a synchronous reliable fully
connected network

Relax the system model:

Unbounded message loss

Large/unknown graph diameter

Dynamic graph

Example: Leader election

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Leader election

Static known
participants

Can loose all messages

Synchronous
Unreliable clique

Asynchronous
Reliable clique

Synchronous
Reliable clique

Disconnected

Synchronous
Reliable connected
Unknown diameter

Synchronous
Reliable dynamic

Synchronous
Reliable static

Synchronous
Bounded unreliable

Clique

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Leader election

Static known
participants

Can loose all messages

Synchronous
Unreliable clique

Asynchronous
Reliable clique

Synchronous
Reliable clique

Disconnected

Synchronous
Reliable connected
Unknown diameter

Trivial Possible Possible
(eventually)

Impossible

Synchronous
Reliable dynamic

rou
tin

g

rou
tin

g

stronger than

ret
ran

sm
iss

ion

Synchronous
Reliable static

rou
tin

g

Synchronous
Bounded unreliable

Clique

ret
ran

sm
iss

ion

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

In theory

Asynchrony subsumes:

Heterogeneity

Dynamics

Uncertainty

Much simpler than handling them explicitly

Often considered an Universal model:

Widely applicable solutions

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Goals

How do we make sure that algorithms are
correct?

Why are algorithms correct?

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Synchronous System

With synchronous
rounds:

Simple proofs by
induction

Local state easily
reflects global state

delta

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Sample computation

An alarm clock program:
main: // line 1

cnt:=3 // line 2

while cnt>0: // line 3

sleep 1s // line 4
cnt := cnt-1 // line 5

ring // line 6

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Observation

Select model variables and periodically
observe the system:

1 2 3 41 5 3 4 5 3 4 5 3 6cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=? vcnt:=2 vcnt:=0

line:=1 line:=5line:=4 line:=3line:=4 line:=3 ...

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Abstraction

Choose observation that allows reasoning on
the desired properties:

1 2 3 41 5 3 4 5 3 4 5 3 6cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Behaviors/Executions

Consider all possible sequences of chosen
atomic actions:
vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Safety properties

Nothing bad ever happens:

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

OK!

OK!

OK!

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Liveness properties

Something good eventually(*) happens:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

(*) eventually = inevitavelmente ≠ eventualmente

OK!

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Specification

Specification is a set of allowable behaviors:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

timeout timeout timeout ring

S=

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Goal 1: Is it correct?

Is there a convenient representation for
specification sets?

Compact

Practical

How to prove safety and liveness properties?

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Specifications and automata

Specification is a set of allowable behaviors:

An automaton provides a compact and
practical representation

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

timeout timeout timeout ring

S=

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

I/O Automata

An I/O automaton A has five components:

sig(A), a triplet S of disjoint sets of actions:
in(S), the input actions

out(S), the output actions

int(S), the internal actions

states(A), a (possibly infinite) set of states

start(A), a non-empty subset of states(A)

trans(A), a subset of
states(A) x acts(sig(A)) x states(A)

tasks(A), a partition of local(sig(A))

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Transitions

A transition is enabled in state s if there is
some π,s' such that (s,π,s') ∈ trans(A)

Input transitions are required to be enabled
in all reachable states of A

A state in which only input transitions are
enabled is said to be quiescent

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Signature and State

Input:

none

Internal:

Timeout

Output:

Ring

States:

vcnt, integer,
initially 3

END, boolean,
initially false

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Transitions

Timeout:

Pre-condition:
¬END and vcnt>0

Effect:
vcnt := vcnt - 1

Ring:

Pre-condition:
¬END and vcnt = 0

Effect:
END := True

This is an equation,
not an attribution!

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Effects

Effect equation:

vcnt := vcnt - 1

Read this as:

“vcnt-after = vcnt-before – 1 and the state
otherwise unchanged”

Could be written as:

vcnt-after + 1 = vcnt-before

vcnt-before - vcnt-after = 1

...

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Safe behaviors

Enumerating safe behaviors:

Start with a behavior for each state s in start(A)

For each transition (s,a,s') in trans(A) enabled
for some state s at the end of any known safe
behavior:

 Create a behavior with (a,s') appended

Repeat (possibly, for ever...)

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Safety properties

Proof of safety properties:

Invariant proof by induction

Strategies:

Strengthen the invariant

Include trace in state

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Invariants

Goal: Prove that always vcnt < 4 (safety!).

Proof by induction:

Base step: True for all initial states?
3<4: Yes!

Induction step: True for any next step?
Timeout transition:

– vcnt-after = vcnt-before - 1
– vcnt-before < 4

vcnt-after+1 < 4
vcnt-after < 3 < 4: Done

Ring transition:
– always vcnt-after = vcnt-before = 0
– 0<4: Done

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Reliable channel

Send(m) Receive(m)

Reliable channel:

Unordered

FIFO
Why Receive(m) and
not m := Receive()?

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Reliable channel

State:

transit, bag of M,
initially {}

Send(m), m∈M:

Pre-condition:
True

Effect:
transit :=transit +
{m}

Receive(m), m∈M:

Pre-condition:
m in transit

Effect:
transit := transit -
{m}

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Behaviors of a channel

{} {m1}
{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

Concurrency is modeled by alternative
enabled transitions:

Sender and receiver

Within the channel (reordering)

send(...)

receive(...)

{m1,m2}

...

...

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

Some behaviors do not satisfy liveness:

If m is sent, eventually m is received

Some transitions don't get a fair chance to
run:

receive(m1) and receive(m*)

{} {m1}
{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Fairness

Partition transitions in tasks:

Tasks:
For all m: {receive(m)}

Assume that no task can be forever
prevented from taking a step

What about a FIFO reliable channel?

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

FIFO order excludes a number of behaviors

Only executions with a finite number of
receive(m) steps are unfair

Fairness ensured by a single task:

{For all m: receive(m)}

{} {m1}
{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: FIFO channel

State:

transit, seq. of M,
initially <>

Send(m), m∈M:

Pre-condition:
True

Effect:
transit
:=transit+<m>

Receive(m), m∈M:

Pre-condition:
m=head(transit)

Effect:
transit := tail(transit)

Tasks:

{For all m:
receive(m)}

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Token ring

Rotating token algorithm:

Mutual exclusion?

Deadlock freedom?

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Token ring

State:

n is the number of nodes

token[0]=1

token[i]=0, for 0<i<n

Move(i):

Pre-condition:
token[i]=1

Effect:
token[i]:=0

token[(i+1) mod n]:=1

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Token ring

Mutual exclusion:

There is at most one token in the ring (i.e. sum
of token[i]≤1)

Proof by induction:

Base step:
∑token[i]=1 trivially true

Induction step:

∑token-before[i]≤1⇒∑token-after[i]≤1

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Token ring

No starvation:

Eventually i gets the token at least k times

Proof with a progress function:

Function from state to a well-founded set

Helper actions decrease the value

Other actions do not increase the value

Helper actions are taken until goal is met
(i.e. enabled and in separate tasks)

Invariant assertion

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Progress function

[1,0,0] [0,1,0] [0,0,1]
move(...)

3

[1,0,0] [0,1,0] [0,0,1]

2 1 0

Define progress function f as:

Target is non-negative integers

Value is ((k-1) x n + i - 1) - length(trace)

Example with n=3, k=2, and i=3:

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Summary

I/O Automata definition

Safety specification

Fairness specification

Proof strategies for:

Invariants

Trace properties
Safety

Liveness

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Conclusion

First goal achieved:

I/O Automata

Safety and liveness proofs

More:

Composition

Refinement

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Goal 2: Why is it correct?

With synchronous
rounds, local state
easily reflects global
state

What about in an
asynchronous system?

delta

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Distributed deadlock

Remote invocation

All processes request and reply to
invocations

A mutex is held while invoking remotely or
handling remote invocations

Distributed deadlock possible when multiple
processes invoke each other

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Distributed deadlock

Deadlock-free run:

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Distributed deadlock

Distributed deadlock:

blocked waiting for process 3...

blocked waiting for process 1...

blocked waiting for process 2...

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Distributed deadlock

Instant observation is impossible:

blocked waiting for process 3...

blocked waiting for process 1...

blocked waiting for process 2...

31
2

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Distributed deadlock

31 31
2

31
2

Deadlock detection with a “wait for” graph:

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Distributed deadlock

A more complex deadlock-free run:

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Distributed deadlock

23 23None

A deadlock-free WFG:

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Example: Distributed deadlock

12 12
3

12
3

A WFG with a ghost deadlock:

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Global Property Evaluation

All these problems are instances of the
Global Property Evaluation (GPE) problem

Can it be solved in an asynchronous system?

Methods that can be used? Relative cost?

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Passive monitor process

Report all events to monitor:

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

First try: Synchronous system

Global clock, δ upper bound on message
delay

Tag events with real time

Consider events only up to t-δ
With synchronous rounds, this means using
messages from the previous round!

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

First try: Synchronous system

tt-δ

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Clock properties

What properties of a real-time clock make
this approach correct?

RC(i) the time at which i happened

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Definition: Causality

Events i and j are causally related (i→j) iff:

i precedes j in some process p

for some m, i=send(m) and j=receive(m)

for some k, i→k and k→j (transitivity)

Events i and j are concurrent (i||j) iff neither
i→j or j→i

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Causality

causally precedes

concurrent

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Clock properties

If i→j then RC(i)<RC(j)

For some event j:

When we are sure that there is no unknown i
such that RC(i)<RC(j)

Then there is no i such that i→j

Can we build a logical clock with the same
property?

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Second try: Logical clock

Tag events as follows:

Local events: increment counter

Send events: increment and then tag with
counter

Receive events: update local counter to
maximum and then increment

Use FIFO channels

Consider events only up to the minimum of
maximum tags

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Second try: Logical clock

1

1

1 2 34 5 6

2 5 6 7

6 8

8

9 10

9

9

t

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Scalar clocks

Synchronous system (RC):
Delay δ to consistency

Asynchronous system (LC):

Possible unbounded delay to consistency

Blocks if some process stops sending messages

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Third try: Vector clock

Tag events with a vector as follows:

Local event at i: increment counter i

Send event at i: increment counter i and tag with
vector

Receive event at i: update each counter to
maximum and increment counter i

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Third try: Vector clock

[1,0,0] [2,1,0]

[0,0,1] [1,0,4]

[3,1,4]

[1,0,3]
[1,0,2]

[4,1,4] [5,1,4]

[1,0,5] [1,0,6]

[6,1,4]

[6,1,7]

[0,1,0] [1,2,5] [5,3,5] [5,4,5]

[7,1,4]

[6,1,8]

[5,2,6]

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Causal delivery

The monitor delivers events as follows:

With local vector l[...]

For some r[...] from i

Wait until:
l[i]+1=r[i]

For all j≠i: r[i]≤l[i]

The monitor is always in a consistent cut

Blocking can be avoided by forwarding past
messages

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

No reporting to monitor process

Reporting all events to a monitor causes a
large overhead

Can a query be issued at some point in time?

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Fourth try: No reporting, synchronous

Monitor broadcasts tss in the future

At tss, each process:

Records state

Sends messages to all others

Starts recording messages until receiving a
message with RC > tss

After stopping, sends all data to monitor

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Fourth try: No reporting, synchronous

tssAt tss!

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Fifth try: No reporting, logical clock

1

1

1 2 34 5 6

2 5 6 7

6 8

8

10 11

9

10

9

9

1110

At 8!

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Chandy and Lamport

Send a “Snapshot” message to some process

Upon receiving for the first time:

Records state

Relays “Snapshot” to all others

Starts recording on each channel until receiving
“Snapshot”

Send all data to monitor

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Chandy and Lamport

1

1

1 2 34 5 6

2 5 6 7

6 8

8

10 11

9

11

9

9

1110

Snapshot!

10

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Global Property Evaluation

GPE requires no gaps in observed history,
regarding causality

What properties can be evaluated?

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Cuts and consistency

A cut is the union of prefixes of process
history

A consistent cut includes all causal
predecessors of all events in the cut

Intuitive methods:

If a cut is an instant, there are no messages
from the future

In the diagram, no arrows enter the cut

All events in the frontier are concurrent

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Consistent cuts

C' C

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Consistent global states

1

1

2 3

2 4
Σ

000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Consistent global states

Σ
000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412

Includes the true
sequence of states in
the system

An observer within the
system cannot deny
any of the possible
paths

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Stable predicates

Once true, always true

Examples:

Deadlock detection

Termination

Loss of token

Garbage collection

Can be evaluated periodically on snapshots

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Stable predicates

1

1

2 3

2 4
Σ

000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Non-stable predicates

True in a subset of
observable states

Some are possibly true:
an observer in the
system cannot deny
having been true

The predicate does not
hold on some paths

Σ
000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Non-stable predicates

True in a subset of
observable states

Some are definitely true:
an observer in the
system is sure of having
been true

The predicate holds on
all possible paths

Σ
000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Non-stable predicates

Examples:

Total size of queues in the system

Number of messages in transit

Amount of memory used

Can be detected by full monitoring of all
(relevant) events

Distributed Computing Asynchronous Systems

© 2007-2011 José Orlando Pereira HASLab/DI/U.Minho

Conclusion

Second goal achieved:

Causality

Global predicate evaluation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

