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Distributed Agreement

Agreement problems are at the core of any distributed 
fault-tolerant system

Agreement requirements can be more or less stringent: 
one may need to agree on a unique leader, whether to 
commit or abort a distributed transaction, on the 
delivery order for a set of messages, etc.

While on a fault-free system agreement can be easily 
reached, in the presence of faults and depending on the 
assumed model, reaching agreement can be very hard 
or even impossible.    
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Forms of Agreement

Non-blocking Atomic Commitment
[Jim Gray, Notes on Database Operating Systems, LNCS 60, 1978]

[D. Skeen,  NonBlocking Commit Protocols, 1981]

Leader Election
[L.Sabel & K. Marzullo, Election Vs. Consensus in Asynchronous Systems, 1995]

Consensus
[M. Fischer, N. Lynch, M. Paterson. Impossibility of Distributed Consensus with One Faulty Process, 1985]

k-Set Agreement
[S. Chaudhuri, More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems, 1993]

Atomic Broadcast, Group Membership, ...

Distributed Computing Agreement in FT Distributed Systems



© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems



© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho
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Consider the problem of atomically commiting on the 
outcome of a distributed transaction. All processes 
express their local success or failure on executing a 
transaction voting yes or no
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Non-Blocking Atomic Commitment

Consider the problem of atomically commiting on the 
outcome of a distributed transaction. All processes 
express their local success or failure on executing a 
transaction voting yes or no

Termination: Every correct process eventualy decides

Non-triviality: If all processes vote yes and there is no 
failure then commit should be decided

Validity: If any process votes no then abort should be 
decided
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Non-Blocking Atomic Commitment

Consider the problem of atomically commiting on the 
outcome of a distributed transaction. All processes 
express their local success or failure on executing a 
transaction voting yes or no

Termination: Every correct process eventualy decides

Non-triviality: If all processes vote yes and there is no 
failure then commit should be decided

Validity: If any process votes no then abort should be 
decided

Uniform Agreement: No process decides differently

[P. A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery, 1987]
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Consider the 2-phase-commit protocol:
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What if coordinator fails?

Did it decide? On what?

Non-Blocking Atomic Commitment

OK
 in Crash-Recover model

Distributed Computing Agreement in FT Distributed Systems



© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 2-phase-commit protocol:
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Vote Request

Coordinator requests votes
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BOOM

What if coordinator fails?

Did it decide? On what?

Non-Blocking Atomic Commitment

Blocking
 in Fail-Stop model
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Consider the 3-phase-commit protocol:
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What if coordinator fails 
after the acks?

Non-Blocking Atomic Commitment
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 in Crash-Stop model
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Does the problem, as stated, still makes sense in the 
Crash-Stop model?
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Does the problem, as stated, still makes sense in the 
Crash-Stop model?

No, we need to consider the 
Weak Non-Blocking Atomic Commitment problem: 

Non-triviality: If all processes vote yes and no 
participant is ever suspected of failure then commit 
should be decided

Non-Blocking Atomic Commitment

[R. Guerraoui, Revisiting the relationship between non-blocking atomic commitment and consensus problems, 1995]
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The Consensus problem is usually seen as an abstraction 
of most distributed agreement problems
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The Consensus problem is usually seen as an abstraction 
of most distributed agreement problems

Several key problems of dependable distributed systems 
depend on or are reducible to Consensus: weak atomic 
commitment, atomic multicast, group membership, view 
synchronous multicast
[R. Guerraoui, Revisiting the relationship between non blocking atomic commitment and consensus problems, 
1995]
[R. Guerraoui and A. Schiper, The Generic Consensus Service, 2001]
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Consensus

The Consensus problem is usually seen as an abstraction 
of most distributed agreement problems

Several key problems of dependable distributed systems 
depend on or are reducible to Consensus: weak atomic 
commitment, atomic multicast, group membership, view 
synchronous multicast
[R. Guerraoui, Revisiting the relationship between non blocking atomic commitment and consensus problems, 
1995]
[R. Guerraoui and A. Schiper, The Generic Consensus Service, 2001]

However, Consensus can be very hard to solve if one 
cannot accurately detect the failure of the processes
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Consider a finite set of processes where the correct 
ones vote either yes or no. Processes are expected to 
decide on a value satisfying the following properties:
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Consider a finite set of processes where the correct 
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decide on a value satisfying the following properties:

Termination: every correct process eventually decides

Validity: the decision is on a voted value

Agreement: no two processes decide differently
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When we cannot: FLP impossibility result

“Impossibility of Distributed Consensus with One Faulty 
Process”, Fischer, Lynch and Patterson in 1985:

In a “pure” asynchronous system (even) with reliable 
communication channels,

When (at least) some process may fail by crashing, 
forever ceasing its computation,

No deterministic algorithm can solve consensus

Isn’t such a result so counterintuitive?!

Distributed Computing Agreement in FT Distributed Systems
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When we cannot: FLP impossibility result

Consider an asynchronous system model, a finite set of 
processes P completely connected by reliable channels

A process p is modeled through an input register ip, an 
output register op and an unbounded amount of 
internal storage. A configuration of the system consists 
of the internal state of each process, together with the 
contents of the message buffer. 

Processes take deterministic events (p, m) determined 
by the messages they receive. A schedule from a 
configuration C is a finite or infinite sequence of events 
that can be applied, in turn, starting from C.
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When we cannot: FLP impossibility result

Suppose that from some configuration C, the schedules 
s1, s2 lead to configurations C1, C2, respectively. If the 
sets of processes taking steps in s1 and s2, respectively, 
are disjoint, then s2 can be applied to C1 and s1 can be 
applied to C2, and both lead to the same configuration 
C3.

C

C1 C2

C3

s1

s1

s2

s2
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When we cannot: FLP impossibility result

The algorithm has an initial bivalent configuration

Assume not:

Let C0 (0-valent) and C1 (1-valent) be adjacent 
configurations differing on the initial value of p
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When we cannot: FLP impossibility result

The algorithm has an initial bivalent configuration

Assume not:

Let C0 (0-valent) and C1 (1-valent) be adjacent 
configurations differing on the initial value of p

C0

s

C1

s s - is a deciding schedule

s - has no steps of p 

D0 D1
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Assume not:
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When we cannot: FLP impossibility result

The algorithm has an initial bivalent configuration

Assume not:

Let C0 (0-valent) and C1 (1-valent) be adjacent 
configurations differing on the initial value of p

S is a deciding schedule applicable both to C0 and to C1

The decision at D0 and D1 must be the same. This 
implies that either C0 or C1 is bivalent!

C0

s

C1

s s - is a deciding schedule

s - has no steps of p 

D0 D1
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When we cannot: FLP impossibility result

Any deciding schedule eventually forks a bivalent into a 
univalent configuration:

C
i

0-valent

bivalent

C0
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When we cannot: FLP impossibility result
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When we cannot: FLP impossibility result

Suppose i crashes. 
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S
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When we cannot: FLP impossibility result

Suppose i crashes. 

Since one crash is tolerated there is a deciding
schedule S (without steps from i) from C
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When we cannot: FLP impossibility result

Suppose i crashes. 

Since one crash is tolerated there is a deciding
schedule S (without steps from i) from C
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When we cannot: FLP impossibility result

Suppose i crashes. 

Since one crash is tolerated there is a deciding
schedule S (without steps from i) from C

Any such S leads to a S(C) that must be
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Trivial “Consensus” solutions

Consider the variants of Consensus with just two of its 
properties:

Boolean Consensus (Boolean v)
{

return True;
}
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{

return v;
}

Boolean Consensus (Boolean v)
{

while(1);
}
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Let’s start by using a 3PC protocol to solve the 
problem. Asynchronous model, crash-stop faults.

Solving Consensus

p2

p1

p3

BOOM

Round 1
Coordinator p1 

... ending up with the Chandra & Toueg’s algorithm 
which is based on a Failure Detector Oracle

BOOM

Round 2
Coordinator p2 

BOOM

Round 3
Coordinator p3 

BOOM

Round 4
Coordinator p4 

Unreliable failure detectors for reliable distributed systems,
T. Chandra and S. Toueg, JACM, 1996
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Completeness

Strong: Eventually every process that crashes is 
permanently suspected by every correct process

Weak: Eventually every process that crashes is 
permanently suspected by some correct process
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Strong Failure Detector

Consider a set of FD modules satisfying 
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Weak Accuracy: Some correct process is never suspected
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Now, consider a set of FD modules satisfying 
Strong Completeness and 
Eventual Weak Accuracy: Eventually some correct process 
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Consensus

W

!W

!S

!P

P

S

Weak
weak completeness + weak accuracy

Perfect
strong completeness + strong accuracy

Strong
strong completeness + weak accuracy

Eventual Weak
weak completeness + eventual weak accuracy

Eventual Strong
strong completeness + eventual weak accuracy

Eventual Perfect
strong completeness + eventual strong accuracy

A lattice of failure detector classes
Weakest

Strongest

Distributed Computing Agreement in FT Distributed Systems

[V. Hadzilacos, S. Toueg and  T. Chandra, The weakest failure detector for solving consensus, 1996.]



© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus
Distributed Computing Agreement in FT Distributed Systems

20 ·

Every process p executes the following:

procedure propose(vp)
estimatep ← vp {estimatep is p’s estimate of the decision value}
statep ← undecided
rp ← 0 {rp is p’s current round number}
tsp ← 0 {tsp is the last round in which p updated estimatep, initially 0}

{Rotate through coordinators until decision is reached}

while statep = undecided
rp ← rp + 1
cp ← (rp mod n) + 1 {cp is the current coordinator}

Phase 1: {All processes p send estimatep to the current coordinator}
send (p, rp, estimatep, tsp) to cp

Phase 2: {The current coordinator gathers " (n+1)
2

# estimates and proposes a new estimate}
if p = cp then

wait until [for " (n+1)
2

# processes q : received (q, rp, estimateq, tsq) from q]
msgsp[rp] ← {(q, rp, estimateq, tsq) | p received (q, rp, estimateq, tsq) from q}
t ← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
estimatep ← select one estimateq such that (q, rp, estimateq, t) ∈ msgsp[rp]
send (p, rp, estimatep) to all

Phase 3: {All processes wait for the new estimate proposed by the current coordinator}
wait until [received (cp, rp, estimatecp) from cp or cp ∈ Dp]{Query the failure detector}
if [received (cp, rp, estimatecp) from cp] then {p received estimatecp from cp}

estimatep ← estimatecp

tsp ← rp

send (p, rp, ack) to cp

else send (p, rp, nack) to cp {p suspects that cp crashed}

Phase 4:

{

The current coordinator waits for " (n+1)
2

# replies. If they indicate that " (n+1)
2

#
processes adopted its estimate, the coordinator R-broadcasts a decide message

}

if p = cp then

wait until [for " (n+1)
2 # processes q : received (q, rp, ack) or (q, rp, nack)]

if [for " (n+1)
2 # processes q : received (q, rp, ack)] then

R-broadcast(p, rp, estimatep, decide)

{If p R-delivers a decide message, p decides accordingly}

when R-deliver(q, rq , estimateq, decide)
if statep = undecided then

decide(estimateq)
statep ← decided

Fig. 6. Solving Consensus using any D ∈ S.

Chandra & Toueg Algorithm
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Discussion on Failure Detection

How are these ‘USB FD modules’ implemented?

Can the model be asynchronous?

What if the model is not asynchrnous?

Timed-asynchronous
[F. Cristian and  C. Fetzer, The Timed Asynchronous Distributed System Model, 1999] 

Quasi-synchronous, wormholes
[P. Veríssimo and C. Almeida, Quasi-synchronism: a step away from the traditional fault-tolerant 
real-time system models, 1995] 

Synchronous

Distributed Computing Agreement in FT Distributed Systems

http://www.navigators.di.fc.ul.pt/docs/abstracts/QuasiModel-abs.html
http://www.navigators.di.fc.ul.pt/docs/abstracts/QuasiModel-abs.html
http://www.navigators.di.fc.ul.pt/docs/abstracts/QuasiModel-abs.html
http://www.navigators.di.fc.ul.pt/docs/abstracts/QuasiModel-abs.html
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which all the correct processes always trust the 
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Indulgent algorithms: algorithms, based on a failure 
detector oracle, that never violate the safety properties.
If the failure detector misbehaves the algorithm does 
not terminate.
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