
© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Agreement in Fault Tolerant Distributed Systems

Rui Carlos Oliveira
HASLab

Universidade do Minho
(rco@di.uminho.pt)

Distributed Computing

mailto:rco@di.uminho.pt
mailto:rco@di.uminho.pt

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Distributed Agreement
Agreement in FT Distributed SystemsDistributed Computing

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Distributed Agreement

Agreement problems are at the core of any distributed
fault-tolerant system

Agreement in FT Distributed SystemsDistributed Computing

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Distributed Agreement

Agreement problems are at the core of any distributed
fault-tolerant system

Agreement requirements can be more or less stringent:
one may need to agree on a unique leader, whether to
commit or abort a distributed transaction, on the
delivery order for a set of messages, etc.

Agreement in FT Distributed SystemsDistributed Computing

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Distributed Agreement

Agreement problems are at the core of any distributed
fault-tolerant system

Agreement requirements can be more or less stringent:
one may need to agree on a unique leader, whether to
commit or abort a distributed transaction, on the
delivery order for a set of messages, etc.

While on a fault-free system agreement can be easily
reached, in the presence of faults and depending on the
assumed model, reaching agreement can be very hard
or even impossible.

Agreement in FT Distributed SystemsDistributed Computing

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Forms of Agreement
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Forms of Agreement

Non-blocking Atomic Commitment
[Jim Gray, Notes on Database Operating Systems, LNCS 60, 1978]

[D. Skeen, NonBlocking Commit Protocols, 1981]

Leader Election
[L.Sabel & K. Marzullo, Election Vs. Consensus in Asynchronous Systems, 1995]

Consensus
[M. Fischer, N. Lynch, M. Paterson. Impossibility of Distributed Consensus with One Faulty Process, 1985]

k-Set Agreement
[S. Chaudhuri, More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems, 1993]

Atomic Broadcast, Group Membership, ...

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Non-Blocking Atomic Commitment

Consider the problem of atomically commiting on the
outcome of a distributed transaction. All processes
express their local success or failure on executing a
transaction voting yes or no

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Non-Blocking Atomic Commitment

Consider the problem of atomically commiting on the
outcome of a distributed transaction. All processes
express their local success or failure on executing a
transaction voting yes or no

Termination: Every correct process eventualy decides

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Non-Blocking Atomic Commitment

Consider the problem of atomically commiting on the
outcome of a distributed transaction. All processes
express their local success or failure on executing a
transaction voting yes or no

Termination: Every correct process eventualy decides

Non-triviality: If all processes vote yes and there is no
failure then commit should be decided

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Non-Blocking Atomic Commitment

Consider the problem of atomically commiting on the
outcome of a distributed transaction. All processes
express their local success or failure on executing a
transaction voting yes or no

Termination: Every correct process eventualy decides

Non-triviality: If all processes vote yes and there is no
failure then commit should be decided

Validity: If any process votes no then abort should be
decided

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Non-Blocking Atomic Commitment

Consider the problem of atomically commiting on the
outcome of a distributed transaction. All processes
express their local success or failure on executing a
transaction voting yes or no

Termination: Every correct process eventualy decides

Non-triviality: If all processes vote yes and there is no
failure then commit should be decided

Validity: If any process votes no then abort should be
decided

Uniform Agreement: No process decides differently

[P. A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery, 1987]

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 2-phase-commit protocol:

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 2-phase-commit protocol:

p
2

p
1

p
3

Coordinator

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 2-phase-commit protocol:

p
2

p
1

p
3

Coordinator

Vote Request

Coordinator requests votes

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 2-phase-commit protocol:

p
2

p
1

p
3

Coordinator

Vote Request

Coordinator requests votes

Votes

Others vote

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 2-phase-commit protocol:

p
2

p
1

p
3

Coordinator

Vote Request

Coordinator requests votes

Votes

Others vote

Decision

Coordinator decides

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 2-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Decision

Coordinator decides

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 2-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Decision

Coordinator decides

Votes

BOOM

What if coordinator fails?

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 2-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Decision

Coordinator decides

Votes

BOOM

What if coordinator fails?

Did it decide? On what?

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 2-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Decision

Coordinator decides

Votes

BOOM

What if coordinator fails?

Did it decide? On what?

Non-Blocking Atomic Commitment

OK
 in Crash-Recover model

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 2-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Decision

Coordinator decides

Votes

BOOM

What if coordinator fails?

Did it decide? On what?

Non-Blocking Atomic Commitment

Blocking
 in Fail-Stop model

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

Vote Request

Coordinator requests votes

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

Vote Request

Coordinator requests votes

Votes

Others vote

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

Vote Request

Coordinator requests votes

Votes

Others vote

Coordinator pre-decides

Pre-decision

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

Vote Request

Coordinator requests votes

Votes

Others vote

Acks Others acknowledge

Coordinator pre-decides

Pre-decision

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

Vote Request

Coordinator requests votes

Votes

Others vote

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Coordinator requests votes

Votes

Others vote

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Votes

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Votes

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

BOOM

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Votes

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

What if coordinator fails
after the votes?BOOM

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Votes

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

What if coordinator fails
after the votes?

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Votes

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

Pre-decision

What if coordinator fails
after the votes?

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Votes

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

Pre-decision Acks

What if coordinator fails
after the votes?

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Votes

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

Pre-decision Acks

What if coordinator fails
after the votes?BOOM

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Votes

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

Pre-decision Acks

What if coordinator fails
after the votes?BOOM

What if coordinator fails
after the acks?

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Votes

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

Pre-decision Acks

What if coordinator fails
after the votes?BOOM

What if coordinator fails
after the acks?

Non-Blocking Atomic Commitment

OK
 in Fail-Stop model

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider the 3-phase-commit protocol:

p
2

p
1

p
3

Coordinator

p
2

p
1

p
3

Coordinator

Vote Request

Vote Request

Coordinator requests votes

Votes

Others vote

Votes

Acks Others acknowledgeDecision

Coordinator decides

Coordinator pre-decides

Pre-decision

Pre-decision Acks

What if coordinator fails
after the votes?BOOM

What if coordinator fails
after the acks?

Non-Blocking Atomic Commitment

Non terminating
 in Crash-Stop model

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Does the problem, as stated, still makes sense in the
Crash-Stop model?

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Does the problem, as stated, still makes sense in the
Crash-Stop model?

No, we need to consider the
Weak Non-Blocking Atomic Commitment problem:

Non-Blocking Atomic Commitment
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Does the problem, as stated, still makes sense in the
Crash-Stop model?

No, we need to consider the
Weak Non-Blocking Atomic Commitment problem:

Non-triviality: If all processes vote yes and no
participant is ever suspected of failure then commit
should be decided

Non-Blocking Atomic Commitment

[R. Guerraoui, Revisiting the relationship between non-blocking atomic commitment and consensus problems, 1995]

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus

The Consensus problem is usually seen as an abstraction
of most distributed agreement problems

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus

The Consensus problem is usually seen as an abstraction
of most distributed agreement problems

Several key problems of dependable distributed systems
depend on or are reducible to Consensus: weak atomic
commitment, atomic multicast, group membership, view
synchronous multicast
[R. Guerraoui, Revisiting the relationship between non blocking atomic commitment and consensus problems,
1995]
[R. Guerraoui and A. Schiper, The Generic Consensus Service, 2001]

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus

The Consensus problem is usually seen as an abstraction
of most distributed agreement problems

Several key problems of dependable distributed systems
depend on or are reducible to Consensus: weak atomic
commitment, atomic multicast, group membership, view
synchronous multicast
[R. Guerraoui, Revisiting the relationship between non blocking atomic commitment and consensus problems,
1995]
[R. Guerraoui and A. Schiper, The Generic Consensus Service, 2001]

However, Consensus can be very hard to solve if one
cannot accurately detect the failure of the processes

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider a finite set of processes where the correct
ones vote either yes or no. Processes are expected to
decide on a value satisfying the following properties:

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider a finite set of processes where the correct
ones vote either yes or no. Processes are expected to
decide on a value satisfying the following properties:

Termination: every correct process eventually decides

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider a finite set of processes where the correct
ones vote either yes or no. Processes are expected to
decide on a value satisfying the following properties:

Termination: every correct process eventually decides

Validity: the decision is on a voted value

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider a finite set of processes where the correct
ones vote either yes or no. Processes are expected to
decide on a value satisfying the following properties:

Termination: every correct process eventually decides

Validity: the decision is on a voted value

Agreement: no two processes decide differently

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consider a finite set of processes where the correct
ones vote either yes or no. Processes are expected to
decide on a value satisfying the following properties:

Termination: every correct process eventually decides

Validity: the decision is on a voted value

Agreement: no two processes decide differently

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

“Impossibility of Distributed Consensus with One Faulty
Process”, Fischer, Lynch and Patterson in 1985:

In a “pure” asynchronous system (even) with reliable
communication channels,

When (at least) some process may fail by crashing,
forever ceasing its computation,

No deterministic algorithm can solve consensus

Isn’t such a result so counterintuitive?!

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

Consider an asynchronous system model, a finite set of
processes P completely connected by reliable channels

A process p is modeled through an input register ip, an
output register op and an unbounded amount of
internal storage. A configuration of the system consists
of the internal state of each process, together with the
contents of the message buffer.

Processes take deterministic events (p, m) determined
by the messages they receive. A schedule from a
configuration C is a finite or infinite sequence of events
that can be applied, in turn, starting from C.

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

Suppose that from some configuration C, the schedules
s1, s2 lead to configurations C1, C2, respectively. If the
sets of processes taking steps in s1 and s2, respectively,
are disjoint, then s2 can be applied to C1 and s1 can be
applied to C2, and both lead to the same configuration
C3.

C

C1 C2

C3

s1

s1

s2

s2

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

The algorithm has an initial bivalent configuration

Assume not:

Let C0 (0-valent) and C1 (1-valent) be adjacent
configurations differing on the initial value of p

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

The algorithm has an initial bivalent configuration

Assume not:

Let C0 (0-valent) and C1 (1-valent) be adjacent
configurations differing on the initial value of p

C0

s

C1

s s - is a deciding schedule

s - has no steps of p

D0 D1

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

The algorithm has an initial bivalent configuration

Assume not:

Let C0 (0-valent) and C1 (1-valent) be adjacent
configurations differing on the initial value of p

S is a deciding schedule applicable both to C0 and to C1

C0

s

C1

s s - is a deciding schedule

s - has no steps of p

D0 D1

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

The algorithm has an initial bivalent configuration

Assume not:

Let C0 (0-valent) and C1 (1-valent) be adjacent
configurations differing on the initial value of p

S is a deciding schedule applicable both to C0 and to C1

The decision at D0 and D1 must be the same. This
implies that either C0 or C1 is bivalent!

C0

s

C1

s s - is a deciding schedule

s - has no steps of p

D0 D1

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

Any deciding schedule eventually forks a bivalent into a
univalent configuration:

C
i

0-valent

bivalent

C0

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

C
i

0-valent

bivalent

S

C0

C
i

0-valent

bivalent

S

C0

i

C1 1-valent

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

Suppose i crashes.

C
i

0-valent

bivalent

S

C0

C
i

0-valent

bivalent

S

C0

i

C1 1-valent

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

Suppose i crashes.

Since one crash is tolerated there is a deciding
schedule S (without steps from i) from C

C
i

0-valent

bivalent

S

C0

C
i

0-valent

bivalent

S

C0

i

C1 1-valent

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

Suppose i crashes.

Since one crash is tolerated there is a deciding
schedule S (without steps from i) from C

Any such S leads to a S(C) that must be
0-valent

C
i

0-valent

bivalent

S

C0

C
i

0-valent

bivalent

S

C0

i

C1 1-valent

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

When we cannot: FLP impossibility result

Suppose i crashes.

Since one crash is tolerated there is a deciding
schedule S (without steps from i) from C

Any such S leads to a S(C) that must be
0-valent

Since C is bivalent there must be
some schedule S (without steps from i)
a6er which applying i leads to a 1-valent
configuration (a “Hook”). But since
S can be applied do C0 this leads to
a contradiction!

C
i

0-valent

bivalent

S

C0

C
i

0-valent

bivalent

S

C0

i

C1 1-valent

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Trivial “Consensus” solutions
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Trivial “Consensus” solutions

Consider the variants of Consensus with just two of its
properties:

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Trivial “Consensus” solutions

Consider the variants of Consensus with just two of its
properties:

No Agreement

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Trivial “Consensus” solutions

Consider the variants of Consensus with just two of its
properties:

Boolean Consensus (Boolean v)
{

return v;
}

No Agreement

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Trivial “Consensus” solutions

Consider the variants of Consensus with just two of its
properties:

Boolean Consensus (Boolean v)
{

return v;
}

No Agreement

No Validity

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Trivial “Consensus” solutions

Consider the variants of Consensus with just two of its
properties:

Boolean Consensus (Boolean v)
{

return True;
}

Boolean Consensus (Boolean v)
{

return v;
}

No Agreement

No Validity

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Trivial “Consensus” solutions

Consider the variants of Consensus with just two of its
properties:

Boolean Consensus (Boolean v)
{

return True;
}

Boolean Consensus (Boolean v)
{

return v;
}

No Agreement

No Validity

No Termination

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Trivial “Consensus” solutions

Consider the variants of Consensus with just two of its
properties:

Boolean Consensus (Boolean v)
{

return True;
}

Boolean Consensus (Boolean v)
{

return v;
}

Boolean Consensus (Boolean v)
{

while(1);
}

No Agreement

No Validity

No Termination

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Solving Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Let’s start by using a 3PC protocol to solve the
problem. Asynchronous model, crash-stop faults.

Solving Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Let’s start by using a 3PC protocol to solve the
problem. Asynchronous model, crash-stop faults.

Solving Consensus

p2

p1

p3

BOOM

Round 1
Coordinator p1

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Let’s start by using a 3PC protocol to solve the
problem. Asynchronous model, crash-stop faults.

Solving Consensus

p2

p1

p3

BOOM

Round 1
Coordinator p1

Participants suspect
the coordinator.

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Let’s start by using a 3PC protocol to solve the
problem. Asynchronous model, crash-stop faults.

Solving Consensus

p2

p1

p3

BOOM

Round 1
Coordinator p1

Participants suspect
the coordinator.

Conundrum: shall I stay or shall I go?

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Let’s start by using a 3PC protocol to solve the
problem. Asynchronous model, crash-stop faults.

Solving Consensus

p2

p1

p3

BOOM

Round 1
Coordinator p1

BOOM

Round 2
Coordinator p2

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Let’s start by using a 3PC protocol to solve the
problem. Asynchronous model, crash-stop faults.

Solving Consensus

p2

p1

p3

BOOM

Round 1
Coordinator p1

BOOM

Round 2
Coordinator p2

BOOM

Round 3
Coordinator p3

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Let’s start by using a 3PC protocol to solve the
problem. Asynchronous model, crash-stop faults.

Solving Consensus

p2

p1

p3

BOOM

Round 1
Coordinator p1

BOOM

Round 2
Coordinator p2

BOOM

Round 3
Coordinator p3

BOOM

Round 4
Coordinator p4

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Let’s start by using a 3PC protocol to solve the
problem. Asynchronous model, crash-stop faults.

Solving Consensus

p2

p1

p3

BOOM

Round 1
Coordinator p1

... ending up with the Chandra & Toueg’s algorithm
which is based on a Failure Detector Oracle

BOOM

Round 2
Coordinator p2

BOOM

Round 3
Coordinator p3

BOOM

Round 4
Coordinator p4

Unreliable failure detectors for reliable distributed systems,
T. Chandra and S. Toueg, JACM, 1996

Distributed Computing Agreement in FT Distributed Systems

http://portal.acm.org/author_page.cfm?id=81100393949&coll=DL&dl=ACM&trk=0&cfid=17917351&cftoken=36494853
http://portal.acm.org/author_page.cfm?id=81100393949&coll=DL&dl=ACM&trk=0&cfid=17917351&cftoken=36494853
http://portal.acm.org/author_page.cfm?id=81100494489&coll=DL&dl=ACM&trk=0&cfid=17917351&cftoken=36494853
http://portal.acm.org/author_page.cfm?id=81100494489&coll=DL&dl=ACM&trk=0&cfid=17917351&cftoken=36494853

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

What’s a Failure Detector Oracle?

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

What’s a Failure Detector Oracle?

Forget about time-outs!

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

What’s a Failure Detector Oracle?

Forget about time-outs!

Consider something technologically more advanced

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

What’s a Failure Detector Oracle?

Forget about time-outs!

Consider something technologically more advanced

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

Admit one gets the cheapest set of FD modules

 When inquired they always suspect every participant

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

p2

p1

p3

BOOM

Round 1
Coordinator p1

Admit one gets the cheapest set of FD modules

 When inquired they always suspect every participant

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

p2

p1

p3

BOOM

Round 1
Coordinator p1

BOOM

Round 2
Coordinator p2

Admit one gets the cheapest set of FD modules

 When inquired they always suspect every participant

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

p2

p1

p3

BOOM

Round 1
Coordinator p1

BOOM

Round 2
Coordinator p2

BOOM

Round 3
Coordinator p3

Admit one gets the cheapest set of FD modules

 When inquired they always suspect every participant

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

p2

p1

p3

BOOM

Round 1
Coordinator p1

BOOM

Round 2
Coordinator p2

BOOM

Round 3
Coordinator p3

BOOM

Round 4
Coordinator p4

Admit one gets the cheapest set of FD modules

 When inquired they always suspect every participant

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

p2

p1

p3

BOOM

Round 1
Coordinator p1

BOOM

Round 2
Coordinator p2

BOOM

Round 3
Coordinator p3

BOOM

Round 4
Coordinator p4

Admit one gets the cheapest set of FD modules

 When inquired they always suspect every participant

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

p2

p1

p3

BOOM

Round 1
Coordinator p1

BOOM

Round 2
Coordinator p2

BOOM

Round 3
Coordinator p3

BOOM

Round 4
Coordinator p4

Admit one gets the cheapest set of FD modules

 When inquired they always suspect every participant

 Or, when inquired they never suspect any participant

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

p2

p1

p3

BOOM

Round 1
Coordinator p1

BOOM

Round 2
Coordinator p2

BOOM

Round 3
Coordinator p3

BOOM

Round 4
Coordinator p4

Admit one gets the cheapest set of FD modules

 When inquired they always suspect every participant

 Or, when inquired they never suspect any participant

p2

p1

p3

BOOM

Round 1
Coordinator p1

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

p2

p1

p3

BOOM

Round 1
Coordinator p1

BOOM

Round 2
Coordinator p2

BOOM

Round 3
Coordinator p3

BOOM

Round 4
Coordinator p4

Admit one gets the cheapest set of FD modules

 When inquired they always suspect every participant

 Or, when inquired they never suspect any participant

p2

p1

p3

BOOM

Round 1
Coordinator p1

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

Now, admit one gets the most expensive set of FD
modules

 When inquired they never make mistakes!

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

p2

p1

p3

Round 1
Coordinator p1

Now, admit one gets the most expensive set of FD
modules

 When inquired they never make mistakes!

Consensus is reached right on the first
round when there are no failures...

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

p2

p1

p3

Round 1
Coordinator p1

Round 2
Coordinator p2

BOOM

Now, admit one gets the most expensive set of FD
modules

 When inquired they never make mistakes!

Consensus is reached right on the first
round when there are no failures...

... or in the second round should P1 fail.

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus and Failure Detection

p2

p1

p3

Round 1
Coordinator p1

Round 2
Coordinator p2

BOOM

Now, admit one gets the most expensive set of FD
modules

 When inquired they never make mistakes!

Consensus is reached right on the first
round when there are no failures...

... or in the second round should P1 fail.

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Unreliable Failure Detectors Specifications
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Completeness

Unreliable Failure Detectors Specifications
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Completeness

Strong: Eventually every process that crashes is
permanently suspected by every correct process

Unreliable Failure Detectors Specifications
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Completeness

Strong: Eventually every process that crashes is
permanently suspected by every correct process

Weak: Eventually every process that crashes is
permanently suspected by some correct process

Unreliable Failure Detectors Specifications
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Completeness

Strong: Eventually every process that crashes is
permanently suspected by every correct process

Weak: Eventually every process that crashes is
permanently suspected by some correct process

Accuracy

Unreliable Failure Detectors Specifications
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Completeness

Strong: Eventually every process that crashes is
permanently suspected by every correct process

Weak: Eventually every process that crashes is
permanently suspected by some correct process

Accuracy

Strong: Correct processes are never suspected

Unreliable Failure Detectors Specifications
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Completeness

Strong: Eventually every process that crashes is
permanently suspected by every correct process

Weak: Eventually every process that crashes is
permanently suspected by some correct process

Accuracy

Strong: Correct processes are never suspected

Weak: Some correct process is never suspected

Unreliable Failure Detectors Specifications
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Strong Failure Detector

Consider a set of FD modules satisfying
Strong Completeness and
Weak Accuracy: Some correct process is never suspected

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Strong Failure Detector

Consider a set of FD modules satisfying
Strong Completeness and
Weak Accuracy: Some correct process is never suspected

p2

p1

p3

Round 1
Coordinator p1

t accuracy

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Strong Failure Detector

Consider a set of FD modules satisfying
Strong Completeness and
Weak Accuracy: Some correct process is never suspected

Round 2
Coordinator p2

?p2

p1

p3

Round 1
Coordinator p1

t accuracy

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Strong Failure Detector

Consider a set of FD modules satisfying
Strong Completeness and
Weak Accuracy: Some correct process is never suspected

Round 2
Coordinator p2

?p2

p1

p3

Round 1
Coordinator p1

t accuracy

?
Round 3

Coordinator p3

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Strong Failure Detector

Consider a set of FD modules satisfying
Strong Completeness and
Weak Accuracy: Some correct process is never suspected

Round 2
Coordinator p2

?p2

p1

p3

Round 1
Coordinator p1

t accuracy

?
Round 3

Coordinator p3

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Eventual Strong Failure Detector

Now, consider a set of FD modules satisfying
Strong Completeness and
Eventual Weak Accuracy: Eventually some correct process
is never suspected

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Eventual Strong Failure Detector

Now, consider a set of FD modules satisfying
Strong Completeness and
Eventual Weak Accuracy: Eventually some correct process
is never suspected

p2

p1

p3

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Eventual Strong Failure Detector

Now, consider a set of FD modules satisfying
Strong Completeness and
Eventual Weak Accuracy: Eventually some correct process
is never suspected

p2

p1

p3

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Eventual Strong Failure Detector

Now, consider a set of FD modules satisfying
Strong Completeness and
Eventual Weak Accuracy: Eventually some correct process
is never suspected

t accuracy

p2

p1

p3

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Eventual Strong Failure Detector

Now, consider a set of FD modules satisfying
Strong Completeness and
Eventual Weak Accuracy: Eventually some correct process
is never suspected

t accuracy

p2

p1

p3

Round 1
Coordinator p1

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Eventual Strong Failure Detector

Now, consider a set of FD modules satisfying
Strong Completeness and
Eventual Weak Accuracy: Eventually some correct process
is never suspected

Round 2
Coordinator p2

?
t accuracy

p2

p1

p3

Round 1
Coordinator p1

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Eventual Strong Failure Detector

Now, consider a set of FD modules satisfying
Strong Completeness and
Eventual Weak Accuracy: Eventually some correct process
is never suspected

Round 2
Coordinator p2

?
t accuracy

?
Round 3

Coordinator p3

p2

p1

p3

Round 1
Coordinator p1

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Eventual Strong Failure Detector

Now, consider a set of FD modules satisfying
Strong Completeness and
Eventual Weak Accuracy: Eventually some correct process
is never suspected

Round 2
Coordinator p2

?
t accuracy

?
Round 3

Coordinator p3

p2

p1

p3

Round 1
Coordinator p1

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Eventual Strong Failure Detector

Now, consider a set of FD modules satisfying
Strong Completeness and
Eventual Weak Accuracy: Eventually some correct process
is never suspected

Round 2
Coordinator p2

?
t accuracy

?
Round 3

Coordinator p3

p2

p1

p3

Round 1
Coordinator p1

Why is Strong Completeness required?

Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus

W

!W

!S

!P

P

S

Weak
weak completeness + weak accuracy

Perfect
strong completeness + strong accuracy

Strong
strong completeness + weak accuracy

Eventual Weak
weak completeness + eventual weak accuracy

Eventual Strong
strong completeness + eventual weak accuracy

Eventual Perfect
strong completeness + eventual strong accuracy

A lattice of failure detector classes
Weakest

Strongest

Distributed Computing Agreement in FT Distributed Systems

[V. Hadzilacos, S. Toueg and T. Chandra, The weakest failure detector for solving consensus, 1996.]

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus
Distributed Computing Agreement in FT Distributed Systems

20 ·

Every process p executes the following:

procedure propose(vp)
estimatep ← vp {estimatep is p’s estimate of the decision value}
statep ← undecided
rp ← 0 {rp is p’s current round number}
tsp ← 0 {tsp is the last round in which p updated estimatep, initially 0}

{Rotate through coordinators until decision is reached}

while statep = undecided
rp ← rp + 1
cp ← (rp mod n) + 1 {cp is the current coordinator}

Phase 1: {All processes p send estimatep to the current coordinator}
send (p, rp, estimatep, tsp) to cp

Phase 2: {The current coordinator gathers " (n+1)
2

estimates and proposes a new estimate}
if p = cp then

wait until [for " (n+1)
2

processes q : received (q, rp, estimateq, tsq) from q]
msgsp[rp] ← {(q, rp, estimateq, tsq) | p received (q, rp, estimateq, tsq) from q}
t ← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
estimatep ← select one estimateq such that (q, rp, estimateq, t) ∈ msgsp[rp]
send (p, rp, estimatep) to all

Phase 3: {All processes wait for the new estimate proposed by the current coordinator}
wait until [received (cp, rp, estimatecp) from cp or cp ∈ Dp]{Query the failure detector}
if [received (cp, rp, estimatecp) from cp] then {p received estimatecp from cp}

estimatep ← estimatecp

tsp ← rp

send (p, rp, ack) to cp

else send (p, rp, nack) to cp {p suspects that cp crashed}

Phase 4:

{

The current coordinator waits for " (n+1)
2

replies. If they indicate that " (n+1)
2

#
processes adopted its estimate, the coordinator R-broadcasts a decide message

}

if p = cp then

wait until [for " (n+1)
2 # processes q : received (q, rp, ack) or (q, rp, nack)]

if [for " (n+1)
2 # processes q : received (q, rp, ack)] then

R-broadcast(p, rp, estimatep, decide)

{If p R-delivers a decide message, p decides accordingly}

when R-deliver(q, rq , estimateq, decide)
if statep = undecided then

decide(estimateq)
statep ← decided

Fig. 6. Solving Consensus using any D ∈ S.

Chandra & Toueg Algorithm

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus
Distributed Computing Agreement in FT Distributed Systems

20 ·

Every process p executes the following:

procedure propose(vp)
estimatep ← vp {estimatep is p’s estimate of the decision value}
statep ← undecided
rp ← 0 {rp is p’s current round number}
tsp ← 0 {tsp is the last round in which p updated estimatep, initially 0}

{Rotate through coordinators until decision is reached}

while statep = undecided
rp ← rp + 1
cp ← (rp mod n) + 1 {cp is the current coordinator}

Phase 1: {All processes p send estimatep to the current coordinator}
send (p, rp, estimatep, tsp) to cp

Phase 2: {The current coordinator gathers " (n+1)
2

estimates and proposes a new estimate}
if p = cp then

wait until [for " (n+1)
2

processes q : received (q, rp, estimateq, tsq) from q]
msgsp[rp] ← {(q, rp, estimateq, tsq) | p received (q, rp, estimateq, tsq) from q}
t ← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
estimatep ← select one estimateq such that (q, rp, estimateq, t) ∈ msgsp[rp]
send (p, rp, estimatep) to all

Phase 3: {All processes wait for the new estimate proposed by the current coordinator}
wait until [received (cp, rp, estimatecp) from cp or cp ∈ Dp]{Query the failure detector}
if [received (cp, rp, estimatecp) from cp] then {p received estimatecp from cp}

estimatep ← estimatecp

tsp ← rp

send (p, rp, ack) to cp

else send (p, rp, nack) to cp {p suspects that cp crashed}

Phase 4:

{

The current coordinator waits for " (n+1)
2

replies. If they indicate that " (n+1)
2

#
processes adopted its estimate, the coordinator R-broadcasts a decide message

}

if p = cp then

wait until [for " (n+1)
2 # processes q : received (q, rp, ack) or (q, rp, nack)]

if [for " (n+1)
2 # processes q : received (q, rp, ack)] then

R-broadcast(p, rp, estimatep, decide)

{If p R-delivers a decide message, p decides accordingly}

when R-deliver(q, rq , estimateq, decide)
if statep = undecided then

decide(estimateq)
statep ← decided

Fig. 6. Solving Consensus using any D ∈ S.

Chandra & Toueg Algorithm

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus
Distributed Computing Agreement in FT Distributed Systems

20 ·

Every process p executes the following:

procedure propose(vp)
estimatep ← vp {estimatep is p’s estimate of the decision value}
statep ← undecided
rp ← 0 {rp is p’s current round number}
tsp ← 0 {tsp is the last round in which p updated estimatep, initially 0}

{Rotate through coordinators until decision is reached}

while statep = undecided
rp ← rp + 1
cp ← (rp mod n) + 1 {cp is the current coordinator}

Phase 1: {All processes p send estimatep to the current coordinator}
send (p, rp, estimatep, tsp) to cp

Phase 2: {The current coordinator gathers " (n+1)
2

estimates and proposes a new estimate}
if p = cp then

wait until [for " (n+1)
2

processes q : received (q, rp, estimateq, tsq) from q]
msgsp[rp] ← {(q, rp, estimateq, tsq) | p received (q, rp, estimateq, tsq) from q}
t ← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
estimatep ← select one estimateq such that (q, rp, estimateq, t) ∈ msgsp[rp]
send (p, rp, estimatep) to all

Phase 3: {All processes wait for the new estimate proposed by the current coordinator}
wait until [received (cp, rp, estimatecp) from cp or cp ∈ Dp]{Query the failure detector}
if [received (cp, rp, estimatecp) from cp] then {p received estimatecp from cp}

estimatep ← estimatecp

tsp ← rp

send (p, rp, ack) to cp

else send (p, rp, nack) to cp {p suspects that cp crashed}

Phase 4:

{

The current coordinator waits for " (n+1)
2

replies. If they indicate that " (n+1)
2

#
processes adopted its estimate, the coordinator R-broadcasts a decide message

}

if p = cp then

wait until [for " (n+1)
2 # processes q : received (q, rp, ack) or (q, rp, nack)]

if [for " (n+1)
2 # processes q : received (q, rp, ack)] then

R-broadcast(p, rp, estimatep, decide)

{If p R-delivers a decide message, p decides accordingly}

when R-deliver(q, rq , estimateq, decide)
if statep = undecided then

decide(estimateq)
statep ← decided

Fig. 6. Solving Consensus using any D ∈ S.

Chandra & Toueg Algorithm

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus
Distributed Computing Agreement in FT Distributed Systems

20 ·

Every process p executes the following:

procedure propose(vp)
estimatep ← vp {estimatep is p’s estimate of the decision value}
statep ← undecided
rp ← 0 {rp is p’s current round number}
tsp ← 0 {tsp is the last round in which p updated estimatep, initially 0}

{Rotate through coordinators until decision is reached}

while statep = undecided
rp ← rp + 1
cp ← (rp mod n) + 1 {cp is the current coordinator}

Phase 1: {All processes p send estimatep to the current coordinator}
send (p, rp, estimatep, tsp) to cp

Phase 2: {The current coordinator gathers " (n+1)
2

estimates and proposes a new estimate}
if p = cp then

wait until [for " (n+1)
2

processes q : received (q, rp, estimateq, tsq) from q]
msgsp[rp] ← {(q, rp, estimateq, tsq) | p received (q, rp, estimateq, tsq) from q}
t ← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
estimatep ← select one estimateq such that (q, rp, estimateq, t) ∈ msgsp[rp]
send (p, rp, estimatep) to all

Phase 3: {All processes wait for the new estimate proposed by the current coordinator}
wait until [received (cp, rp, estimatecp) from cp or cp ∈ Dp]{Query the failure detector}
if [received (cp, rp, estimatecp) from cp] then {p received estimatecp from cp}

estimatep ← estimatecp

tsp ← rp

send (p, rp, ack) to cp

else send (p, rp, nack) to cp {p suspects that cp crashed}

Phase 4:

{

The current coordinator waits for " (n+1)
2

replies. If they indicate that " (n+1)
2

#
processes adopted its estimate, the coordinator R-broadcasts a decide message

}

if p = cp then

wait until [for " (n+1)
2 # processes q : received (q, rp, ack) or (q, rp, nack)]

if [for " (n+1)
2 # processes q : received (q, rp, ack)] then

R-broadcast(p, rp, estimatep, decide)

{If p R-delivers a decide message, p decides accordingly}

when R-deliver(q, rq , estimateq, decide)
if statep = undecided then

decide(estimateq)
statep ← decided

Fig. 6. Solving Consensus using any D ∈ S.

Chandra & Toueg Algorithm

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Discussion on Failure Detection

How are these ‘USB FD modules’ implemented?

Can the model be asynchronous?

What if the model is not asynchrnous?

Timed-asynchronous
[F. Cristian and C. Fetzer, The Timed Asynchronous Distributed System Model, 1999]

Quasi-synchronous, wormholes
[P. Veríssimo and C. Almeida, Quasi-synchronism: a step away from the traditional fault-tolerant
real-time system models, 1995]

Synchronous

Distributed Computing Agreement in FT Distributed Systems

http://www.navigators.di.fc.ul.pt/docs/abstracts/QuasiModel-abs.html
http://www.navigators.di.fc.ul.pt/docs/abstracts/QuasiModel-abs.html
http://www.navigators.di.fc.ul.pt/docs/abstracts/QuasiModel-abs.html
http://www.navigators.di.fc.ul.pt/docs/abstracts/QuasiModel-abs.html

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

With f < n/2 an Eventual Weak failure detector is both
necessary and sufficient to solve Consensus

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

With f < n/2 an Eventual Weak failure detector is both
necessary and sufficient to solve Consensus

With f < n/2 the Eventual Weak and Eventual
Strong failure detector classes are equivalent

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

With f < n/2 an Eventual Weak failure detector is both
necessary and sufficient to solve Consensus

With f < n/2 the Eventual Weak and Eventual
Strong failure detector classes are equivalent

Omega (= Eventual Weak): There is a time a6er
which all the correct processes always trust the
same correct process.

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

With f < n/2 an Eventual Weak failure detector is both
necessary and sufficient to solve Consensus

With f < n/2 the Eventual Weak and Eventual
Strong failure detector classes are equivalent

Omega (= Eventual Weak): There is a time a6er
which all the correct processes always trust the
same correct process.

 [V. Hadzilacos, S. Toueg and T. Chandra, The weakest failure detector for solving consensus, 1996.]

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

With f < n/2 an Eventual Weak failure detector is both
necessary and sufficient to solve Consensus

With f < n/2 the Eventual Weak and Eventual
Strong failure detector classes are equivalent

Omega (= Eventual Weak): There is a time a6er
which all the correct processes always trust the
same correct process.

 [V. Hadzilacos, S. Toueg and T. Chandra, The weakest failure detector for solving consensus, 1996.]

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

With f < n/2 an Eventual Weak failure detector is both
necessary and sufficient to solve Consensus

With f < n/2 the Eventual Weak and Eventual
Strong failure detector classes are equivalent

Omega (= Eventual Weak): There is a time a6er
which all the correct processes always trust the
same correct process.

 [V. Hadzilacos, S. Toueg and T. Chandra, The weakest failure detector for solving consensus, 1996.]

With f < n a Strong failure detector is necessary and
sufficient to solve Consensus

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Indulgent algorithms: algorithms, based on a failure
detector oracle, that never violate the safety properties.
If the failure detector misbehaves the algorithm does
not terminate.

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Indulgent algorithms: algorithms, based on a failure
detector oracle, that never violate the safety properties.
If the failure detector misbehaves the algorithm does
not terminate.

Several algorithms for f < n/2, based on an Eventual
Strong failure detector, favor different aspects exploting
different communication patterns:

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Indulgent algorithms: algorithms, based on a failure
detector oracle, that never violate the safety properties.
If the failure detector misbehaves the algorithm does
not terminate.

Several algorithms for f < n/2, based on an Eventual
Strong failure detector, favor different aspects exploting
different communication patterns:
Centralized: [T. Chandra and S.Toueg, Unreliable failure detectors for reliable distributed systems, 1996]

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Indulgent algorithms: algorithms, based on a failure
detector oracle, that never violate the safety properties.
If the failure detector misbehaves the algorithm does
not terminate.

Several algorithms for f < n/2, based on an Eventual
Strong failure detector, favor different aspects exploting
different communication patterns:
Centralized: [T. Chandra and S.Toueg, Unreliable failure detectors for reliable distributed systems, 1996]

Distributed: [A. Schiper, Early Consensus in an Asynchronous System with a Weak Failure Detector, 1997]

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Indulgent algorithms: algorithms, based on a failure
detector oracle, that never violate the safety properties.
If the failure detector misbehaves the algorithm does
not terminate.

Several algorithms for f < n/2, based on an Eventual
Strong failure detector, favor different aspects exploting
different communication patterns:
Centralized: [T. Chandra and S.Toueg, Unreliable failure detectors for reliable distributed systems, 1996]

Distributed: [A. Schiper, Early Consensus in an Asynchronous System with a Weak Failure Detector, 1997]

Mutable: [J. Pereira and R. oliveira, The Mutable Consensus Protocol, 2004]

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Indulgent algorithms: algorithms, based on a failure
detector oracle, that never violate the safety properties.
If the failure detector misbehaves the algorithm does
not terminate.

Several algorithms for f < n/2, based on an Eventual
Strong failure detector, favor different aspects exploting
different communication patterns:
Centralized: [T. Chandra and S.Toueg, Unreliable failure detectors for reliable distributed systems, 1996]

Distributed: [A. Schiper, Early Consensus in an Asynchronous System with a Weak Failure Detector, 1997]

Mutable: [J. Pereira and R. oliveira, The Mutable Consensus Protocol, 2004]

Consensus
Distributed Computing Agreement in FT Distributed Systems

© 2007-11 Rui Carlos Oliveira© 2007-11 Rui Carlos Oliveira Universidade do Minho

Indulgent algorithms: algorithms, based on a failure
detector oracle, that never violate the safety properties.
If the failure detector misbehaves the algorithm does
not terminate.

Several algorithms for f < n/2, based on an Eventual
Strong failure detector, favor different aspects exploting
different communication patterns:
Centralized: [T. Chandra and S.Toueg, Unreliable failure detectors for reliable distributed systems, 1996]

Distributed: [A. Schiper, Early Consensus in an Asynchronous System with a Weak Failure Detector, 1997]

Mutable: [J. Pereira and R. oliveira, The Mutable Consensus Protocol, 2004]

Consensus
Distributed Computing Agreement in FT Distributed Systems

