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Introduction

Models of Computation

Synchronous model
Processes repeatedly execute rounds in lock-step. In each round, they:

1. Use their current state to generate messages to send to neighbors,
and put them in the appropriate channels.

2. Compute the new state from the current state and the incoming
messages, and remove all the messsages from the channels.

Asynchronous model
Makes no assumptions regarding the timing behavior of system
components

1. Processes may take an arbitrary time to execute the actions
prescribed by the algorithms.

2. Channels may take an arbitrary time to deliver messages that are
sent through them.
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Introduction

Time and Models of Computation

Both models abstract away the time.

Time is sometimes used for the analysis of the (time) complexity.
I But it is not part of the model itself.

In practice, most systems use time, at least in the form of timeouts.

Increasingly, systems interact with the real world, which sometimes
imposes timing requirements. Correctness depends:

I Not only on the outputs generated by the system, or even their order;
I But also on the time at which these outputs are generated.

F For some systems, being late is at least as bad as an omission fault.
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Timed I/O Automata

Timed I/O Automata

There are several variants of Timed I/O Automata
I They are all based on standard I/O automata
I They all include extensions to reason about timing properties

We consider the variant described in the first reference
I It is a simplification of Hybrid I/O Automata
I It relies only on a few concepts that do not appear in the standard I/O

automata

Dynamic Type of a Variable
Trajectory
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Timed I/O Automata

Timed Input/Output Automata (TIOA)

A timed (I/O) automaton is a state machine whose states are the
valuations of its variables

I Variables are internal to an automaton

The state of a timed automaton may change
I instantatenously, by the occurrence of discrete transitions
I over an interval of time via trajectories, which are functions that

describe the evolution of the state variables with time

The discrete transitions are labeled with actions, which may be one
of input, output or internal actions

I Input and output actions are used for communication with the
automaton’s enviroment

F Internal actions are not visible externally

I Output and internal actions are under the automaton control
F But input actions are not

Communication of a TIOA with its enviroment is limited to discrete
transitions
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Timed I/O Automata Preliminaries

Dynamic Type of a Variable

Each variable in a IO automaton has a (static) type, which specifies
the values it may take

In the case of a TIOA, every variable has also a dynamic type, which
specifies how its value may evolve over time

We consider essentially two types:

Discrete The value changes only at discrete points in time, remaining
constant between those points

I The values of discrete variables change only upon occurrence of
transitions

I All variables in standard I/O automata are discrete

Analog The value may change continuously over a time interval
I This type is particularly useful to model timers/clocks, i.e. variables

that measure the passage of time
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Timed I/O Automata Preliminaries

Trajectory

A trajectory, τ , describes the evolution of a set of variables over an
interval of time, τ ’s domain, which:

I Always starts at 0
I May not be right closed

Trajectories can be concatenated, using a concatenation operation
a. The result is a trajectory:

I Over a time interval whose duration is the sum of the time intervals of
each of the trajectories

I Obtained by time-shifting by the necessary amount of time each of
the operand trajectories

Given a trajectory, ν, we can define a prefix trajectory τ , by
restricting ν to a time interval starting at 0 that is a subset of ν’s
domain

τ ≤ ν
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Timed I/O Automata Preliminaries

Trajectory Concatenation

src: Kaynar et. al. 2005

The last valuation of a trajectory, which may not agree with the first
valuation of the following operand trajectory, is the one that appears
in the concatenation
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Timed I/O Automata Definition

Timed I/O Automata: Formal Definition
A timed I/O automaton (TIOA) A = (X ,Q,Θ, I , 0,H,D, T ) consists
of:

A set X of internal variables
A set Q ⊆ val(X ) of states
A nonempty set Θ ⊆ Q of start states
A set I of input actions, a set O of output actions and a set H of
internal actions, disjoint from each other. We write:

E , I ∪ O the set of external actions

A , E ∪ H the set of all actions

L , O ∪ H the set of locally controlled actions

A set D ⊆ Q × A× Q of discrete transitions
I We write x

a−→ x ′ as a shorthand of (x , a, x ′) ∈ D
I We say that a is enabled in x if x

a−→ x ′ for some x ′

I We say that a set C of actions is enabled in a state x if some action in
C is enabled in x

A set T ⊆ trajs(Q) of trajectories, which must satisfy a set of axioms.
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Timed I/O Automata Definition

Timed I/O Automata: Trajectories (1/2)

Given a trajectory τ ∈ T , we denote
I τ.fstate the value of the state variables at time 0
I τ.lstate the last value of the state variables, if τ is closed
I When τ.fstate = x and τ.lstate = x ′, we write x

τ−→ x ′

The set of trajectories T of timed automaton (TA) must satisfy the
following axioms:

T0 Existence of point trajectories
If x ∈ Q then ℘(x) ∈ T

T1 Prefix closure
For every τ ∈ T and every τ ′ ≤ τ, τ ′ ∈ T

T2 Suffix closure
For every τ ∈ T and every t ∈ dom(τ), τ D t ∈ T

T3 Concatenation closure
Let τ0τ1τ2 . . . be a sequence of trajectories in T such that for each
nonfinal index i , τi is closed and τi .lstate = τi+1.fstate.
Then τ0 a τ1 a τ2 . . . ∈ T
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Timed I/O Automata Definition

Timed I/O Automata: Trajectories (2/2)

Axioms T1, T2 are needed for the parallel composition operation for
TA

I In a composed system, any trajectory of any component automaton
may be interrupted at any time by a discrete transition of another
(possibly independent) automaton

F Axiom T1 ensures that the part of the trajectory up to the discrete
transition is a trajectory

F Axiom T2 ensures that the remainder is a trajectory

Axiom T3 is required because the environment of a timed automaton
may change its dynamics repeatedly, and the automaton must be able
to follow this behavior.
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Timed I/O Automata Definition

Timed I/O Automata: Axioms

The following axioms are satisfied:

E1: Input action enabling
For every x ∈ Q and every a ∈ I , there exists x′ ∈ Q such that

x
a−→ x′

I I.e., a TIOA is able to perform every input action at any time
I Standard IOA must also satisfy this axiom

E2: Time-passage enabling
For every x ∈ Q, there exists τ ∈ T such that τ.fstate = x and
either:

1. τ.ltime =∞ or
2. τ is closed and some l ∈ L is enabled in τ.lstate

I I.e., a TIOA either allows time to advance forever or only up to a
point where it is able to perform some locally controlled action
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Timed I/O Automata Examples

Timed I/O Automata Specification

Based on a TIOA language, in which a specification consists of four main
parts:

Signature lists the actions along with their kinds (input, output or
internal) and parameter types

State variables list declares the names and types of state variables. The
dynamic type is defined implicitly

Variables of type Real are analog, and all other variables are
discrete

Collection of transition definitions defined in precondition-effect style

Trajectories definition

It differs from the IO Automata specification in that instead of a tasks
definition we have trajectories definition
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Timed I/O Automata Examples

TIOA Example 4.1: A Time-Bounded Channel (1/6)

The channel is reliable, i.e. does not drop messages

The channel is FIFO, i.e. delivers the messages in the order they are
sent

Furthermore, is is time-bounded, i.e. it delivers the messages within
a certain time bound (b) from being sent
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Timed I/O Automata Examples

TIOA Example 4.1: A Time-Bounded Channel (2/6)
automaton TimedChannel ( b : Real , M: Type )
type Packet = t u p l e o f message : M, d e a d l i n e : Rea l

s i g n a t u r e
i n p u t send (m: M)
output r e c e i v e (m: M)

s t a t e s
queue : Seq [ Packet ] := {} ,
now : Rea l := 0
i n i t i a l l y b ≥ 0

t r a n s i t i o n s
i n p u t send (m)

e f f
queue := append ( [m, now+b ] , queue )

output r e c e i v e (m)
pre

head ( queue ) . message = m
e f f

queue := t a i l ( queue )
t r a j e c t o r i e s

stop when
∃p : Packet p ∈ queue ∧ ( now = p . d e a d l i n e )

e v o l v e
d ( now ) = 1
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Timed I/O Automata Examples

TIOA Example 4.1: A Time-Bounded Channel (3/6)
automaton TimedChannel ( b : Real , M: Type )
type Packet = t u p l e o f message : M, d e a d l i n e : Rea l

The TimedChannel automaton has two parameters:

b the bound on the time to deliver a message
M is the type of messages communicated by the channel

The line:

type Packet = t u p l e of message : M, d e a d l i n e : Rea l

defines the type packet, which:
I Associates a message with its delivery deadline
I Is used in the definition of variable queue

Signature specifies actions (this TIOA has no internal actions)

s i g n a t u r e
input send (m: M)
output r e c e i v e (m: M)

both of which take as a parameter the message being sent/received
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Timed I/O Automata Examples

TIOA Example 4.1: A Time-Bounded Channel (4/6)

State Comprises two variables:

s t a t e s
queue : Seq [ Packet ] := {} ,
now : Rea l := 0
i n i t i a l l y b ≥ 0

queue is a queue with the packets in transit, it uses the built-in type
Seq[] for sequences/queues

now is used to measure the time

The initially clause specifies a predicate that must be true of the
automaton parameters and its initial state
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Timed I/O Automata Examples

TIOA Example 4.1: A Time-Bounded Channel (5/6)

Transitions Defines 2 actions:

send(m)
i n p u t send (m)

e f f
queue := append ( [m, now+b ] , queue )

Transitions on input actions have no preconditions, i.e. it is as if
the precondition was true, which is omitted

receive(m)

output r e c e i v e (m)
pre

head ( queue ) . message = m
e f f

queue := t a i l ( queue )

A receive(m) transition can occur only when m is the first
message in the queue and it results in the removal of the first
message from the queue
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Timed I/O Automata Examples

TIOA Example 4.1: A Time-Bounded Channel (6/6)

t r a j e c t o r i e s
stop when

∃p : Packet p ∈ queue ∧ (now = p . d e a d l i n e )
evo lve

d (now) = 1

stop when specifies a stopping condition, which must hold only in the
last state of the trajectory

It ensures that time does not advance beyond the point where the
stopping condition is true

evolve specifies the algebraic and differential equations that must be
satisfied by the trajectories

It is assumed that each variable follows a continuous function
throughout a trajectory
This implies that the value of a discrete variable is constant
throughout a trajectory
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Timed I/O Automata Examples

TIOA Example 4.2: Periodic Sending Process

Process that sends messages every u time units

automaton Pe r i od i cS end ( u : Real , M: Type )
s i g n a t u r e

output send (m: M)
s t a t e s

c l o c k : Rea l := 0
i n i t i a l l y u ≥ 0

t r a n s i t i o n s
output send (m)

pre
c l o c k = u

e f f
c l o c k := 0

t r a j e c t o r i e s
stop when

c l o c k = u
evo lve

d ( c l o c k ) = 1
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Timed I/O Automata Examples

TIOA Example 4.3: Periodic Sending Process with Crashes
Process that send messages every u time units, unless it crashes
automaton P e r i o d i c S e n d 2 ( u : Real , M: Type )

s i g n a t u r e
i n p u t c r a s h
output send (m: M)

s t a t e s
c r a s h e d : Bool := f a l s e ,
c l o c k : Rea l := 0
i n i t i a l l y u ≥ 0

t r a n s i t i o n s
output send (m)

pre
¬ c r a s h e d ∧ c l o c k = u

e f f
c l o c k := 0

i n p u t c r a s h
e f f

c r a s h e d := t r u e
t r a j e c t o r i e s

stop when
¬ c r a s h e d ∧ c l o c k = u

e v o l v e
d ( c l o c k ) = 1
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Timed I/O Automata Examples

TIOA Example 4.4: Timeout Process
Process that awaits the receipt of a message from another process,
performing a timeout action if u time units elapse without receiving it

automaton Timeout ( u : Real , M: Type )
s i g n a t u r e

i n p u t r e c e i v e (m: M)
output t i m e o u t

s t a t e s
s u s p e c t e d : Bool := f a l s e ,
c l o c k : Rea l := 0 ,
i n i t i a l l y u ≥ 0

t r a n s i t i o n s
i n p u t r e c e i v e (m)

e f f
c l o c k := 0
s u s p e c t e d := f a l s e

output t i m e o u t
pre
¬ s u s p e c t e d ∧ c l o c k = u

e f f
s u s p e c t e d := t r u e

t r a j e c t o r i e s
stop when
¬ s u s p e c t e d ∧ c l o c k = u

e v o l v e
d ( c l o c k ) = 1

Alternatively:

t r a j e c t o r i e s
t r a j d e f s u s p e c t e d

i n v a r i a n t s u s p e c t e d
e v o l v e d ( c l o c k ) = 1

t r a j d e f n o t s u p e c t e d
i n v a r i a n t ¬ s u s p e c t e d
stop when c l o c k = u
e v o l v e d ( c l o c k ) = 1
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Timed I/O Automata Examples

TIOA Example 4.5: Clock Synchronization (1/2)

Process in a clock synchronization algorithm. Each process:
I Has a physical clock, which may drift from the real time with a drift

rate bounded by r
I Generates a logical clock

The goal of the algorithm is to achieve:

Agreement i.e. that the logical clocks are close to one another
Validity i.e. that the logical clocks are within the range of the

physical clocks

Idea is to periodically exchange the physical clock values between the
different processes and set the logical clock to the maximum value of
all the physical clock values

I The logical clock, logclock is a derived variable, which is a function
whose value is defined in terms of the state variables
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Timed I/O Automata Examples

TIOA Example 4.5: Clock Synchronization (2/2)
automaton ClockSync ( u , r : Real , i : I n d e x )

s i g n a t u r e
i n p u t r e c e i v e (m: Real , j : Index , c o n s t i : I n d e x ) where j 6= i
output send (m: Real , c o n s t i : I n d e x ) ,

s t a t e s
n e x t s e n d : d i s c r e t e Rea l := 0 ,
maxother : d i s c r e t e Rea l := 0 ,
p h y s c l o c k : Rea l := 0 ,
i n i t i a l l y u ≥ 0 ∧ (0 ≤ r < 1)

d e r i v e d v a r i a b l e s
l o g c l o c k = max ( maxother , p h y s c l o c k )

t r a n s i t i o n s
output send (m, i )

pre
m = p h y s c l o c k ∧ p h y s c l o c k = n e x t s e n d

e f f
n e x t s e n d := n e x t s e n d + u

i n p u t r e c e i v e (m, j , i )
e f f

maxother := max ( maxother , m)
t r a j e c t o r i e s

stop when p h y s c l o c k = n e x t s e n d
e v o l v e (1− r ) ≤ d ( p h y s c l o c k ) ≤ (1 + r )

The stopping condition ensures that the message with the value of
the local physclock is sent periodically:

I Time is not allowed to pass beyond the point where physclock =
nextsend
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Timed I/O Automata TIOA Behavior

TIOA Behavior: Executions
Like with (non-timed) I/O automata, executions record what happens
during a particular run of a system. In the case of a timed system this
means:

I all the instantaneous, discrete state changes
I all the changes to the state that occur while time advances

Execution of a timed automata A is an alternating sequence
α = τ0a1τ1a2 . . . where:

1. each τi is a trajectory in T
2. τ0.fstate is a start state
3. if τi is not the last trajectory in α then τi .lstate

ai+1−−→ τi+1.fstate
Note To allow for simultaneous actions, i.e. actions occurring at the same

time instant, a special point trajectory, ℘(v), whose domain is the
interval [0, 0] is defined

Reachable state is a last state of a closed execution, i.e. of an execution
whose last trajectory is closed

Invariant (assertion) is a predicate that is true for all the reachable states
of a TIOA
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Timed I/O Automata TIOA Behavior

TIOA Behavior: Traces

The trace of an execution of a TIOA captures its external behavior. It
consists of a sequence of alternating

External actions

By definition, internal actions are not externally observable

Trajectories over the empty set of variables, ∅ – they capture the amount
of time that elapses between external actions

Trajectories describe the evolution in time of state variables
State variables are internal, i.e. they are not externally visible
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Timed I/O Automata TIOA Behavior

TIOA Behavior Ex. 4.9: Periodic Sending Process (1/2)

Consider the TA of Example 4.2 where,

u is instantiated to the real number 3

M is instantatiated to the set {m1,m2,...}
Then the following sequence is an execution of the automaton:

α = τ send(m1) τ send(m2) τ send(m3) τ . . .

where: τ : [0, 3]→ val({clock}) is defined such that
τ(t)(clock) = t for all t ∈ [0, 3]

The function τ is defined for closed intervals of length 3, starting at
time 0

It describes the evolution of the variable clock, which is 0 at the
start of τ and increases with rate 1 for 3 time units

The discrete send events occur periodically, every 3 time units and
reset the clock variable to 0
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Timed I/O Automata TIOA Behavior

TIOA Behavior Ex. 4.9: Periodic Sending Process (2/2)

The trace of the above execution is the sequence:

trace(α) = α′ = τ ′ send(m1) τ ′ send(m2) τ ′ send(m3) τ ′ . . .

where τ ′ : [0, 3]→ val(∅)
trace(α) does not contain any information about what happens to
the value of clock as time progresses

I The range of function τ ′ contains only the function with the empty
domain

α and α′ express the same information about the amount of time that
elapses between discrete steps.

I The domains of τ and τ ′ are identical,
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Timed I/O Automata TIOA Behavior

TIOA Behavior Example 4.10: Timeout Process
Consider the TIOA of Example 4.4 where

the maximum waiting time for a message u is 5

the message alphabet M is the set {m1,m2}
Then the following sequence is an execution of the automaton:

α = τ0 receive(m1) τ1 timeout τ2 send(m2) τ3 timeout τ4

where: Val = val({suspected,clock)}) and the trajectories τ0, τ1, τ2, τ3, τ4

are defined as follows:

τ0 : [0, 2]→ Val where τ0(t)(suspected) = false and τ0(t)(clock) = t for all t ∈ [0, 2]

τ1 : [0, 5]→ Val where τ1(t)(suspected) = false and τ1(t)(clock) = t for all t ∈ [0, 5]

τ2 : [0, 1]→ Val where τ2(t)(suspected) = true and τ2(t)(clock) = 5 + t for all t ∈ [0, 1]

τ3 : [0, 5]→ Val where τ3(t)(suspected) = false and τ3(t)(clock) = t for all t ∈ [0, 5]

τ4 : [0,∞)→ Val where τ4(t)(suspected) = true and τ4(t)(clock) = 5 + t for all t ∈ [0,∞)

The automaton Timeout can perform multiple timeout transitions

This execution is a finite alternating sequence ending with a trajectory
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Timed I/O Automata TIOA Behavior

TIOA Behavior Ex. 4.11: Time-Bounded Channel (1/6)

Consider the time-bounded channel from Example 4.1. Clearly,

Time cannot pass beyond any delivery deadline recorded in the
message queue

Each deadline in the queue is less than or equal to the sum of the
current time and bound b

We can state this property as an invariant (assertion) as follows:

Invariant: In any reachable state x of automaton timedChannel, for all
p ∈ x(queue), x(now) ≤ p.deadline ≤ x(now) + b

Alternatively, we could write 0 ≤ x(now)− p.deadline ≤ b
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Timed I/O Automata TIOA Behavior

TIOA Behavior Ex. 4.11: Time-Bounded Channel (2/6)

Note that:

Reachable states are the final states of closed executions

Any closed execution is the concatenation of closed execution
fragments, α0 a α1 a . . . αk , where every αi is

I either a closed trajectory
I or a discrete action surrounded by point trajectories

and where αi .lstate = α1+1.fstate for 0 ≤ i ≤ k − 1.

Thus the invariant can be proved using induction on the length k of the
sequence of execution fragments αi
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Timed I/O Automata TIOA Behavior

TIOA Behavior Ex. 4.11: Time-Bounded Channel (3/6)

Invariant: In any reachable state x of automaton timedChannel, for all
p ∈ x(queue), x(now) ≤ p.deadline ≤ x(now) + b

Proof By induction on the length k of the sequence of execution
fragments αi

Base case: k=1 In the initial state, x = α0.fstate

x ( queue ) = {}

Consider 2 cases:

1. α0 is an action surrounded by point trajectories Clearly the only
action that may occur is a send(m). Thus, for x = α0.lstate we
have x(queue) = {[m,b]} and x(now) = 0, hence the invariant is
satisfied

2. α0 is a trajectory Thus queue = {}, for all states in the trajectory
and the invariant is trivially satisfied
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TIOA Behavior Ex. 4.11: Time-Bounded Channel (4/6)

Invariant: In any reachable state x of automaton timedChannel, for all
p ∈ x(queue), x(now) ≤ p.deadline ≤ x(now) + b

Induction step Let’s assume that the invariant is true for an execution
with k trajectories α0 a α1 · · · a αk−1. Consider 2 cases:

1. αk is an action surrounded by point trajectories First note that now

does not change (time does not advance) in αk , i.e.
αk−1.lstate(now) = αk .fstate(now) = αk .lstate(now).
Now, the action can be either:

receive(m) removes the packet at the head of queue, and leaves the
remaining packets in the queue. By the induction hypothesis, these
packets, if any, satisfy the invariant

send(m) appends a packet [m,αk .fstate(now)+b] to the queue. Clearly,
at αk .lstate this packet satisfies the invariant. The remaining
packets, if any, were already in the queue, and by the induction
hypothesis satisfy the invariant
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TIOA Behavior Ex. 4.11: Time-Bounded Channel (5/6)
Invariant: In any reachable state x of automaton timedChannel, for all

p ∈ x(queue), x(now) ≤ p.deadline ≤ x(now) + b
Induction step

2. αk is a trajectory In this case the state of queue does not change,
and now increases at the same rate as time. We consider two cases:
i. queue is empty then the invariant is trivially true
ii. otherwise we consider the two inequalities separately:

p.deadline ≤ x(now) + b this results directly from the induction
hypothesis and that now increases monotonically

x(now) ≤ p.deadline by the stopping clause, the predicate

∃p : Packet p ∈ queue ∧ (now = p . d e a d l i n e )

cannot be true except in αk .lstate.
Therefore for all states x but the last in αk , for all packets p in
x(queue) we have: x(now) < p.deadline
For αk .lstate there may be some packet p such that
x(now) = p.deadline
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TIOA Behavior Ex. 4.11: Time-Bounded Channel (6/6)

In the timedChannel automaton, if instead of specifying the
trajectory as:

stop when
∃p : Packet p ∈ queue ∧ ( now = p . d e a d l i n e )

e v o l v e
d ( now ) = 1

we had specified it as:

stop when
queue 6= ∅ ∧ ( now = head ( queue ) . d e a d l i n e )

e v o l v e
d ( now ) = 1

we would have had some more work to prove the invariant

The “low level” of TIOA is a mixed blessing:
I On one hand, it forces us to consider every detail, making it hard to

“prove” something that is not true
I On the other hand, proving even an “obvious assertion” requires a lot

of work
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Composition of TIOA: Introduction

Allows an automaton representing a complex system to be
constructed by composing automata representing individual
system components
The composed automaton is built by matching:

I each output action of the component automata
I with input actions with the same name in different component

automata

When any component automaton performs a discrete step
involving an action a, so do all component automata that have a
as an external action

I I.e. automata in a composed automaton synchronize on external
actions with the same name
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Composition of TIOA: Definition

Compatible Automata TIOA A1 and A2 are compatible if:

1. X1 ∩ X2 = ∅ , i.e. their (internal) variables are disjoint
2. H1 ∩ A2 = H2 ∩ A1 = ∅, i.e. the internal actions of one TA is

disjoint from the actions of the other TA
3. O1 ∩ O2 = ∅ , i.e. their output actions are disjoint

Composition If A1 and A2 are compatible then their composition A1||A2

is defined to be the TA A = (X ,Q,×, I,O,H,D, T ) where:

X = X1 ∪ X2

Q = {x ∈ val(X )|xdXi ∈ Qi , i ∈ {1, 2}}, i.e. Q = Q1 × Q2

Θ = {x ∈ Q|xdXi ∈ Θi , i ∈ {1, 2}}, i.e. Θ = Θ1 ×Θ2

O = O1 ∪ O2, I = (I1 ∪ I2)− O and H = H1 ∪ H2

For each x , x ′ ∈ Q and each a ∈ A, x
a−→A x ′ iff for i ∈ {1, 2}

either (1) a ∈ Ai and xdXi
a−→Ai

x ′dXi ,
or (2) a 6∈ Ai and xdXi = x ′dXi

T ⊆ trajs(Q) is given by τ ∈ T ⇔ τ ↓ Xi ∈ Ti , i ∈ 1, 2
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Composition: Fundamental Properties

Composition The composition of TIOAs is a TIOA

Theorem 7.2 If A1 and A2 are TIOAs, then A1||A2 is a TIOA

Executions the execution fragments of a composition of TIOA project to
give execution fragments of the component automata.

Lemma 5.2 Let A = A1||A2 and let α be an execution fragment of A.
Then αd(A1,X1) and αd(A2,X2) are execution fragments of A1 and
A2, respectively.

Traces satisfy the following projection and pasting result:

Theorem 7.3 Let A = A1||A2. Then tracesA is exacty the set of
(E , ∅)-sequences whose restrictions to A1 and A2 are traces of A1

and A2, respectively. That is,

tracesA = {β|β is an (E , ∅)-sequence and βd(Ei , ∅) ∈ tracesAi , i ∈ {1, 2}}
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Composition Ex. 5.5: Periodic Process w/ Timeouts (1/8)

Notation To avoid name clashes, when necessary, we refer to an internal
variable v of TA A in the composite TA as A.v

Let C be the composition of three automata from examples 4.1, 4.2, 4.4

C = PeriodicSend || TimedChannel || Timeout

where M = {m1, . . . , mn } and b + PeriodicSend.u < Timeout.u

If b < u1, where u1 = PeriodicSend.u, the following sequence is a trace of C:

α = u1 send(m1) b receive(m1) u1-b send(m2) b receive(m2) u1-b . . .

where t denotes the trace with domain [0, t] and as range the set
consisting of the function with the empty domain
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Composition Ex. 5.5: Periodic Process w/ Timeouts (2/8)

Invariant 1 In any reachable state x of C, x(suspected) = false

Given that suspected is set to true upon occurrence of a timeout action, we
will prove the following invariant:

Invariant 2 In any reachable state x of C,

1. if x(queue) is not empty then there is a packet p such that
p ∈ x(queue) and p. deadline − x(now) < u2 − x(Timeout.clock)

2. if x(queue) is empty then
u1 − x(PeriodicSend.clock) + b < u2 − x(Timeout.clock)

where u1 = PeriodicSend.u and u2 = Timeout.u

which states that the variable Timeout.clock never reaches the point at
which a timeout action occurs:

1. ensures that if there is any message in transit it will be delivered
before there is a timeout

2. ensures that if there is no message in transit, a send action will occcur
early enough, so that no timeout will occur
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Composition Ex. 5.5: Periodic Process w/ Timeouts (3/8)

Invariant 2 In any reachable state x of C,

1. if x(queue) is not empty then there is a packet p such that
p ∈ x(queue) and p. deadline − x(now) < u2 − x(Timeout.clock)

2. if x(queue) is empty then
u1 − x(PeriodicSend.clock) + b < u2 − x(Timeout.clock)

where u1 = PeriodicSend.u and u2 = Timeout.u

To prove this invariant we will follow the same approach as in the proof of
invariant in Example 4.11

I.e., we’ll use induction on the number of elementary execution
fragments, i.e.

I either a closed trajectory
I or a discrete action surrounded by point trajectories
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Composition Ex. 5.5: Periodic Process w/ Timeouts (4/8)

Invariant 2 In any reachable state x of C,

1. if x(queue) is not empty then there is a packet p such that
p ∈ x(queue) and p. deadline − x(now) < u2 − x(Timeout.clock)

2. if x(queue) is empty then
u1 − x(PeriodicSend.clock) + b < u2 − x(Timeout.clock)

where u1 = PeriodicSend.u and u2 = Timeout.u

Base case, k = 1 In this case, α0 must be a trajectory, and throughout
this trajectory we have:

x ( queue ) = {}
x ( P e r i o d i c S e n d . c l o c k ) = x ( Timeout . c l o c k )

Given that u1 + b < u2, it follows that
u1 − x(PeriodicSend.clock) + b < u2 − x(Timeout.clock)

Pedro F. Souto (FEUP) Timed I/O Automata 50 / 64



Timed I/O Automata Composition of TIOA

Composition Ex. 5.5: Periodic Process w/ Timeouts (5/8)

Invariant 2 In any reachable state x of C,

1. if x(queue) is not empty then there is a packet p such that
p ∈ x(queue) and p. deadline − x(now) < u2 − x(Timeout.clock)

2. if x(queue) is empty then
u1 − x(PeriodicSend.clock) + b < u2 − x(Timeout.clock)

where u1 = PeriodicSend.u and u2 = Timeout.u

Induction step We consider two cases:

αk−1.lstate(queue) = {}
αk−1.lstate(queue) 6= {}
and for each of these two cases we need to consider the two possible
types of execution fragments:

either a closed trajectory
or a discrete action surrounded by point trajectories
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Composition Ex. 5.5: Periodic Process w/ Timeouts (6/8)

Induction step: αk−1.lstate(queue) = {} By the inductive hypothesis:
u1 − x(PeriodicSend.clock) + b < u2 − x(Timeout.clock)

αk is a closed trajectory whose initial state satisfies this inequality.
Given that the derivatives of both PeriodicSend. clock and Timeout.clock

are 1, it holds true for all states in αk

αk is an action surrounded by point trajectories In this case the only
possible action is a send(m). As a result, for x = αk .lstate we have:

x ( queue ) = { [m, x ( now)+b ]}

Thus p. deadline − x(now) = b for this packet. Given that time does not
advance in αk , and that u1 − x(PeriodicSend.clock) ≥ 0,
from the induction hypothesis it follows that

p. deadline−x(now) < u2 − x(Timeout.clock)

is satisfied by the only packet in the queue at x = αk .lstate
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Composition Ex. 5.5: Periodic Process w/ Timeouts (7/8)

Induction step: αk−1.lstate(queue) 6= {} Thus, by the inductive
hypothesis at αk .fstate there is a packet p ∈ x(queue) such that

p. deadline − x(now) < u2 − x(Timeout.clock)

αk is a closed trajectory then given that the derivatives of both now and
Timeout.clock are 1, the inequality above holds true in all states of αk

for that packet
αk is an action surrounded by point trajectories In this case the action

can be either

send(m) in this case, given that the time does not advance, the
inequality will continue to hold true for that packet at x = αk .lstate

receive(m) in this case we need to consider two cases, either the
queue becomes empty or it does not.
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Composition Ex. 5.5: Periodic Process w/ Timeouts (8/8)

Induction step: αk−1.lstate(queue) 6= {} Thus, by the inductive
hypothesis at αk .fstate there is a packet p ∈ x(queue) such that

p. deadline − x(now) < u2 − x(Timeout.clock)

αk is receive(m) surrounded by point trajectories Either:

queue becomes empty From the parameter assumptions, we have:
u1 + b < u2. Furthermore, at x = αk .lstate, x(Timeout.clock) = 0,
and for all states x we have and x(PeriodicSend. clock) >= 0, thus it
follows that at x = αk .lstate:

u1 − x(PeriodicSend.clock) + b < u2 − x(Timeout.clock)

otherwise in this case from invariant in Example 4.11 we have that
for all packets in queue and all sates:: x(now) ≤ p.deadline ≤ x(now)+b

Thus, p. dealine − x(now) ≤ b

From, the parameters assumption, and given that u1 ≥ 0 it follows
that: p. dealine − x(now) ≤ b ≤ u1 + b < u2

Finally, for x = αk .lstate given that x(Timeout.clock) = 0 it follows that
p. deadline − x(now) < u2 − x(Timeout.clock)
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Timed I/O Automata with Bounds: Rationale

TIOA with bounds are a new class of TIOA that extends TIOA with:

Tasks which are sets of locally controlled actions
Bounds which impose constraints on the time when an action may be

performed

This class makes it easier to present many results on the partially
synchronous model that assume that there are bounds (both lower
and upper) on the time processes take to perform a step of an
algorithm

We’ll restrict our attention to a class of automata where every action:

1. either is enabled/disabled throughout an entire trajectory
2. or becomes enabled once during a trajectory and remains so until the

end of that trajectory

A trajectory T that satisfies this property wrt to a set of actions C is
said to be well-formed wrt C
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Time I/O Automata with Bounds: Definition
A TIOA with bounds A = (X ,Q,Θ, I ,O,H,D, T ,C , l , u) consists of:

(X ,Q,Θ, I ,O,H,D, T ) a TIOA

C ⊆ I ∪ O ∪ H i.e. a set of actions

C is called a task
T is well-formed wrt C

l a lower bound l ∈ R≥0

u an upper bound l ∈ R≥0 ∪ {∞}, with l ≤ u

Lower and upper bounds are used to specify how much time is allowed
to pass between the enabling and the performance of an action:

Lower bound l is the minimum time that an action must be enabled
before it is performed

Upper bound u is the maximum time that an action may be enabled
without being performed:

I i.e. it must either be performed or become disabled after u time
units
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TIOA with Bounds Example: Timeout Process (1/2)

P2 waits for the reception of a message from another process P1

If no such message arrives within a certain amount of time, P2

performs a timeout action.

P2 measures the elapsed time by counting a fixed number k ≥ 1 of its
own steps, which are supposed to have known lower and upper
bounds `1, `2, 0 < `1 ≤ `2 <∞:

I In Example 4.4 above, we used a local clock

Its timeout action is performed at most time ` after its count reaches
0.

Note that the definition of the TIOA with bounds assumes the existence
of only one task per TIOA, but it can be easily generalized to TIOA
with an arbitrary number of tasks
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TIOA with Bounds Example: Timeout Process (2/2)

automaton Timeout ( k : I n t , M: Type )
s i g n a t u r e

i n p u t r e c e i v e (m: M)
i n t e r n a l decrement
output t i m e o u t

s t a t e s
s u s p e c t e d : Bool := f a l s e ,
c o u n t e r : I n t := k ,
i n i t i a l l y k ≥ 1

t r a n s i t i o n s
i n p u t r e c e i v e (m, j , i )

e f f
c o u n t e r := k
s u s p e c t e d := f a l s e

output t i m e o u t
pre

s u s p e c t e d = f a l s e ∧ c o u n t e r = 0
e f f

s u s p e c t e d = t r u e

i n t e r n a l decrement
pre

c o u n t e r 6= 0
e f f

c o u n t e r := c o u n t e r − 1
t a s k s

d e c r = { decrement } ;
s u s p = { t i m e o u t }

bounds
d e c r = [ `1 ,`2 ] ;
s u s p = [ 0 , ` ]
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Time I/O Automata with Bounds: The Extend Operation
The Extend operation transforms a TIOA A = (B,C , l , u) with bounds to
another TIOA A′ = (X ′,Q ′,Θ′, I ,O,H,D′, T ′ that incorporates the
bounds in addition to the timing constraints already present in B.
Basically:

X ′ = X ∪ {now , first, last}, where

now is an analog variable such that type(now) = R
first and last are discrete variables where type(first) = R and

type(last) = R ∪ {∞}
Variables now , first, last are new variables that do not appear in X

Q ′ = Q × val(now , first, last)

Θ′ is obtained from Θ by assigning the following valuations to x ∈ Θ:

x(now) = 0

x(first) =

{
l if C is enabled in x
0 otherwise

x(last) =

{
u if C is enabled in x
∞ otherwise
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Time I/O Automata with Bounds: The Extend Operation

D′ is obtained from D by adding the predicate x(first) ≤ x(now) for
transitions x

a−→ x ′, when a ∈ C

T ′ is obtained from T by adding the following trajectory:

stop when now ≤ l a s t
e v o l v e d ( now ) = 1

Note that now , first and last all represent absolute time:

A full formal definition requires that the values of first and last be
updated whenever actions in C are enabled, disabled or performed

I I.e. the “definition” above omitted details on how D′ and T ′ are
obtained from D and T
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TIOA with Bounds and the Extend Operation

Theorem 5.18 Suppose that A is a TIOA with bounds. Then

tracesExtend(A) ⊆ tracesA

I.e. it is possible to implement a TIOA with bounds with a TIOA without
bounds.

Note the definition of the Extend operation assumes the existence of only
one task per TIOA, but, like the definition of the TIOA with bounds, it
can be easily generalized to TIOA with an arbitrary number of tasks
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