

TituloDistributed Computing

José Orlando Pereira

Grupo de Sistemas Distribuídos
Departamento de Informática

Universidade do Minho

2010/2011

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Goal 2: Why is it correct?

With synchronous
rounds, local state
easily reflects global
state

What about in an
asynchronous system?

delta

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Distributed deadlock

Remote invocation

All processes request and reply to
invocations

A mutex is held while invoking remotely or
handling remote invocations

Distributed deadlock possible when multiple
processes invoke each other

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Distributed deadlock

Deadlock-free run:

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Distributed deadlock

Distributed deadlock:

blocked waiting for process 3...

blocked waiting for process 1...

blocked waiting for process 2...

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Distributed deadlock

Instant observation is impossible:

blocked waiting for process 3...

blocked waiting for process 1...

blocked waiting for process 2...

31
2

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Distributed deadlock

31 31
2

31
2

Deadlock detection with a “wait for” graph:

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Distributed deadlock

A more complex deadlock-free run:

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Distributed deadlock

23 23None

A deadlock-free WFG:

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Distributed deadlock

12 12
3

12
3

A WFG with a ghost deadlock:

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Global Property Evaluation

All these problems are instances of the
Global Property Evaluation (GPE) problem

Can it be solved in an asynchronous
system?

Methods that can be used? Relative cost?

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Passive monitor process

Report all events to monitor:

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

First try: Synchronous system

Global clock, δ upper bound on message
delay

Tag events with real time

Consider events only up to t-δ

With synchronous rounds, this means using
messages from the previous round!

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

First try: Synchronous system

tt-δ

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Clock properties

What properties of a real-time clock make
this approach correct?

RC(i) the time at which i happened

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Definition: Causality

Events i and j are causally related (i→j) iff:

i precedes j in some process p

for some m, i=send(m) and j=receive(m)

for some k, i→k and k→j (transitivity)

Events i and j are concurrent (i||j) iff neither
i→j or j→i

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Causality

causally precedes

concurrent

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Clock properties

If i→j then RC(i)<RC(j)

For some event j:

When we are sure that there is no unknown i
such that RC(i)<RC(j)

Then there is no i such that i→j

Can we build a logical clock with the same
property?

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Second try: Logical clock

Tag events as follows:

Local events: increment counter

Send events: increment and then tag with
counter

Receive events: update local counter to
maximum and then increment

Use FIFO channels

Consider events only up to the minimum of
maximum tags

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Second try: Logical clock

1

1

1 2 34 5 6

2 5 6 7

6 8

8

9 10

9

9

t

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Scalar clocks

Synchronous system (RC):

Delay δ to consistency

Asynchronous system (LC):

Possible unbounded delay to consistency

Blocks if some process stops sending messages

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Third try: Vector clock

Tag events with a vector as follows:

Local event at i: increment counter i

Send event at i: increment counter i and tag with
vector

Receive event at i: update each counter to
maximum and increment counter i

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Third try: Vector clock

[1,0,0] [2,1,0]

[0,0,1] [1,0,4]

[3,1,4]

[1,0,3]
[1,0,2]

[4,1,4] [5,1,4]

[1,0,5] [1,0,6]

[6,1,4]

[6,1,7]

[0,1,0] [1,2,5] [5,3,5] [5,4,5]

[7,1,4]

[6,1,8]

[5,2,6]

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Causal delivery

The monitor delivers events as follows:

With local vector l[...]

For some r[...] from i

Wait until:
l[i]+1=r[i]

For all j≠i: r[i]≤l[i]

The monitor is always in a consistent cut

Blocking can be avoided by forwarding past
messages

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

No reporting to monitor process

Reporting all events to a monitor causes a
large overhead

Can a query be issued at some point in
time?

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Fourth try: No reporting, synchronous

Monitor broadcasts tss in the future

At tss, each process:

Records state

Sends messages to all others

Starts recording messages until receiving a
message with RC > tss

After stopping, sends all data to monitor

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Fourth try: No reporting, synchronous

tssAt tss!

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Fifth try: No reporting, logical clock

1

1

1 2 34 5 6

2 5 6 7

6 8

8

10 11

9

10

9

9

1110

At 8!

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Chandy and Lamport

Send a “Snapshot” message to some
process

Upon receiving for the first time:

Records state

Relays “Snapshot” to all others

Starts recording on each channel until receiving
“Snapshot”

Send all data to monitor

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Chandy and Lamport

1

1

1 2 34 5 6

2 5 6 7

6 8

8

10 11

9

11

9

9

1110

Snapshot!

10

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Global Property Evaluation

GPE requires no gaps in observed history,
regarding causality

What properties can be evaluated?

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Cuts and consistency

A cut is the union of prefixes of process
history

A consistent cut includes all causal
predecessors of all events in the cut

Intuitive methods:

If a cut is an instant, there are no messages from
the future

In the diagram, no arrows enter the cut

All events in the frontier are concurrent

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Consistent cuts

C' C

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Consistent global states

1

1

2 3

2 4
Σ

000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Consistent global states

Σ
000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412

Includes the true
sequence of states in
the system

An observer within the
system cannot deny
any of the possible
paths

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Stable predicates

Once true, always true

Examples:

Deadlock detection

Termination

Loss of token

Garbage collection

Can be evaluated periodically on snapshots

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Stable predicates

1

1

2 3

2 4
Σ

000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Non-stable predicates

True in a subset of
observable states

Some are possibly true:
an observer in the
system cannot deny
having been true

The predicate does not
hold on some paths

Σ
000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Non-stable predicates

True in a subset of
observable states

Some are definitely true:
an observer in the
system is sure of having
been true

The predicate holds on
all possible paths

Σ
000

Σ
010

Σ
110

Σ
100

Σ
210

Σ
112

Σ
212

Σ
213

Σ
412

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Non-stable predicates

Examples:

Total size of queues in the system

Number of messages in transit

Amount of memory used

Can be detected by full monitoring of all
(relevant) events

Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Conclusion

Second goal achieved:

Causality

Global predicate evaluation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

