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Goal 2: Why is it correct?

With synchronous 
rounds, local state 
easily reflects global 
state

What about in an 
asynchronous system?

delta
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Example: Distributed deadlock

Remote invocation

All processes request and reply to 
invocations

A mutex is held while invoking remotely or 
handling remote invocations

Distributed deadlock possible when multiple 
processes invoke each other
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Example: Distributed deadlock

Deadlock-free run:



Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Distributed deadlock

Distributed deadlock:

blocked waiting for process 3...

blocked waiting for process 1...

blocked waiting for process 2...
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Example: Distributed deadlock

Instant observation is impossible:

blocked waiting for process 3...

blocked waiting for process 1...

blocked waiting for process 2...
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2



Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Example: Distributed deadlock
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Deadlock detection with a “wait for” graph:
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Example: Distributed deadlock

A more complex deadlock-free run:
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Example: Distributed deadlock
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A deadlock-free WFG:
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Example: Distributed deadlock
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A WFG with a ghost deadlock:
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Global Property Evaluation

All these problems are instances of the 
Global Property Evaluation (GPE) problem

Can it be solved in an asynchronous 
system?

Methods that can be used? Relative cost?
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Passive monitor process

Report all events to monitor:
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First try: Synchronous system

Global clock, δ upper bound on message 
delay

Tag events with real time

Consider events only up to t-δ

With synchronous rounds, this means using 
messages from the previous round!
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First try: Synchronous system

tt-δ
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Clock properties

What properties of a real-time clock make 
this approach correct?

RC(i) the time at which i happened
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Definition: Causality

Events i and j are causally related (i→j) iff:

i precedes j in some process p

for some m, i=send(m) and j=receive(m)

for some k, i→k and k→j (transitivity)

Events i and j are concurrent (i||j) iff neither 
i→j or j→i
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Causality

causally precedes

concurrent
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Clock properties

If i→j then RC(i)<RC(j)

For some event j:

When we are sure that there is no unknown i 
such that RC(i)<RC(j)

Then there is no i such that i→j

Can we build a logical clock with the same 
property?
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Second try: Logical clock

Tag events as follows:

Local events: increment counter

Send events: increment and then tag with 
counter

Receive events: update local counter to 
maximum and then increment

Use FIFO channels

Consider events only up to the minimum of 
maximum tags
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Second try: Logical clock
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Scalar clocks

Synchronous system (RC):

Delay δ to consistency

Asynchronous system (LC):

Possible unbounded delay to consistency

Blocks if some process stops sending messages
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Third try: Vector clock

Tag events with a vector as follows:

Local event at i: increment counter i

Send event at i: increment counter i and tag with 
vector

Receive event at i: update each counter to 
maximum and increment counter i
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Third try: Vector clock
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Causal delivery

The monitor delivers events as follows:

With local vector l[...]

For some r[...] from i

Wait until:
l[i]+1=r[i]

For all j≠i: r[i]≤l[i]

The monitor is always in a consistent cut

Blocking can be avoided by forwarding past 
messages
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No reporting to monitor process

Reporting all events to a monitor causes a 
large overhead

Can a query be issued at some point in 
time?
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Fourth try: No reporting, synchronous

Monitor broadcasts tss in the future

At tss, each process:

Records state

Sends messages to all others

Starts recording messages until receiving a 
message with RC > tss

After stopping, sends all data to monitor
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Fourth try: No reporting, synchronous

tssAt tss!



Distributed Computing Global Predicates

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Fifth try: No reporting, logical clock
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Chandy and Lamport

Send a “Snapshot” message to some 
process

Upon receiving for the first time:

Records state

Relays “Snapshot” to all others

Starts recording on each channel until receiving 
“Snapshot”

Send all data to monitor
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Chandy and Lamport
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Global Property Evaluation

GPE requires no gaps in observed history, 
regarding causality

What properties can be evaluated?
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Cuts and consistency

A cut is the union of prefixes of process 
history

A consistent cut includes all causal 
predecessors of all events in the cut

Intuitive methods:

If a cut is an instant, there are no messages from 
the future

In the diagram, no arrows enter the cut

All events in the frontier are concurrent
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Consistent cuts

C' C
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Consistent global states
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Consistent global states
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Includes the true 
sequence of states in 
the system

An observer within the 
system cannot deny 
any of the possible 
paths
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Stable predicates

Once true, always true

Examples:

Deadlock detection

Termination

Loss of token

Garbage collection

Can be evaluated periodically on snapshots
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Stable predicates
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Non-stable predicates

True in a subset of 
observable states

Some are possibly true: 
an observer in the 
system cannot deny 
having been true

The predicate does not 
hold on some paths
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Non-stable predicates

True in a subset of 
observable states

Some are definitely true: 
an observer in the 
system is sure of having 
been true

The predicate holds on 
all possible paths
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Non-stable predicates

Examples:

Total size of queues in the system

Number of messages in transit

Amount of memory used

Can be detected by full monitoring of all 
(relevant) events
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Conclusion

Second goal achieved:

Causality

Global predicate evaluation
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