Distributed Computing

José Orlando Pereira

Grupo de Sistemas Distribuidos
Departamento de Informatica
Universidade do Minho

2010/2011

Distributed Computing I/O Automata

Specifications and automata

@ Specification is a set of allowable behaviors:

r \
vent:=3 vent:=2 vent:=1 vent:=0 END
S=< \/ \/ \/ \f >

~ timeout timeout timeout ring

@ An automaton provides a compact and
practical representation

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

/O Automata

@ An |/O automaton A has five components:

* sig(A), a triplet S of disjoint sets of actions:
* in(S), the input actions
* out(S), the output actions
* int(S), the internal actions

» states(A), a (possibly infinite) set of states
» start(A), a non-empty subset of states(A)

» trans(A), a subset of
states(A) x acts(sig(A)) x states(A)

» tasks(A), a partition of local(sig(A))

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Transitions

@ A transition is enabled in state s if there is
some T1,s' such that (s,m,s') U trans(A)

@ |Input transitions are required to be enabled
In all reachable states of A

@ A state in which only input transitions are
enabled is said to be quiescent

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Signature and State

® |nput:
s none e States:
e Internal » vent, integer,
S initially 3
> Timeout » END, boolean,
@ QOutput: initially false
» Ring

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Transitions

@ Timeout: @ Ring:
» Pre-condition: » Pre-condition:
» 7"END and vcnt>0 * 7"END and vent =0
» Effect: » Effect:
s vent :=vent - 1 * END :=True

This is an equation,
not an attribution!

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Effects

» Effect equation:
» vcnt ;= vent - 1
@ Read this as:

» “vent-after = vent-before — 1 and the state
otherwise unchanged”

@ Could be written as:

» vcnt-after + 1 = vent-before
» vcnt-before - vent-after = 1

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Safe behaviors

@ Enumerating safe behaviors:

» Start with a behavior for each state s in start(A)

» For each transition (s,a,s') in trans(A) enabled for
some state s at the end of any known safe
behavior:

» Create a behavior with (a,s') appended
» Repeat (possibly, for ever...)

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Safety properties

@ Proof of safety properties:
» Invariant proof by induction
* Strategies:

» Strengthen the invariant
» |nclude trace in state

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Invariants

@ Goal: Prove that always vcnt < 4 (safety!).

@ Proof by induction:

*» Base step: True for all initial states?
* 3<4: Yes!
» Induction step: True for any next step?

* Timeout transition:

— vent-after = vent-before - 1

- vent-before < 4
vcent-after+1 < 4
vent-after < 3 < 4: Done

» Ring transition:
- always vcnt-after = vent-before = 0
- 0<4: Done

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Reliable channel

Send(m Receive(m)
@ Reliable channel:
» Unordered

> FIFO

Why Receive(m) and
not m .= Receive()?

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Reliable channel

@ State: * Receive(m), mLIM:
* transit, bag of M, » Pre-condition:
initially {} > m Iin transit
* Send(m), mLIM: » Effect:
» Pre-condition: * transit := transit - {m}
* True
» Effect:

e transit :=transit + {m}

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

of a channel

receive(.
{m1,m3}
0O » {m1} {m1} <
{m1,m2} {m2,m3} — » ...
send(. im1.m2,m3) <
{m1,m2,m3,m4}

@ Concurrency is modeled by alternative
enabled transitions:

» Sender and receiver
» Within the channel (reordering)

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Liveness and fairness

recelve

{m2} {m1 m2} —
{ » {m1} {m1} im1.ms} < o {m1, mn%
{m1,m2} {m2,m3} ——» -

send(...) {m1,m2,m3}

{m1,m2,m3 m4}
o > {m1m2,..., miﬁ%}

@ Some behaviors do not satisfy liveness:
» If mis sent, eventually m is received

@ Some transitions don't get a fair chance to
run:

» receive(m1) and receive(m®)

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Fairness

@ Partition transitions in tasks:

» Tasks:
» For all m: {receive(m)}

@ Assume that no task can be forever
prevented from taking a step

@ \What about a FIFO reliable channel?

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Liveness and fairness

receive(...) {}
g (v
{ » {m1} \
{m1,m2} sm2m3 e

send(...) {m1 ,m2,m3}< <
{m1,m2,m3,m4}

@ FIFO order excludes a number of behaviors

» Only executions with a finite number of
receive(m) steps are unfair

@ Fairness ensured by a single task:

» {For all m: receive(m)}

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: FIFO channel

@ State: * Receive(m), mLIM:
* transit, seq. of M, » Pre-condition:
initially <> » m=head(transit)
* Send(m), mLIM: » Effect:
s Pre-condition: * transit := tail(transit)
» True @ Tasks:
» Effect: » {For all m:
» transit :=transit+<m> receive(m);

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring

@ Rotating token algorithm:

@ Mutual exclusion?
@ Deadlock freedom?

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring

e State:

* nis the number of nodes
» token[0]=1
» token[i]=0, for 0<i<n
@ Move(i):
» Pre-condition:
* token[i]=1
* Effect:

» tokenli]:=0
» token[(i+1) mod n]:=1

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring

@ Mutual exclusion:

» There is at most one token in the ring (i.e. sum
of token[i]<1)

@ Proof by induction:

» Base step:
» Ytokenli]=1 trivially true
» |nduction step:
* Ytoken-before[i]l<10) token-after[i]<1

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring

@ No starvation:
» Eventually i gets the token at least k times
@ Proof with a progress function:

» Function from state to a well-founded set
» Helper actions decrease the value

e Other actions do not increase the value

» Helper actions are taken until goal is met

(i.e. enabled and in separate tasks)

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing
Progress function

I/O Automata

@ Define progress function f as:

» Target is non-negative integers

move(...)

> Value is ((k-1) xn +i-1) - length(trace)
» Example with n=3, k=2, and 1=3:

[1,0,00 —» [0,1,0] — 7 [0,0;,’I] [1,0,0]

[0,1,0] [0,0,1]
3

© 2007-2010 José Orlando Pereira

GSD/DI/U.Minho

Distributed Computing I/O Automata

Summary

@ |[/O Automata definition
» Safety specification
» Fairness specification
» Proof strategies for:

* |nvariants

» Trace properties
» Safety
* Liveness

» How to apply to large and complex
specifications?

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring with channels

@ Refine the specification to include channels:

@ Mutual exclusion?
@ Deadlock freedom?

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring with channels

@ Initially: » Effect:
* nis the number of » token[i]:=0
nodes o transit[i]:={1}
» token[0]=1 @ Receive:
* tokenli]=0, for O<i<n s Pre-condition:
» transit[i]={}, for all i s 1 in transit]i]
» Send: » Effect:

» token[(i+1)mod n]:=1
* transit[i]:={}

* Pre-condition:
* token[i]=1

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring with channels

@ Proof of mutual exclusion?

® Seems to be true. But...
@ >token[i]<1, with token=[1,0,0,...] and transit[0]={1}
» after receive,) token[i]=2!

@ Solution is to strengthen the invariant:

*» Prove by induction: token[i]+) elems(transit[i])<1

@ Then conclude) token[i]<1
(assuming that transit[i] not negative, easy to prove)

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Token ring with channels

"5 receive(...)

[1,00 _[000 ,[010] _[000 ,[001 _ [000 .,
[{h U] [543 [{h {0 [{h{13,4 [{h U] [{h {113

send(...)

@ One can observe valid executions of reliable
channels embedded in the ring

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Composition

@ Compatible automata:

» Internal actions do not overlap with any other
actions

» Qutput actions are disjoint

» No action is contained in infinitely many
automata

@ This allows:

» Several input actions to overlap

» Input actions to overlap with a single output
action

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Composition

@ A composition A with signature S from a set
of Al, with signature Si

@ The state of the composed automaton A is:
» state(A) = Il state(Ai)
» start(A) = I'l start(Ai)
@ The signature of S is as follows:
s out(S) = U out(Si)
s int(S) = U int(Si)
* in(S) = U in(Si) — out(S)
@ Transitions and tasks likewise

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: A process

@ State: * Receive(m), mLIM:
» token, integer, » Pre-condition:
initially O s true
* Send(m), mLIM: » Effect:
» Pre-condition: * token := 1
* token = 1
» Effect:
» token =0

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Example: Composite token ring

@ send(m) is an input to a channel
» overlaps with send(m) in a process
@ receive(m) is an input to a process

» overlaps with receive(m) in a channel

receive(...)

[1,0,0] [0.0.0] 0,1,0] 0.00] 001 [000p .,
Wo U {}]H@ GO T [

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Compositional reasoning

@ A necessary condition for mutual exclusion in
a ring is that the token is not duplicated while
In transit

@ Consider the following trace property:

» For each receive(m) (i.e. lock), there is some
corresponding send(m) (i.e. unlock)

@ This property is true for each individual
reliable channel

@ Therefore it is true for the composed token
ring

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Which level of abstraction?

token[0]:=0 token[1]:=0
token[0]:=1 token[1]:=1 token[2]:=1
Move Move Move

2, token[0]:=0 transit[0]:={} token[1]:=0 transit[1]:={}
token[0]:=1 transit[0]:={1} token[1]:=1 transit[1]:={1} token[2]:=1

VA VARV AV,

Send Receive Send Receive Send

@ Observations of the same system at different
levels of abstraction

» How to relate them?
» Variable token is not observing the same thing!

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Simulation

* Map actions

@ Map states:

> f(detailed state) =
abstract state S S'

@ |nitial states map \/

@ Every detailed
sequence a maps
to an abstract sequence a

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Simulation

g
atoken[0]:=0 atoken[1]:=0
atoken[0]:=1 atoken[1]:=1 atoken[2]:=1

dtoken[0]:=0 transit[0]:={} dtoken[1]:=0 transit[1]:={}
dtoken[0]:=1 transit[0]:={1} dtoken[1]:=1 transit[1]:={1} dtoken[2]:=1

N VS

Send Receive Send Receive Send

» Map <Receive> to <Move>, <Send> to <>.
o f: atoken[i] = dtokenli] + transit[i]

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Simulation

 |If all detailed behaviors can be mapped to
abstract behaviors, then:

» A simulation proof exists
» But may require an intermediate specification

@ Simulation preserves safety properties

@ Simulation does not necessarily preserve
liveness properties:

""""""
",
1y,
0y
u
""""""""""
,,,,,,,,,,,,
",
1,
",
1,
",
",
/]

\/\/\/\/

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Refinement

@ The goal is refinement of b
specifications “"“T“{\
’ GOIng Up: Token ring
» Understand similarities \
between different problems
. _“ Token ring with
@ GOlng down: reliable channels
» Closer to the | f
implementation (i.e. code) e

"

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

Distributed Computing I/O Automata

Conclusion

* First goal achieved:

» 1/O Automata
» Safety and liveness proofs
» Composition

» Refinement

@ How do we make sure that algorithms are
correct?

@ \Why are algorithms correct?

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

