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Distributed Computing I/O Automata

Specifications and automata

@ Specification is a set of allowable behaviors:

r \
vent:=3 vent:=2 vent:=1 vent:=0 END
S=< \/ \/ \/ \f >

~ timeout timeout timeout ring

@ An automaton provides a compact and
practical representation
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Distributed Computing I/O Automata

/O Automata

@ An |/O automaton A has five components:

* sig(A), a triplet S of disjoint sets of actions:
* in(S), the input actions
* out(S), the output actions
* int(S), the internal actions

» states(A), a (possibly infinite) set of states
» start(A), a non-empty subset of states(A)

» trans(A), a subset of
states(A) x acts(sig(A)) x states(A)

» tasks(A), a partition of local(sig(A))
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Transitions

@ A transition is enabled in state s if there is
some T1,s' such that (s,m,s') U trans(A)

@ |Input transitions are required to be enabled
In all reachable states of A

@ A state in which only input transitions are
enabled is said to be quiescent
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Signature and State

® |nput:
s none e States:
e Internal » vent, integer,
S initially 3
> Timeout » END, boolean,
@ QOutput: initially false
» Ring
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Transitions

@ Timeout: @ Ring:
» Pre-condition: » Pre-condition:
» 7"END and vcnt>0 * 7"END and vent =0
» Effect: » Effect:
s vent :=vent - 1 * END :=True

This is an equation,
not an attribution!
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Effects

» Effect equation:
» vcnt ;= vent - 1
@ Read this as:

» “vent-after = vent-before — 1 and the state
otherwise unchanged”

@ Could be written as:

» vcnt-after + 1 = vent-before
» vcnt-before - vent-after = 1

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho



Distributed Computing I/O Automata

Safe behaviors

@ Enumerating safe behaviors:

» Start with a behavior for each state s in start(A)

» For each transition (s,a,s') in trans(A) enabled for
some state s at the end of any known safe
behavior:

» Create a behavior with (a,s') appended
» Repeat (possibly, for ever...)
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Safety properties

@ Proof of safety properties:
» Invariant proof by induction
* Strategies:

» Strengthen the invariant
» |nclude trace in state
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Invariants

@ Goal: Prove that always vcnt < 4 (safety!).

@ Proof by induction:

*» Base step: True for all initial states?
* 3<4: Yes!
» Induction step: True for any next step?

* Timeout transition:

— vent-after = vent-before - 1

- vent-before < 4
vcent-after+1 < 4
vent-after < 3 < 4: Done

» Ring transition:
- always vcnt-after = vent-before = 0
- 0<4: Done
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Example: Reliable channel

Send(m Receive(m)
@ Reliable channel:
» Unordered

> FIFO

Why Receive(m) and
not m .= Receive()?
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Example: Reliable channel

@ State: * Receive(m), mLIM:
* transit, bag of M, » Pre-condition:
initially {} > m Iin transit
* Send(m), mLIM: » Effect:
» Pre-condition: * transit := transit - {m}
* True
» Effect:

e transit :=transit + {m}
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of a channel

receive(.
{m1,m3}
0O » {m1} {m1} <
{m1,m2} {m2,m3} — » ...
send(. im1.m2,m3) <
{m1,m2,m3,m4}

@ Concurrency is modeled by alternative
enabled transitions:

» Sender and receiver
» Within the channel (reordering)
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Liveness and fairness

recelve

{m2} {m1 m2} —
{ » {m1} {m1} im1.ms} < o {m1, mn%
{m1,m2} {m2,m3} ——» -

send(...) {m1,m2,m3}

{m1,m2,m3 m4}
o > {m1m2,..., miﬁ%}

@ Some behaviors do not satisfy liveness:
» If mis sent, eventually m is received

@ Some transitions don't get a fair chance to
run:

» receive(m1) and receive(m®)
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Fairness

@ Partition transitions in tasks:

» Tasks:
» For all m: {receive(m)}

@ Assume that no task can be forever
prevented from taking a step

@ \What about a FIFO reliable channel?

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho



Distributed Computing I/O Automata

Liveness and fairness

receive(...) {}
g (v
{ » {m1} \
{m1,m2} sm2m3 e

send(...) {m1 ,m2,m3}< <
{m1,m2,m3,m4}

@ FIFO order excludes a number of behaviors

» Only executions with a finite number of
receive(m) steps are unfair

@ Fairness ensured by a single task:

» {For all m: receive(m)}
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Example: FIFO channel

@ State: * Receive(m), mLIM:
* transit, seq. of M, » Pre-condition:
initially <> » m=head(transit)
* Send(m), mLIM: » Effect:
s Pre-condition: * transit := tail(transit)
» True @ Tasks:
» Effect: » {For all m:
» transit :=transit+<m> receive(m);
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Example: Token ring

@ Rotating token algorithm:

@ Mutual exclusion?
@ Deadlock freedom?
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Example: Token ring

e State:

* nis the number of nodes
» token[0]=1
» token[i]=0, for 0<i<n
@ Move(i):
» Pre-condition:
* token[i]=1
* Effect:

» tokenli]:=0
» token[(i+1) mod n]:=1
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Example: Token ring

@ Mutual exclusion:

» There is at most one token in the ring (i.e. sum
of token[i]<1)

@ Proof by induction:

» Base step:
» Ytokenli]=1 trivially true
» |nduction step:
* Ytoken-before[i]l<10 ) token-after[i]<1
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Example: Token ring

@ No starvation:
» Eventually i gets the token at least k times
@ Proof with a progress function:

» Function from state to a well-founded set
» Helper actions decrease the value

e Other actions do not increase the value

» Helper actions are taken until goal is met

(i.e. enabled and in separate tasks)
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Distributed Computing
Progress function

I/O Automata

@ Define progress function f as:

» Target is non-negative integers

move(...)

> Value is ((k-1) xn +i-1) - length(trace)
» Example with n=3, k=2, and 1=3:

[1,0,00 —» [0,1,0] — 7 [0,0;,’I] [1,0,0]

[0,1,0] [0,0,1]
3
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Summary

@ |[/O Automata definition
» Safety specification
» Fairness specification
» Proof strategies for:

* |nvariants

» Trace properties
» Safety
* Liveness

» How to apply to large and complex
specifications?
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Example: Token ring with channels

@ Refine the specification to include channels:

@ Mutual exclusion?
@ Deadlock freedom?
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Example: Token ring with channels

@ Initially: » Effect:
* nis the number of » token[i]:=0
nodes o transit[i]:={1}
» token[0]=1 @ Receive:
* tokenli]=0, for O<i<n s Pre-condition:
» transit[i]={}, for all i s 1 in transit]i]
» Send: » Effect:

» token[(i+1)mod n]:=1
* transit[i]:={}

* Pre-condition:
* token[i]=1
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Example: Token ring with channels

@ Proof of mutual exclusion?

® Seems to be true. But...
@ >token[i]<1, with token=[1,0,0,...] and transit[0]={1}
» after receive, ) token[i]=2!

@ Solution is to strengthen the invariant:

*» Prove by induction: token[i]+) elems(transit[i])<1

@ Then conclude ) token[i]<1
(assuming that transit[i] not negative, easy to prove)
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Example: Token ring with channels

"5 receive(...)

[1,00  _[000 ,[010]  _[000 ,[001 _ [000 .,
[{h U] [543 [{h {0 [{h{13,4 [{h U] [{h {113

send(...)

@ One can observe valid executions of reliable
channels embedded in the ring
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Composition

@ Compatible automata:

» Internal actions do not overlap with any other
actions

» Qutput actions are disjoint

» No action is contained in infinitely many
automata

@ This allows:

» Several input actions to overlap

» Input actions to overlap with a single output
action
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Composition

@ A composition A with signature S from a set
of Al, with signature Si

@ The state of the composed automaton A is:
» state(A) = Il state(Ai)
» start(A) = I'l start(Ai)
@ The signature of S is as follows:
s out(S) = U out(Si)
s int(S) = U int(Si)
* in(S) = U in(Si) — out(S)
@ Transitions and tasks likewise
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Example: A process

@ State: * Receive(m), mLIM:
» token, integer, » Pre-condition:
initially O s true
* Send(m), mLIM: » Effect:
» Pre-condition: * token := 1
* token = 1
» Effect:
» token =0
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Example: Composite token ring

@ send(m) is an input to a channel
» overlaps with send(m) in a process
@ receive(m) is an input to a process

» overlaps with receive(m) in a channel

receive(...)

[1,0,0] [0.0.0] 0,1,0] 0.00] 001 [000p .,
Wo U {}]H@ GO T [
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Compositional reasoning

@ A necessary condition for mutual exclusion in
a ring is that the token is not duplicated while
In transit

@ Consider the following trace property:

» For each receive(m) (i.e. lock), there is some
corresponding send(m) (i.e. unlock)

@ This property is true for each individual
reliable channel

@ Therefore it is true for the composed token
ring
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Which level of abstraction?

token[0]:=0 token[1]:=0
token[0]:=1 token[1]:=1 token[2]:=1
Move Move Move

2, token[0]:=0 transit[0]:={} token[1]:=0 transit[1]:={}
token[0]:=1 transit[0]:={1} token[1]:=1 transit[1]:={1} token[2]:=1

VA VARV AV,

Send Receive Send Receive Send

@ Observations of the same system at different
levels of abstraction

» How to relate them?
» Variable token is not observing the same thing!
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Simulation

* Map actions

@ Map states:

> f(detailed state) =
abstract state S S'

@ |nitial states map \/

@ Every detailed
sequence a maps
to an abstract sequence a
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Simulation

g
atoken[0]:=0 atoken[1]:=0
atoken[0]:=1 atoken[1]:=1 atoken[2]:=1

dtoken[0]:=0  transit[0]:={} dtoken[1]:=0 transit[1]:={}
dtoken[0]:=1 transit[0]:={1} dtoken[1]:=1 transit[1]:={1} dtoken[2]:=1

N VS

Send Receive Send Receive Send

» Map <Receive> to <Move>, <Send> to <>.
o f: atoken[i] = dtokenli] + transit[i]

© 2007-2010 José Orlando Pereira GSD/DI/U.Minho



Distributed Computing I/O Automata

Simulation

 |If all detailed behaviors can be mapped to
abstract behaviors, then:

» A simulation proof exists
» But may require an intermediate specification

@ Simulation preserves safety properties

@ Simulation does not necessarily preserve
liveness properties:

""""""
",
1y,
0y
u
""""""""""
,,,,,,,,,,,,
",
1,
",
1,
",
",
/]

\/\/\/\/
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Refinement

@ The goal is refinement of b
specifications “"“T“{\
’ GOIng Up: Token ring
» Understand similarities \
between different problems
. _“ Token ring with
@ GOlng down: reliable channels
» Closer to the | f
implementation (i.e. code) e

"
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Conclusion

* First goal achieved:

» 1/O Automata
» Safety and liveness proofs
» Composition

» Refinement

@ How do we make sure that algorithms are
correct?

@ \Why are algorithms correct?
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