Each process starts with some value of a type;
Even though inputs can be arbitrary . . .
. . . all processes must output the same value;
Processes must agree on possible outputs for each pattern of inputs through a validity condition;
Easy to solve in a synchronous network with no failures;
We consider here link failures;
Motivation

- Consensus problems arise in many applications;
- Many examples:
 - agreement on commit or abort a distributed transaction;
 - agreement on estimate using readings from multiple sensors;
 - agreement on considering some process faulty;
Coordinated attack problem

- Several generals plan a coordinated attack;
- Each one may or not be ready to attack;
- Success depends on all attacking together;
- If only some attack, they will be destroyed;
- In that case none should attack;
- They should attack if possible;
- Coordination involves sending messengers;
- Messengers can be lost or captured, and message lost;
- There is an upper bound on time taken by successful messenger to deliver message;
- Communication paths are bidirectional;
- Everyone knows communication paths available;
- How can they coordinate and agree on whether to attack?
If there are no process or link failures can we solve the problem?
If so, what else do we need to assume?
- topology?
- directed / undirected graph?
- unique identifiers?
- size of network?
- ...

How?
Solution in synchronous network with no failures

Assumptions:
- synchronous network with no link or process failures;
- connected graph of diameter (at most) d;

Solution:
- Processes maintain set of choices, starting from $\{yes\}$ or $\{no\}$;
- In each round:
 - processes send set to all neighbors;
 - processes merge sets in received messages to set maintained;
- After d rounds:
 - if set equals $\{yes\}$, decide attack;
 - otherwise, decide no attack;
What if messages may be lost?

- Can the algorithm solve the problem if messages may be lost?
- Can we find some other algorithm to solve it in such scenario?
- And in similar scenarios, may be with more knowledge?
- Before trying to prove an impossibility, better to remove ambiguities, state assumptions and formalize problem;
- When proving an impossibility result, may be useful to:
 - use stronger assumptions;
 - use weaker requirements;
- This way, result will be more general;
Coordinated attack problem – deterministic version

Consider \(n \) processes, 1, \ldots, \(n \) in arbitrary undirected graph;

Each process knows entire graph, including indices;

Input state variable in \{0, 1\};

An arbitrary number of messages may be lost in each round;

Processes make deterministic choices;

Goal: all processes set \textit{decision} output variable to either 0 or 1, subject to:

- \textbf{agreement}: no two processes decide different values;
- \textbf{validity}:
 1. if all start with 0, decision must be 0;
 2. if all start with 1 and all messages delivered, decision must be 1;
- \textbf{termination}: all processes eventually decide;
Let’s prove result for two nodes;

• Generalizable to arbitrary network of two or more nodes;

Theorem

Let G be the graph with nodes 1 and 2 connected by an edge. There is no algorithm that solves the coordinated attack problem on G.
Impossibility of deterministic coordinated attack with link failures

Proof.

- By contradiction. Suppose a solution exists; WLOG, assume a single start state for each process, containing input value;
- For each assignment of inputs and message failure pattern, the system has exactly one execution;
- WLOG, assume both processes send messages every round;
- Let e_0 be execution obtained when both processes start with 1 and all messages delivered;
- In e_0 they will eventually decide (termination) both 1 (validity);
- Let’s say they decide within r rounds, for some r;
(continues)
Proof.

(continued)

- Let e_1 be the same as e_0 except messages after round r are lost;
- In e_1 both decide 1 within r rounds as before;
- Let e_2 be the same as e_1 except last message from 1 to 2 is lost;
- From process 1, $e_1 \sim e_2$; therefore it decides 1 in e_2;
- By termination and agreement, process 2 also decides 1 in e_2;
- Let e_3 be the same as e_2 except last message from 2 to 1 is lost;
- From process 2, $e_2 \sim e_3$; therefore it decides 1 in e_3;
- By termination and agreement, process 1 also decides 1 in e_3;

(continues)
Proof.

(continued)

- Repeating, we can obtain e' in which no messages are delivered and, as before, both processes decide 1;
- Consider e'' as e' but in which process 2 starts with 0;
- From process 1, $e' \sim_1 e''$; therefore it decides 1 in e'', and so does process 2 by termination and agreement;
- Consider e''' as e'' but in which process 1 also starts with 0;
- From process 2, $e'' \sim_2 e'''$; therefore it decides 1 in e''';
- But this contradicts validity as in this case they would have to decide 0;
Solving variants of the problem

- Theorem describes fundamental limitation;
- Can some version of the problem be solved?
- Necessary either to:
 - strengthen model or
 - relax requirements;
- Stronger model:
 - probabilistic assumptions about message loss;
 - allow processes to use randomization;
- Weaker requirements:
 - allow some violation of agreement and/or validity;
 - allow violation of termination;
Randomized coordinated attack

- Processes may make random choices;
- Statements are probabilistic;
- Clarify probabilistic statements;
 - under what scenario? average case? worst case?
 - how to describe scenarios?
- An algorithm may run in different scenarios regarding:
 - input values;
 - communication patterns
- A communication pattern represents the set of messages delivered in some execution;
- We may want to consider worst case scenarios;
- Useful to think of a scenario as an adversary;
Definition (Communication pattern)

Communication pattern C for r rounds in graph G with edges E:

$$C \subseteq \{(i, j, k) \mid (i, j) \in E \text{ and } 1 \leq k \leq r\}$$

Definition (Adversary)

An adversary is an arbitrary choice of

- an assignment of input values of processes;
- a communication pattern;

For each adversary A, a sequence of random choices of processes determines an execution;

For each adversary A, there is a probability distribution on the set of executions;

Let $P^A[X]$ be the probability of X induced by adversary A;
Randomized coordinated attack formalized

- Consider \(n \) processes, 1, \ldots, \(n \) in arbitrary undirected graph;
- Each process knows entire graph, including indices;
- Processes have one start state, with input variable in \(\{0, 1\} \);
- Processes send messages to all neighbors at every round;
- An arbitrary number of messages may be lost in each round;
- Processes may make random choices;
- Goal: all processes set \textit{decision} output variable to either 0 or 1, subject to:
 - \textbf{agreement}: for every adversary \(A \), \(P^A[\text{different decisions}] \leq \epsilon \), for some \(0 \leq \epsilon \leq 1 \);
 - \textbf{validity}:
 - 1 if all start with 0, decision must be 0;
 - 2 if all start with 1 and all messages delivered, decision must be 1;
 - \textbf{termination}: all processes decide in a fixed round \(r > 0 \);
An algorithm for an \(n \)-node complete graph

- We will present an algorithm for the special case of an \(n \)-node complete graph;
- Algorithm achieves \(\epsilon = 1/r \);
- Algorithm based on knowledge about other’s initial values, and what they know directly or indirectly about each other;
- Need definitions to capture such knowledge, namely the *information level*;
A partial order on pairs (process, round)

- For each communication pattern C, we can define a partial order \sqsubseteq_C to compare pairs (i, r) where:
 - i is a process index;
 - r is a round number;
- \sqsubseteq_C is meant to compare what processes know after some round;
- Order induced by information flow resulting from messages:
 1. $(i, k) \sqsubseteq_C (i, k')$ if $k \leq k'$;
 2. $(i, k - 1) \sqsubseteq_C (j, k)$ if $(i, j, k) \in C$;
 3. $(i, k) \sqsubseteq_C (i'', k'')$ if $\exists i', k'. (i, k) \sqsubseteq_C (i', k')$ and $(i', k') \sqsubseteq_C (i'', k'')$;
To capture relative knowledge between processes we introduce information level:

- processes start at level 0;
- when a process knows level \(l \) info about all others, it advances to level \(l + 1 \);

For communication pattern \(C \), we define information level \(\text{level}_C(i, k) \) of process \(i \) at round \(k \) recursively:

\[
\text{level}_C(i, 0) = 0 \\
\text{level}_C(i, k) = 1 + \min \{ \text{lev}(j, i, k) \mid j \neq i \}
\]

where

\[
\text{lev}(j, i, k) = \max(\{-1\} \cup \{ \text{level}_C(j, k') \mid (j, k') \sqsubseteq_C (i, k) \})
\]

As an adversary \(A \) implies some communication pattern \(C \), we can also use \(\text{level}_A(i, k) \) meaning \(\text{level}_C(i, k) \).
Some lemmas on levels

Lemma

For any communication pattern C, $0 \leq k \leq r$ and any processes i, j:

$$|\text{level}_C(i, k) - \text{level}_C(j, k)| \leq 1.$$

- Levels of different processes remain within 1 of each other;

Lemma

If $(i, j, k) \in C$ *for all* $(i, j) \in E$ *and* $1 \leq k \leq r$, *then* $\text{level}_C(i, k) = k$.

- If no messages are lost, the level is the round number;
An algorithm: RandomAttack – sketch

- Each process keeps knowledge about other’s initial values;
- Values known are sent to all in messages;
- Each process keeps level it knows about all processes;
- Information levels are sent to all in messages;
- Process 1 chooses a random key \{1, \ldots, r\} in round 1;
- Random key is sent to all in messages;
- After r rounds:
 - if a process knows that all initial values are 1 and it’s level is at least as large as key, it decides 1;
 - otherwise it decides 0;
RandomAttack formally

- Process state, $state_i = (k, d, key, v, l)$ where:
 - $k \in \mathcal{N}$ – rounds, initially 0;
 - $key \in \{\bot, 1, \ldots, r\}$, initially \bot;
 - $v : \{1, \ldots, n\} \rightarrow \{\bot, 0, 1\}$ with pointwise order – values, initially
 \{\{i \mapsto \text{initial value of process } i\} \cup \{j \mapsto \bot \mid j \neq i\}\};
 - $l : \{1, \ldots, n\} \rightarrow \{-1, 0, \ldots, r\}$ – levels, initially
 \{\{i \mapsto 0\} \cup \{j \mapsto -1 \mid j \neq i\}\};
 - $d \in \{\bot, 0, 1\}$ – decision, initially \bot;

- Random choice function:
 $\text{rand}_i((k, key, v, l, d)) = \begin{cases} (k, \text{random}(), v, l, d) & \text{if } i = 1 \land k = 0 \\ (k, key, v, l, d) & \text{otherwise.} \end{cases}$

- Message-generating function:
 $\text{msg}_i((k, key, v, l, d), j) = (key, v, l)$
RandomAttack formally – state transition function

- Let M represent the set of messages delivered;
- $\text{trans}_i((k, \text{key}, v, l, d), M) = (k', \text{key}', v', l', d')$ where:

 $k' = k + 1$

 $\text{key}' = \text{key} \sqcup \bigsqcup\{K \mid (K, V, L) \in M\}$

 $v' = v \sqcup \bigsqcup\{V \mid (K, V, L) \in M\}$

 $l' = \{i \mapsto 1 + \min\{l''(j) \mid j \neq i\}\} \cup \{j \mapsto l''(j) \mid j \neq i\}$

 where $l'' = l \sqcup \bigsqcup\{L \mid (K, V, L) \in M\}$

 $d' = \begin{cases}
 1 & \text{if } k' = r \land \text{key}' \neq \bot \land l'(i) \geq \text{key}' \land \forall j. v'(j) = 1 \\
 0 & \text{otherwise and if } k' = r \\
 d & \text{otherwise};
 \end{cases}$
RandomAttack: – correctness

Lemma

RandomAttack calculates information levels correctly: for any execution with communication pattern C, for any \(0 \leq k \leq r \), for any process \(i \), after \(k \) rounds \(l(i)_i = \text{level}_C(i, k) \).

Proof.

- At round 0 it holds trivially;
- Propagation of \(l \) in messages leads to knowledge respecting \(\sqsubseteq_C \);
- \(l(j)_i \) at round \(k \) encodes \(lev(j, i, k) \)
- In induction step, strengthen with: \(l(j)_i = lev(j, i, k) \);
RandomAttack: – correctness

Lemma

For each process i, if $l(i)_i > 0$ then $key_i = key_1$ and $\forall j. v(j)_i = v(j)_j$;
RandomAttack: correctness

Theorem

RandomAttack solves the randomized version of coordinated attack, for $\epsilon = 1/r$.

Proof.

- **Termination**: trivial, at round r;
- **Validity:**
 - if all processes start with 0, then decision is obviously 0;
 - if all processes start with 1 and all messages are delivered, then, by second lemma of levels and as algorithm calculates levels correctly, at round r: $l(i)_i = r \geq key_1 = key_i$ and $\forall j. v(j)_i = v(j)_j = 1$; therefore the decision is 1.

(continues)
RandomAttack: – correctness

Proof.

(continued)

Agreement:

- Let A be any adversary; want to show that
 \[P^A[\text{some process decides } 0 \text{ and another decides } 1] \leq \epsilon \]

- By first lemma of levels, after round r for any processes i, j, the level $l(i)_i$ will be within 1 of $l(j)_j$;

- If $key_1 > \max_i \{l(i)_i\}$ or some process starts with 0, then all processes decide 0;

- If $key_1 \leq \min_i \{l(i)_i\}$ and all processes start with 1, then all processes decide 1;

- Process can only disagree if $key_1 = \max_i \{l(i)_i\}$; this has probability $1/r$ as key is uniformly distributed in $\{1, \ldots, r\}$ and $\max_i \{l(i)_i\}$ is determined by A;
Can we obtain algorithms with smaller disagreement probability?

It can be proven that, for n-node complete graphs:

Theorem

Any r-round algorithm for randomized coordinated attack has probability of disagreement at least $\frac{1}{r+1}$;
A critique of the assumptions in failure model

- Having shown that arbitrary link failures make original problem unsolvable, only probabilistic claims can be made;
- The approach taken:
 - uses randomization in algorithm;
 - assumes it will have to work for any adversary;
 - makes probabilistic claims, assuming worst case adversary;
- This results in a large error probability, as an algorithm must work in any scenario, even if not a single message is ever delivered;
- Approach not much useful for devising algorithms and making probabilistic claims for realistic scenarios:
 - e.g. assuming some probability distribution of message loss;
- This ‘worst case’ approach is not useful either for realistic situations assuming malicious adversaries:
 - e.g. man-in-the-middle that can read messages in transit and remove messages;
Other approaches to the failure model

The approach taken:
- used excessively worse case for assuming ‘natural’ message loss;
- was not worse enough for malicious adversaries;

Can different approaches be useful?

Probabilistic model of loss:
- probabilistic model of link loss;
- deterministic algorithm;
- probabilistic claims for algorithm;

Coverage model of loss:
- assume predicates about possible message loss, that cover some percentage of all cases;
 e.g. not more than f consecutive failures in a link 99% of the cases;
- use deterministic algorithm that works assuming predicates;
- claims are non probabilistic, for the given coverage;
Coordinated attack under independent link losses

- **Assumption:**
 - message losses are independent;
 - the probability of a single message loss is \(p_i \);

- Back to original problem: generals should try to attack if all ready, and do it at the same round;

- Goal: all processes set *decision* output variable to either 0 or 1, subject to:
 - **agreement:** no two processes decide different values;
 - **validity:**
 1. if some starts with 0, decision must be 0;
 2. if all start with 1, decision must be 1;
 - **termination:** all processes eventually decide at the same round, with probability \(1 - \epsilon \);

- For a given probability of loss \(p_i \), can we obtain an algorithm that satisfies some arbitrarily low \(\epsilon \)? How many rounds will we need?