
    

   

TituloDistributed Computing

José Orlando Pereira

Grupo de Sistemas Distribuídos
Departamento de Informática

Universidade do Minho

2009/2010



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Asynchronous systems

Assume no bounds on:

clock drift

processing time

message passing time

Motivated by real world considerations:

Load and processor scheduling

Network delays

...



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Asynchronous systems

Without loss of generality, assume a reliable 
fully connected network 

Relax the synchronous system:

Unbounded message loss

Large/unknown graph diameter

Dynamic graph

Each of the resulting models is equivalent to 
an asynchronous system:

The universal system model



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Asynchronous systems

Tight synchronous limits are dangerous:

Low coverage, expensive systems

Large synchronous limits are not useful:

Round time proportional to high percentile delay

Taking advantage of synchrony causes a very 
large penalty

Solutions for asynchronous
systems have better
performance:

Round time proportional
to mean delay

Typical delay distribution

high 
percentile

mean

time
fr

eq
ue

nc
y



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

I/O Automata

Very general model:

Describes also non-distributed and even non-
concurrent systems

Powerful tools:

Composable specifications

Hierarchical specifications

Very widespread use in DS research



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Sample computation

An alarm clock program:

main: // line 1

cnt:=3 // line 2

while cnt>0: // line 3

sleep 1s // line 4
cnt := cnt-1 // line 5

ring // line 6



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Observation

Select model variables and periodically 
observe the system:

1 2 3 41 5 3 4 5 3 4 5 3 6

cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=? vcnt:=2 vcnt:=0

line:=1 line:=5line:=4 line:=3 line:=4 line:=3 ...

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Abstraction

Choose observation that conveys interface, 
not implementation:

1 2 3 41 5 3 4 5 3 4 5 3 6cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Behaviors/Executions

Consider all possible sequences of chosen 
atomic actions:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Safety properties

Nothing bad ever happens:

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

OK!

OK!

OK!

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Liveness properties

Something good eventually(*) happens:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

(*) eventually = inevitavelmente ≠ eventualmente

OK!



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Specification

Specification is a set of allowable behaviors:

An automaton provides a compact and 
practical representation

Infinite sets of behaviors

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

timeout timeout timeout ring

S=



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Automaton definition

An automaton A has five components:

sig(A), a triplet S of disjoint sets of actions:
in(S), the input actions

out(S), the output actions

int(S), the internal actions

states(A), a (possibly infinite) set of states 

start(A), a non-empty subset of states(A)

trans(A), a subset of
states(A) x acts(sig(A)) x states(A)

tasks(A), a partition of local(sig(A))



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Automaton definition

Additional definitions:

ext(S) = in(S) U out(S)

local(S) = out(S) U int(S)

extsig(S) = (in(S), out(S), {})

Short-hands:

ext(A) for ext(sig(A))

...



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Transitions

A transition is enabled in state s if there is 
some π,s' such that (s,π,s') ∈ trans(A)

Input transitions are required to be enabled 
in all reachable states of A

A state in which only input transitions are 
enabled is said to be quiescent



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Signature and State

Input:

none

Internal:

Timeout

Output:

Ring

States:

vcnt, integer,
initially 3

END, boolean,
initially false



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Transitions

Timeout:

Pre-condition:
¬END and vcnt>0

Effect:
vcnt := vcnt - 1

Ring:

Pre-condition:
¬END and vcnt = 0

Effect:
END := True

This is an equation,
not an attribution!



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Effects

Effect equation:

vcnt := vcnt - 1

Read this as:

“vcnt-after = vcnt-before – 1 and the state 
otherwise unchanged”

Could be written as:

vcnt-after + 1 = vcnt-before

vcnt-before - vcnt-after = 1

...



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Invariants

Goal: Prove that always vcnt < 4 (safety!).

Proof by induction:

Base step: True for all initial states?
3<4: Yes!

Induction step: True for any next step?
Timeout transition:

– vcnt-after = vcnt-before - 1
– vcnt-before < 4

vcnt-after+1 < 4
vcnt-after < 3 < 4: Done

Ring transition:
– always vcnt-after = vcnt-before = 0
– 0<4: Done



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Trace properties

A trace is the externally visible sequence of 
actions

A trace property is a set of traces

Proof strategy:

Add the trace as a variable to the state

Safety trace properties are then invariant 
assertions



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Reliable channel

Send(m) Receive(m)

Reliable channel:

Unordered

FIFO

Why Receive(m) and
not m := Receive()?



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Reliable channel

State:

transit, bag of M,
initially {}

Send(m), m∈M:

Pre-condition:
True

Effect:
transit :=transit + {m}

Receive(m), m∈M:

Pre-condition:
m in transit

Effect:
transit := transit - {m}



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Behaviors of a channel

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

Concurrency is modeled by alternative 
enabled transitions:

Sender and receiver

Within the channel (reordering)

send(...)

receive(...)

{m1,m2}

...

...



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

Some behaviors do not satisfy liveness:

If m is sent, eventually m is received

Some transitions don't get a fair chance to 
run:

receive(m1) and receive(m*) 

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Fairness

Partition transitions in tasks:

Tasks:
For all m: {receive(m)}

Assume that no task can be forever 
prevented to take a step

What about a FIFO reliable channel?



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

FIFO order excludes a number of behaviors

Only executions with a finite number of 
receive(m) steps are unfair

Fairness ensured by a single task:

{For all m: receive(m)}

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: FIFO channel

State:

transit, seq. of M, 
initially <>

Send(m), m∈M:

Pre-condition:
True

Effect:
transit :=transit+<m>

Receive(m), m∈M:

Pre-condition:
m=head(transit)

Effect:
transit := tail(transit)

Tasks:

{For all m: 
receive(m)}



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring

Rotating token algorithm:

Mutual exclusion?

Deadlock freedom?



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring

State:

n is the number of nodes

token[0]=1

token[i]=0, for 0<i<n

Move(i):

Pre-condition:
token[i]=1

Effect:
token[i]:=0

token[(i+1) mod n]:=1



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring

Mutual exclusion:

There is at most one token in the ring (i.e. sum 
of token[i]≤1)

Proof by induction:

Base step:
∑token[i]=1 trivially true

Induction step:

∑token-before[i]≤1⇒∑token-after[i]≤1



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring

No starvation:

Eventually i gets the token at least k times 

Proof with a progress function:

Function from state to a well-founded set

Helper actions decrease the value

Other actions do not increase the value

Helper actions are taken until goal is met
(i.e. enabled and in separate tasks)

Invariant assertion



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Progress function

[1,0,0] [0,1,0] [0,0,1]
move(...)

3

[1,0,0] [0,1,0] [0,0,1]

2 1 0

Define progress function f as:

Target is non-negative integers

Value is ((k-1) x n + i - 1) - length(trace)

Example with n=3, k=2, and i=3:



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Summary

I/O Automata definition

Safety specification

Fairness specification

Proof strategies for:

Invariants

Trace properties
Safety

Liveness

How to apply to large and complex 
specifications?



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring with channels

Refine the specification to include channels:

Mutual exclusion?

Deadlock freedom?



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring with channels

Initially:

n is the number of 
nodes

token[0]=1

token[i]=0, for 0<i<n

transit[i]={}, for all i

Send:

Pre-condition:
token[i]=1

Effect:
token[i]:=0

transit[i]:={1}

Receive:

Pre-condition:
1 in transit[i]

Effect:
token[(i+1)mod n]:=1

transit[i]:={}



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring with channels

Proof of mutual exclusion?

Seems to be true. But...
∑token[i]≤1, with token=[1,0,0,...] and transit[0]={1}

after receive, ∑token[i]=2!

Solution is to strengthen the invariant:

Prove by induction: ∑token[i]+∑elems(transit[i])≤1

Then conclude ∑token[i]≤1
(assuming that transit[i] not negative, easy to prove)



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring with channels

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

send(...)

receive(...)

One can observe valid executions of reliable 
channels embedded in the ring



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Composition

Compatible automata:

Internal actions do not overlap with any other 
actions

Output actions are disjoint

No action is contained in infinitely many 
automata

This allows:

Several input actions to overlap

Input actions to overlap with a single output 
action



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Composition

A composition A with signature S from a set 
of Ai, with signature Si 

The state of the composed automaton A is:

state(A) = Π state(Ai)

start(A) = Π start(Ai)

The signature of S is as follows:

out(S) = U out(Si)

int(S) = U int(Si)

in(S) = U in(Si) – out(S)

Transitions and tasks likewise



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: A process

State:

token, integer,
initially 0

Send(m), m∈M:

Pre-condition:
token = 1

Effect:
token := 0

Receive(m), m∈M:

Pre-condition:
true

Effect:
token := 1



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Composite token ring

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

send(...)

receive(...)

send(m) is an input to a channel

overlaps with send(m) in a process

receive(m) is an input to a process

overlaps with receive(m) in a channel



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Compositional reasoning

A necessary condition for mutual exclusion in 
a ring is that the token is not duplicated while 
in transit

Consider the following trace property:

For each receive(m) (i.e. lock), there is some 
corresponding send(m) (i.e. unlock)

This property is true for each individual 
reliable channel

Therefore it is true for the composed token 
ring



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Which level of abstraction?

token[0]:=1
token[1]:=0
token[2]:=1

Move MoveMove

token[0]:=0
token[1]:=1 ...

token[0]:=1
token[1]:=0

transit[1]:={1}
transit[1]:={}
token[2]:=1

transit[0]:={}
token[1]:=1

Send Send Receive SendReceive

token[0]:=0
transit[0]:={1} ...

Observations of the same system at different 
levels of abstraction

How to relate them?

Variable token is not observing the same thing!



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Simulation

Map actions

Map states:

f(detailed state) =
 abstract state

Inicial states map

Every detailed
sequence a maps
to an abstract sequence α 

f(s) f(s')

s s'

a

α



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Simulation

atoken[0]:=1
atoken[1]:=0
atoken[2]:=1

Move MoveMove

atoken[0]:=0
atoken[1]:=1 ...

dtoken[0]:=1
dtoken[1]:=0
transit[1]:={1}

transit[1]:={}
dtoken[2]:=1

transit[0]:={}
dtoken[1]:=1

Send Send Receive SendReceive

dtoken[0]:=0
transit[0]:={1} ...

Map <Receive> to <Move>, <Send> to <>.

f: atoken[i] = dtoken[i] + transit[i]



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Simulation

If all detailed behaviors can be mapped to 
abstract behaviors, then:

A simulation proof exists

But may require an intermediate specification

Simulation preserves safety properties

Simulation does not necessarily preserve 
liveness properties:

...

?



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Refinement

Token ring

Token ring with
reliable channels

Token ring with
unreliable channels

Mutex

...

...

...

...

The goal is refinement of 
specifications

Going up:

Understand similarities 
between different problems

Going down:

Closer to the 
implementation (i.e. code)



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Summary

Additional proof strategies:

Compositional reasoning

Simulation

More:

N. Lynch. Distributed Algorithms (Ch. 8)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

