Distributed Computing

José Orlando Pereira

Grupo de Sistemas Distribuídos Departamento de Informática Universidade do Minho

2009/2010

Asynchronous systems

- Assume no bounds on:
 - clock drift
 - processing time
 - message passing time
- Motivated by real world considerations:
 - Load and processor scheduling
 - Network delays

• ...

Asynchronous systems

- Without loss of generality, assume a reliable fully connected network
- Relax the synchronous system:
 - Unbounded message loss
 - Large/unknown graph diameter
 - Dynamic graph
- Each of the resulting models is equivalent to an asynchronous system:
 - The universal system model

Asynchronous systems

- Tight synchronous limits are dangerous:
 - Low coverage, expensive systems
- Large synchronous limits are not useful:
 - Round time proportional to high percentile delay
 - Taking advantage of synchrony causes a very large penalty
- Solutions for asynchronous systems have better performance:
 - Round time proportional to mean delay

* 🔿

I/O Automata

- Very general model:
 - Describes also non-distributed and even nonconcurrent systems
- Powerful tools:
 - Composable specifications
 - Hierarchical specifications
- Very widespread use in DS research

Sample computation

An alarm clock program:

 main:
 // line 1

 cnt:=3
 // line 2

 while cnt>0:
 // line 3

 sleep 1s
 // line 4

 cnt := cnt-1
 // line 5

 ring
 // line 6

Observation

Select model variables and periodically observe the system:

* 🗘

Abstraction

 Choose observation that conveys interface, not implementation:

* 🗘

Behaviors/Executions

 Consider all possible sequences of chosen atomic actions:

Safety properties

Nothing bad ever happens:

Liveness properties

Something good eventually^(*) happens:

(*) eventually = inevitavelmente \neq eventualmente

Specification

Specification is a set of allowable behaviors:

- An automaton provides a compact and practical representation
 - Infinite sets of behaviors

Automaton definition

- An automaton A has five components:
 - sig(A), a triplet S of disjoint sets of actions:
 - in(S), the input actions
 - out(S), the output actions
 - int(S), the internal actions
 - states(A), a (possibly infinite) set of states
 - start(A), a non-empty subset of states(A)
 - trans(A), a subset of
 - states(A) x acts(sig(A)) x states(A)
 - tasks(A), a partition of local(sig(A))

Automaton definition

Additional definitions:

- ext(S) = in(S) U out(S)
- local(S) = out(S) U int(S)
- extsig(S) = (in(S), out(S), {})
- Short-hands:
 - ext(A) for ext(sig(A))

• ..

- A transition is enabled in state s if there is some π,s' such that (s,π,s') ∈ trans(A)
- Input transitions are required to be enabled in all reachable states of A
- A state in which only input transitions are enabled is said to be quiescent

Signature and State

- Input:
 - none
- Internal:
 - Timeout
- Output:
 - Ring

- States:
 - vcnt, integer, initially 3
 - END, boolean, initially false

Transitions

- Timeout:
 - Pre-condition:
 - ¬END and vcnt>0
 - Effect:
 - vcnt := vcnt 1

Ring:

- Pre-condition:
 - ¬END and vcnt = 0
- Effect:
 - END := True

This is an equation, not an attribution!

* 🗘

Effects

- Effect equation:
 - vcnt := vcnt 1
- Read this as:
 - "vcnt-after = vcnt-before 1 and the state otherwise unchanged"
- Could be written as:
 - vcnt-after + 1 = vcnt-before
 - vcnt-before vcnt-after = 1

Invariants

- Goal: Prove that always vcnt < 4 (safety!).
- Proof by induction:
 - Base step: True for all initial states?
 - 3<4: Yes!
 - Induction step: True for any next step?
 - Timeout transition:
 - vcnt-after = vcnt-before 1
 - vcnt-before < 4
 vcnt-after+1 < 4
 vcnt-after < 3 < 4: Done
 - Ring transition:
 - always vcnt-after = vcnt-before = 0
 - 0<4: Done

Trace properties

- A trace is the externally visible sequence of actions
- A trace property is a set of traces
- Proof strategy:
 - Add the trace as a variable to the state
 - Safety trace properties are then invariant assertions

Distributed Computing

I/O Automata

Example: Reliable channel

Why Receive(m) and not <u>m := Receive()</u>?

Example: Reliable channel

- State:
 - transit, bag of M, initially {}
- Send(m), m∈M:
 - Pre-condition:
 - True
 - Effect:
 - transit :=transit + {m}

- Receive(m), m∈M:
 - Pre-condition:
 - m in transit
 - Effect:
 - transit := transit {m}

Behaviors of a channel

- Concurrency is modeled by alternative enabled transitions:
 - Sender and receiver
 - Within the channel (reordering)

Liveness and fairness

- Some behaviors do not satisfy liveness:
 - If m is sent, eventually m is received
- Some transitions don't get a fair chance to run:
 - receive(m1) and receive(m*)

- Partition transitions in tasks:
 - Tasks:
 - For all m: {receive(m)}
- Assume that no task can be forever prevented to take a step
- What about a FIFO reliable channel?

Liveness and fairness

- FIFO order excludes a number of behaviors
 - Only executions with a finite number of receive(m) steps are unfair
- Fairness ensured by a single task:
 - {For all m: receive(m)}

Example: FIFO channel

State:

- transit, seq. of M, initially <>
- Send(m), m∈M:
 - Pre-condition:
 - True
 - Effect:
 - transit :=transit+<m>

- Receive(m), m∈M:
 - Pre-condition:
 - m=head(transit)
 - Effect:
 - transit := tail(transit)
- Tasks:
 - {For all m: receive(m)}

Rotating token algorithm:

- Mutual exclusion?
- Deadlock freedom?

State:

- n is the number of nodes
- token[0]=1
- token[i]=0, for 0<i<n</p>
- Move(i):
 - Pre-condition:
 - token[i]=1
 - Effect:
 - token[i]:=0
 - token[(i+1) mod n]:=1

* 🗘

- Mutual exclusion:
 - There is at most one token in the ring (i.e. sum of token[i]≤1)
- Proof by induction:
 - Base step:
 - ∑token[i]=1 trivially true
 - Induction step:
 - ∑token-before[i]≤1⇒∑token-after[i]≤1

- No starvation:
 - Eventually i gets the token at least k times
- Proof with a progress function:
 - Function from state to a well-founded set
 - Helper actions decrease the value
 - Other actions do not increase the value
 - Helper actions are taken until goal is met (i.e. enabled and in separate tasks)

Invariant assertion

Progress function

- Define progress function f as:
 - Target is non-negative integers
 - Value is ((k-1) x n + i 1) length(trace)
- Example with n=3, k=2, and i=3:

Summary

- I/O Automata definition
 - Safety specification
 - Fairness specification
- Proof strategies for:
 - Invariants
 - Trace properties
 - Safety
 - Liveness
- How to apply to large and complex specifications?

Example: Token ring with channels

Refine the specification to include channels:

- Mutual exclusion?
- Deadlock freedom?

Example: Token ring with channels

- Initially:
 - n is the number of nodes
 - token[0]=1
 - token[i]=0, for 0<i<n</p>
 - transit[i]={}, for all i
- Send:
 - Pre-condition:
 - token[i]=1

- Effect:
 - token[i]:=0
 - transit[i]:={1}
- Receive:
 - Pre-condition:
 - 1 in transit[i]
 - Effect:
 - token[(i+1)mod n]:=1
 - transit[i]:={}

Example: Token ring with channels

- Proof of mutual exclusion?
- Seems to be true. But...
 - ∑token[i]≤1, with token=[1,0,0,...] and transit[0]={1}
 - after receive, ∑token[i]=2!
- Solution is to strengthen the invariant:
 - Prove by induction: ∑token[i]+∑elems(transit[i])≤1
 - Then conclude ∑token[i]≤1 (assuming that transit[i] not negative, easy to prove)

Distributed Computing

I/O Automata

Example: Token ring with channels

 One can observe valid executions of reliable channels embedded in the ring

Composition

- Compatible automata:
 - Internal actions do not overlap with any other actions
 - Output actions are disjoint
 - No action is contained in infinitely many automata
- This allows:
 - Several input actions to overlap
 - Input actions to overlap with a single output action

Composition

- A composition A with signature S from a set of Ai, with signature Si
- The state of the composed automaton A is:
 - state(A) = Π state(Ai)
 - $start(A) = \Pi start(Ai)$
- The signature of S is as follows:
 - out(S) = U out(Si)
 - int(S) = U int(Si)
 - in(S) = U in(Si) out(S)
- Transitions and tasks likewise

Example: A process

- State:
 - token, integer, initially 0
- Send(m), m∈M:
 - Pre-condition:
 - token = 1
 - Effect:
 - token := 0

- Receive(m), $m \in M$:
 - Pre-condition:
 - true
 - Effect:
 - token := 1

Example: Composite token ring

- send(m) is an input to a channel
 - overlaps with send(m) in a process
- receive(m) is an input to a process
 - overlaps with receive(m) in a channel

Compositional reasoning

- A necessary condition for mutual exclusion in a ring is that the token is not duplicated while in transit
- Consider the following trace property:
 - For each receive(m) (i.e. lock), there is some corresponding send(m) (i.e. unlock)
- This property is true for each individual reliable channel
- Therefore it is true for the composed token ring

Distributed Computing

I/O Automata

Which level of abstraction?

- Observations of the same system at different levels of abstraction
 - How to relate them?
 - Variable token is not observing the same thing!

Simulation

- Map actions
- Map states:
 - f(detailed state) = abstract state
- Inicial states map
- Every detailed sequence a maps to an abstract sequence α

Simulation

- Map <Receive> to <Move>, <Send> to <>.
- f: atoken[i] = dtoken[i] + transit[i]

Simulation

- If all detailed behaviors can be mapped to abstract behaviors, then:
 - A simulation proof exists
 - But may require an intermediate specification
- Simulation preserves safety properties
- Simulation does not necessarily preserve liveness properties:

Refinement

- The goal is refinement of specifications
- Going up:
 - Understand similarities between different problems
- Going down:
 - Closer to the implementation (i.e. code)

Summary

- Additional proof strategies:
 - Compositional reasoning
 - Simulation
- More:
 - N. Lynch. Distributed Algorithms (Ch. 8)

