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Asynchronous systems

Assume no bounds on:

clock drift

processing time

message passing time

Motivated by real world considerations:

Load and processor scheduling

Network delays

...
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Asynchronous systems

Without loss of generality, assume a reliable 
fully connected network 

Relax the synchronous system:

Unbounded message loss

Large/unknown graph diameter

Dynamic graph

Each of the resulting models is equivalent to 
an asynchronous system:

The universal system model
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Asynchronous systems

Tight synchronous limits are dangerous:

Low coverage, expensive systems

Large synchronous limits are not useful:

Round time proportional to high percentile delay

Taking advantage of synchrony causes a very 
large penalty

Solutions for asynchronous
systems have better
performance:

Round time proportional
to mean delay

Typical delay distribution

high 
percentile

mean

time
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I/O Automata

Very general model:

Describes also non-distributed and even non-
concurrent systems

Powerful tools:

Composable specifications

Hierarchical specifications

Very widespread use in DS research
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Sample computation

An alarm clock program:

main: // line 1

cnt:=3 // line 2

while cnt>0: // line 3

sleep 1s // line 4
cnt := cnt-1 // line 5

ring // line 6
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Observation

Select model variables and periodically 
observe the system:

1 2 3 41 5 3 4 5 3 4 5 3 6

cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=? vcnt:=2 vcnt:=0

line:=1 line:=5line:=4 line:=3 line:=4 line:=3 ...

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2
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Abstraction

Choose observation that conveys interface, 
not implementation:

1 2 3 41 5 3 4 5 3 4 5 3 6cn
t:

=
3

cn
t:

=
2

cn
t:

=
1

cn
t:

=
0

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2
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Behaviors/Executions

Consider all possible sequences of chosen 
atomic actions:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...
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Safety properties

Nothing bad ever happens:

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

OK!

OK!

OK!

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2vcnt:=4
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Liveness properties

Something good eventually(*) happens:

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

vcnt:=3 vcnt:=1vcnt:=2

vcnt:=3 vcnt:=1 vcnt:=1vcnt:=1vcnt:=2 ...

(*) eventually = inevitavelmente ≠ eventualmente

OK!
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Specification

Specification is a set of allowable behaviors:

An automaton provides a compact and 
practical representation

Infinite sets of behaviors

vcnt:=3 vcnt:=1 ENDvcnt:=0vcnt:=2

timeout timeout timeout ring

S=
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Automaton definition

An automaton A has five components:

sig(A), a triplet S of disjoint sets of actions:
in(S), the input actions

out(S), the output actions

int(S), the internal actions

states(A), a (possibly infinite) set of states 

start(A), a non-empty subset of states(A)

trans(A), a subset of
states(A) x acts(sig(A)) x states(A)

tasks(A), a partition of local(sig(A))
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Automaton definition

Additional definitions:

ext(S) = in(S) U out(S)

local(S) = out(S) U int(S)

extsig(S) = (in(S), out(S), {})

Short-hands:

ext(A) for ext(sig(A))

...
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Transitions

A transition is enabled in state s if there is 
some π,s' such that (s,π,s') ∈ trans(A)

Input transitions are required to be enabled 
in all reachable states of A

A state in which only input transitions are 
enabled is said to be quiescent
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Signature and State

Input:

none

Internal:

Timeout

Output:

Ring

States:

vcnt, integer,
initially 3

END, boolean,
initially false
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Transitions

Timeout:

Pre-condition:
¬END and vcnt>0

Effect:
vcnt := vcnt - 1

Ring:

Pre-condition:
¬END and vcnt = 0

Effect:
END := True

This is an equation,
not an attribution!
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Effects

Effect equation:

vcnt := vcnt - 1

Read this as:

“vcnt-after = vcnt-before – 1 and the state 
otherwise unchanged”

Could be written as:

vcnt-after + 1 = vcnt-before

vcnt-before - vcnt-after = 1

...
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Invariants

Goal: Prove that always vcnt < 4 (safety!).

Proof by induction:

Base step: True for all initial states?
3<4: Yes!

Induction step: True for any next step?
Timeout transition:

– vcnt-after = vcnt-before - 1
– vcnt-before < 4

vcnt-after+1 < 4
vcnt-after < 3 < 4: Done

Ring transition:
– always vcnt-after = vcnt-before = 0
– 0<4: Done
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Trace properties

A trace is the externally visible sequence of 
actions

A trace property is a set of traces

Proof strategy:

Add the trace as a variable to the state

Safety trace properties are then invariant 
assertions



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Reliable channel

Send(m) Receive(m)

Reliable channel:

Unordered

FIFO

Why Receive(m) and
not m := Receive()?
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Example: Reliable channel

State:

transit, bag of M,
initially {}

Send(m), m∈M:

Pre-condition:
True

Effect:
transit :=transit + {m}

Receive(m), m∈M:

Pre-condition:
m in transit

Effect:
transit := transit - {m}
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Behaviors of a channel

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

Concurrency is modeled by alternative 
enabled transitions:

Sender and receiver

Within the channel (reordering)

send(...)

receive(...)

{m1,m2}

...

...
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Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

Some behaviors do not satisfy liveness:

If m is sent, eventually m is received

Some transitions don't get a fair chance to 
run:

receive(m1) and receive(m*) 

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...
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Fairness

Partition transitions in tasks:

Tasks:
For all m: {receive(m)}

Assume that no task can be forever 
prevented to take a step

What about a FIFO reliable channel?
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Liveness and fairness

{m1,m2,...,mn}

{m1,mn}

FIFO order excludes a number of behaviors

Only executions with a finite number of 
receive(m) steps are unfair

Fairness ensured by a single task:

{For all m: receive(m)}

{} {m1}

{m1,m2}

{}
{m2}

{m1}

{m1,m2,m3}
{m1,m2,m3,m4}

{m2,m3}

{m1,m3}

{}

...

...

...

...

...

...

send(...)

receive(...)

{m1,m2}

...

...
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Example: FIFO channel

State:

transit, seq. of M, 
initially <>

Send(m), m∈M:

Pre-condition:
True

Effect:
transit :=transit+<m>

Receive(m), m∈M:

Pre-condition:
m=head(transit)

Effect:
transit := tail(transit)

Tasks:

{For all m: 
receive(m)}
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Example: Token ring

Rotating token algorithm:

Mutual exclusion?

Deadlock freedom?
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Example: Token ring

State:

n is the number of nodes

token[0]=1

token[i]=0, for 0<i<n

Move(i):

Pre-condition:
token[i]=1

Effect:
token[i]:=0

token[(i+1) mod n]:=1
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Example: Token ring

Mutual exclusion:

There is at most one token in the ring (i.e. sum 
of token[i]≤1)

Proof by induction:

Base step:
∑token[i]=1 trivially true

Induction step:

∑token-before[i]≤1⇒∑token-after[i]≤1
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Example: Token ring

No starvation:

Eventually i gets the token at least k times 

Proof with a progress function:

Function from state to a well-founded set

Helper actions decrease the value

Other actions do not increase the value

Helper actions are taken until goal is met
(i.e. enabled and in separate tasks)

Invariant assertion
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Progress function

[1,0,0] [0,1,0] [0,0,1]
move(...)

3

[1,0,0] [0,1,0] [0,0,1]

2 1 0

Define progress function f as:

Target is non-negative integers

Value is ((k-1) x n + i - 1) - length(trace)

Example with n=3, k=2, and i=3:
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Summary

I/O Automata definition

Safety specification

Fairness specification

Proof strategies for:

Invariants

Trace properties
Safety

Liveness

How to apply to large and complex 
specifications?
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Example: Token ring with channels

Refine the specification to include channels:

Mutual exclusion?

Deadlock freedom?



Distributed Computing I/O Automata

© 2007-2009 José Orlando Pereira GSD/DI/U.Minho

Example: Token ring with channels

Initially:

n is the number of 
nodes

token[0]=1

token[i]=0, for 0<i<n

transit[i]={}, for all i

Send:

Pre-condition:
token[i]=1

Effect:
token[i]:=0

transit[i]:={1}

Receive:

Pre-condition:
1 in transit[i]

Effect:
token[(i+1)mod n]:=1

transit[i]:={}
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Example: Token ring with channels

Proof of mutual exclusion?

Seems to be true. But...
∑token[i]≤1, with token=[1,0,0,...] and transit[0]={1}

after receive, ∑token[i]=2!

Solution is to strengthen the invariant:

Prove by induction: ∑token[i]+∑elems(transit[i])≤1

Then conclude ∑token[i]≤1
(assuming that transit[i] not negative, easy to prove)
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Example: Token ring with channels

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

send(...)

receive(...)

One can observe valid executions of reliable 
channels embedded in the ring
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Composition

Compatible automata:

Internal actions do not overlap with any other 
actions

Output actions are disjoint

No action is contained in infinitely many 
automata

This allows:

Several input actions to overlap

Input actions to overlap with a single output 
action
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Composition

A composition A with signature S from a set 
of Ai, with signature Si 

The state of the composed automaton A is:

state(A) = Π state(Ai)

start(A) = Π start(Ai)

The signature of S is as follows:

out(S) = U out(Si)

int(S) = U int(Si)

in(S) = U in(Si) – out(S)

Transitions and tasks likewise
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Example: A process

State:

token, integer,
initially 0

Send(m), m∈M:

Pre-condition:
token = 1

Effect:
token := 0

Receive(m), m∈M:

Pre-condition:
true

Effect:
token := 1
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Example: Composite token ring

[{},{},{}]
[1,0,0]

[{1},{},{}]
[0,0,0]

[{},{},{}]
[0,1,0]

[{},{1},{}]
[0,0,0]

[{},{},{}]
[0,0,1]

[{},{},{1}]
[0,0,0] ...

send(...)

receive(...)

send(m) is an input to a channel

overlaps with send(m) in a process

receive(m) is an input to a process

overlaps with receive(m) in a channel
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Compositional reasoning

A necessary condition for mutual exclusion in 
a ring is that the token is not duplicated while 
in transit

Consider the following trace property:

For each receive(m) (i.e. lock), there is some 
corresponding send(m) (i.e. unlock)

This property is true for each individual 
reliable channel

Therefore it is true for the composed token 
ring
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Which level of abstraction?

token[0]:=1
token[1]:=0
token[2]:=1

Move MoveMove

token[0]:=0
token[1]:=1 ...

token[0]:=1
token[1]:=0

transit[1]:={1}
transit[1]:={}
token[2]:=1

transit[0]:={}
token[1]:=1

Send Send Receive SendReceive

token[0]:=0
transit[0]:={1} ...

Observations of the same system at different 
levels of abstraction

How to relate them?

Variable token is not observing the same thing!
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Simulation

Map actions

Map states:

f(detailed state) =
 abstract state

Inicial states map

Every detailed
sequence a maps
to an abstract sequence α 

f(s) f(s')

s s'

a

α
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Simulation

atoken[0]:=1
atoken[1]:=0
atoken[2]:=1

Move MoveMove

atoken[0]:=0
atoken[1]:=1 ...

dtoken[0]:=1
dtoken[1]:=0
transit[1]:={1}

transit[1]:={}
dtoken[2]:=1

transit[0]:={}
dtoken[1]:=1

Send Send Receive SendReceive

dtoken[0]:=0
transit[0]:={1} ...

Map <Receive> to <Move>, <Send> to <>.

f: atoken[i] = dtoken[i] + transit[i]
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Simulation

If all detailed behaviors can be mapped to 
abstract behaviors, then:

A simulation proof exists

But may require an intermediate specification

Simulation preserves safety properties

Simulation does not necessarily preserve 
liveness properties:

...

?
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Refinement

Token ring

Token ring with
reliable channels

Token ring with
unreliable channels

Mutex

...

...

...

...

The goal is refinement of 
specifications

Going up:

Understand similarities 
between different problems

Going down:

Closer to the 
implementation (i.e. code)
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Summary

Additional proof strategies:

Compositional reasoning

Simulation

More:

N. Lynch. Distributed Algorithms (Ch. 8)
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