Distributed Computing

José Orlando Pereira

Grupo de Sistemas Distribuídos
Departamento de Informática
Universidade do Minho

2009/2010

Asynchronous systems

- Assume no bounds on:
- clock drift
- processing time
- message passing time
- Motivated by real world considerations:
- Load and processor scheduling
- Network delays
- ...

Asynchronous systems

- Without loss of generality, assume a reliable fully connected network
- Relax the synchronous system:
- Unbounded message loss
- Large/unknown graph diameter
- Dynamic graph
- Each of the resulting models is equivalent to an asynchronous system:
- The universal system model

Asynchronous systems

- Tight synchronous limits are dangerous:
- Low coverage, expensive systems
- Large synchronous limits are not useful:
- Round time proportional to high percentile delay
- Taking advantage of synchrony causes a very large penalty
- Solutions for asynchronous systems have better performance:
- Round time proportional to mean delay

I/O Automata

- Very general model:
- Describes also non-distributed and even nonconcurrent systems
- Powerful tools:
- Composable specifications
- Hierarchical specifications
- Very widespread use in DS research

Sample computation

- An alarm clock program:
main:
cnt:=3
while cnt>0:
sleep 1s
cnt := cnt-1
ring
// line 1
// line 2
// line 3
// line 4
// line 5
// line 6

Observation

- Select model variables and periodically observe the system:

Abstraction

- Choose observation that conveys interface, not implementation:

Behaviors/Executions

- Consider all possible sequences of chosen atomic actions:

Safety properties

- Nothing bad ever happens:

Liveness properties

- Something good eventually ${ }^{(*)}$ happens:

${ }^{(*)}$ eventually = inevitavelmente \neq eventualmente

Specification

- Specification is a set of allowable behaviors:

- An automaton provides a compact and practical representation
- Infinite sets of behaviors

Automaton definition

- An automaton A has five components:
- $\operatorname{sig}(A)$, a triplet S of disjoint sets of actions:
- in(S), the input actions
- out(S), the output actions
- int(S), the internal actions
- states(A), a (possibly infinite) set of states
- start(A), a non-empty subset of states(A)
- trans(A), a subset of states(A) x acts(sig(A)) x states (A)
- tasks(A), a partition of local(sig(A))

Automaton definition

- Additional definitions:
- ext(S) = in(S) U out(S)
- local(S) = out(S) U int(S)
- extsig(S) = (in(S), out(S), \{\})
- Short-hands:
- $\operatorname{ext}(\mathrm{A})$ for $\operatorname{ext}(\mathrm{sig}(\mathrm{A}))$
- ...

Transitions

- A transition is enabled in state s if there is some π, s^{\prime} such that $\left(s, \pi, s^{\prime}\right) \in \operatorname{trans}(A)$
- Input transitions are required to be enabled in all reachable states of A
- A state in which only input transitions are enabled is said to be quiescent

Signature and State

- Input:
- none
- Internal:
- Timeout
- Output:
- Ring
- States:
- vcnt, integer, initially 3
- END, boolean, initially false

Transitions

- Timeout:
- Pre-condition:
- ᄀEND and vcnt>0
- Effect:
- vcnt := vcnt - 1

- Ring:
- Pre-condition:
- ᄀEND and vcnt = 0
- Effect:
- END := True

This is an equation, not an attribution!

Effects

- Effect equation:
- vcnt $:=$ vcnt - 1
- Read this as:
- "vcnt-after = vcnt-before - 1 and the state otherwise unchanged"
- Could be written as:
- vcnt-after + 1 = vcnt-before
- vcnt-before - vcnt-after = 1
- ...

Invariants

- Goal: Prove that always vcnt < 4 (safety!).
- Proof by induction:
- Base step: True for all initial states?
- 3<4: Yes!
- Induction step: True for any next step?
- Timeout transition:
- vcnt-after = vcnt-before - 1
- vcnt-before < 4 vcnt-after+1 < 4 vcnt-after < 3 < 4: Done
- Ring transition:
- always vcnt-after $=$ vcnt-before $=0$
- 0<4: Done

Trace properties

- A trace is the externally visible sequence of actions
- A trace property is a set of traces
- Proof strategy:
- Add the trace as a variable to the state
- Safety trace properties are then invariant assertions

Example: Reliable channel

- FIFO

> Why Receive(m) and not m := Receive()?

Example: Reliable channel

- State:
- transit, bag of M, initially $\}$
- Send(m), $m \in M$:
- Pre-condition:
- True
- Effect:
- transit :=transit + \{m\}
- Receive(m), $m \in M$:
- Pre-condition:
- m in transit
- Effect:
- transit := transit - \{m\}

Behaviors of a channel

- Concurrency is modeled by alternative enabled transitions:
- Sender and receiver
- Within the channel (reordering)

Liveness and fairness

- Some behaviors do not satisfy liveness:
- If m is sent, eventually m is received
- Some transitions don't get a fair chance to run:
- receive(m1) and receive(m*)

Fairness

- Partition transitions in tasks:
- Tasks:
- For all m: \{receive(m)\}
- Assume that no task can be forever prevented to take a step
- What about a FIFO reliable channel?

Liveness and fairness

- FIFO order excludes a number of behaviors
- Only executions with a finite number of receive(m) steps are unfair
- Fairness ensured by a single task:
- \{For all m: receive(m)\}

Example: FIFO channel

- State:
- transit, seq. of M, initially <>
- Send(m), $m \in M$:
- Pre-condition:
- True
- Effect:
- transit :=transit+<m>
- Receive(m), $m \in M$:
- Pre-condition:
- m=head(transit)
- Effect:
- transit := tail(transit)
- Tasks:
- \{For all m:
receive(m)\}

Example: Token ring

- Rotating token algorithm:

- Mutual exclusion?
- Deadlock freedom?

Example: Token ring

- State:
- n is the number of nodes
- token[0]=1
- token[i]=0, for $0<i<n$
- Move(i):
- Pre-condition:
- token[i]=1
- Effect:
- token[i]:=0
- token[(i+1) $\bmod \mathrm{n}]:=1$

Example: Token ring

- Mutual exclusion:
- There is at most one token in the ring (i.e. sum of token[i]<1)
- Proof by induction:
- Base step:
- \sum token[i]=1 trivially true
- Induction step:
- \sum token-before $[i] \leq 1 \Rightarrow$ token-after $[i] \leq 1$

Example: Token ring

- No starvation:
- Eventually i gets the token at least k times
- Proof with a progress function:
- Function from state to a well-founded set
- Helper actions decrease the value
- Other actions do not increase the value
- Helper actions are taken until goal is met (i.e. enabled and in separate tasks)

Invariant assertion

Progress function

- Define progress function fas:
- Target is non-negative integers
- Value is (($\mathrm{k}-1) \times \mathrm{n}+\mathrm{i}-1)$ - length(trace)
- Example with $n=3, k=2$, and $i=3$:

Summary

- I/O Automata definition
- Safety specification
- Fairness specification
- Proof strategies for:
- Invariants
- Trace properties
- Safety
- Liveness
- How to apply to large and complex specifications?

Example: Token ring with channels

- Refine the specification to include channels:

- Mutual exclusion?
- Deadlock freedom?

Example: Token ring with channels

- Initially:
- n is the number of nodes
- token[0]=1
- token[i]=0, for $0<i<n$
- transit[i]=\{\}, for all i
- Send:
- Pre-condition:
- token[i]=1
- Effect:
- token[i]:=0
- transit[i]:=\{1\}
- Receive:
- Pre-condition:
- 1 in transit[i]
- Effect:
- token[(i+1)mod n]:=1
- transit[i]:=\{\}

Example: Token ring with channels

- Proof of mutual exclusion?
- Seems to be true. But...
- \sum token $[i] \leq 1$, with token=[1,0,0, ..] and transit[0]=\{1\}
- after receive, \sum token[i]=2!
- Solution is to strengthen the invariant:

- Then conclude \sum token $[i] \leq 1$ (assuming that transit[i] not negative, easy to prove)

Example: Token ring with channels

- One can observe valid executions of reliable channels embedded in the ring

Composition

- Compatible automata:
- Internal actions do not overlap with any other actions
- Output actions are disjoint
- No action is contained in infinitely many automata
- This allows:
- Several input actions to overlap
- Input actions to overlap with a single output action

Composition

- A composition A with signature S from a set of Ai , with signature Si
- The state of the composed automaton A is:
- $\operatorname{state}(A)=\Pi$ state(Ai)
- $\operatorname{start}(\mathrm{A})=\Pi \operatorname{start}(\mathrm{Ai})$
- The signature of S is as follows:
- out(S) = U out(Si)
- $\operatorname{int}(\mathrm{S})=\mathrm{U} \operatorname{int}(\mathrm{Si})$
- in(S) = U in(Si) - out(S)
- Transitions and tasks likewise

Example: A process

- State:
- token, integer, initially 0
- Send(m), $m \in M$:
- Pre-condition:
- token = 1
- Effect:
- token := 0
- Receive(m), $m \in M$:
- Pre-condition:
- true
- Effect:
- token := 1

Example: Composite token ring

- send (m) is an input to a channel
- overlaps with send(m) in a process
- receive(m) is an input to a process
- overlaps with receive(m) in a channel

Compositional reasoning

- A necessary condition for mutual exclusion in a ring is that the token is not duplicated while in transit
- Consider the following trace property:
- For each receive(m) (i.e. lock), there is some corresponding send(m) (i.e. unlock)
- This property is true for each individual reliable channel
- Therefore it is true for the composed token ring

Which level of abstraction?

- Observations of the same system at different levels of abstraction
- How to relate them?
- Variable token is not observing the same thing!

Simulation

- Map actions
- Map states:
- $\mathrm{f}($ detailed state $)=$ abstract state
- Inicial states map

- Every detailed sequence a maps to an abstract sequence a

Simulation

- Map <Receive> to <Move>, <Send> to <>.
- f: atoken[i] = dtoken[i] + transit[i]

Simulation

- If all detailed behaviors can be mapped to abstract behaviors, then:
- A simulation proof exists
- But may require an intermediate specification
- Simulation preserves safety properties
- Simulation does not necessarily preserve liveness properties:

Refinement

- The goal is refinement of specifications
- Going up:
- Understand similarities between different problems
- Going down:
- Closer to the implementation (i.e. code)

Summary

- Additional proof strategies:
- Compositional reasoning
- Simulation
- More:
- N. Lynch. Distributed Algorithms (Ch. 8)

