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Failure Detection

PSynchFD Failure Detector

Failure detector GTA with

stopi input actions
inform-stopped(j)i , i 6= j output actions, which notifiy process i that

process j has stopped.

PSynchFD failure detector algorithm

1. Each process Pi continually sends messages to all the other
processes.

2. If a process Pi performs a sufficiently large number m of steps
without receiving a message from Pj , it records that Pj has stopped
and outputs inform-stopped(j)i

I The number m of steps is taken to be the smallest integer that is
strictly greater than (d + `2)/`1 + 1

Perfect failure detector reports

1. only failures that have actually happened;
2. all such failures to all other non-faulty processes.
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Failure Detection

Theorem 25.1: PSynchFD is a perfect failure detector

Proof (by contradiction)
It should be clear that all failures are eventually detected.
So, let’s assume that Pi reports that Pj has stopped but it has not.

1. If Pi outputs inform-stopped(j)i , it must have been the case that it
has not received a message from Pj in the previous (d + `2)/`1 + 1
steps.

2. Since each step takes at least `1 time units, this means that strictly
more than d + `2 time units have passed since the last time Pi

received a message from Pj .
3. Since the channel delay is at most d , then Pj has not sent a

message for at least `2 time units.
4. Since Pj sends messages to every processes once per step, Pj has

taken more than `2 to execute a step.
5. This is a contradiction, because `2 is the upper bound for Pj to

take a step. Thus Pj must have stopped.
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Failure Detection

Lower bound on PSynchFD (Theorem 25.2 part 1)

Theorem 25.2 part 1

In any timed execution, the time from a
stopj event until a inform-stopped(j)i

event, if any, is strictly greater than d

t− a

a > `2 + d

t

d

t− a + `2

Let t be the time when event inform-stopped(j)i occurs.

1. As pointed out above, it must be the case that Pi has not received
any message from Pj for time a > `2 + d .

2. Hence, it must be the case that Pj has not sent any message from
[t − a, t − a + `2], for otherwise it would have been received by Pi in
the interval [t − a, t − a + `2 + d ], which is included in [t − a, t]

3. Since a > `2 + d , it must be the case that Pj has stopped by
t− a + `2 < t−d , i.e. at least d time units before inform-stopped(j)i .

Note This means that if Pi times out Pj , then all the messages Pj has
sent before failing must have already been received.
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Failure Detection

Upper bound on PSynchFD (Theorem 25.2 part 2)

Theorem 25.2 part 2

In any admissible timed execution in which stopj event
occurs, within time Ld + d + O(L`2) after stopj , either
an inform-stopped(j)i event or a stopi event occurs.

t

d

ml2

L = `2/`1 is a measure of the uncertainty of process execution speeds.

Let t be the time when event stopj occurs.

1. Then no message is sent from Pj to Pi after time t, so no message is
received by Pi from Pj after time t + d .

2. After receiving Pj ’s last message, Pi counts m steps, each of which
can take at most `2 time to execute.

3. Because m is strictly greater than (d + `2)/`1 + 1, we get
m`2 > (d + `2)L + `2, i.e. m`2 = Ld + O(L`2).

4. Thus, if Pi does not fail in the meantime, the total time from stopj to
inform-stopped(j)i is Ld + d + O(L`2)
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Consensus Problem Definition
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Consensus Problem Definition

Consensus: External interfaces
System A

init(v)i input action;

decide(v)i output action;

stopi input action;

where 1 ≤ i ≤ n and v ∈ V

Note all actions with subscript i are said
to occur on port i ;

init(v)i

decide(v)i

stopi

Ui

users ports System A

User Ui
decide(v)i input action;

init(v)i output action;

Ui performs at most one initi action in any timed execution.

Definition A sequence of initi and decidei actions is well-formed for i
provided that it is some prefix of a sequence of the form
init(v)i , decide(w)i .
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Consensus Problem Definition

Consensus: Problem definition (1/2)

Well-formedness: In any timed execution of the combined system, and for
any port i , the interactions between Ui and A are well-formed for i .

Agreement: In any timed execution, all decision values are identical.

Validity: In any timed execution, if all init actions that occur contain the
same value v , then v is the only possible decision value.

Failure-free termination: In any admissible failure-free timed execution in
which init events occur on all ports, a decide event occurs on each port.

f -failure termination, 0 ≤ f ≤ n: In any admissible timed execution in
which init events occur on all ports, if there are stop events on at most
f ports, then a decide event occurs on all the remaining ports.

Definition Wait-free termination is the special case of f -failure
termination where f = n.
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Consensus Problem Definition

Consensus: Problem definition (2/2)

System A Is the composition of the
following automata

Pi with bounds `1 and `2 for each of
its tasks, where 0 < `1 ≤ `2 <∞.
Processes are subject to
stopping failures.

Cij which are point-to-point reliable
FIFO channels with an upper bound
of d on the delivery time for every
message (this is not an MMT
automaton)

init(v)i

decide(v)i

stopi

Ui

1

i

n

users ports processes channels

Definition A solves the agreement problem if it satisfies
well-formedness, agreement, validity and failure-free termination.
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Consensus Solution by Transformation of Synchronous Algorithms

Idea for a Solution

Main result

It is possible to solve agreement with f failures in the partially
synchronous setting with upper and lower bounds of f + 1 rounds (just like
in the synchronous model).

Observation
All the algorithms for agreement in the synchronous network model
require f + 1 rounds to tolerate f stopping failures.

Idea
Transform these algorithms to algorithms in the partially synchronous
network model.
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Consensus Solution by Transformation of Synchronous Algorithms

Transformation of synchronous network algorithms (1/3)

Let A be any synchronous network algorithm for a complete graph network.
The algorithm A′ for the partially synchronous network model is as follows:

Each process Pi is the composition of two MMT automata:

Qi is i ’s portion of the PSynchFD algorithm. It includes:

stopi input action.
informed-stoppedi output actions.

Ri is the main automaton. It includes:

informed-stoppedi inputs (which are matched with Qi outputs);
stopped state variable, that keeps track of the set of failed

processes, i.e. processes j for which it has received the inputs
informed-stopped(j)i ;

simulated state variables of process i of A.
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Consensus Solution by Transformation of Synchronous Algorithms

Transformation of synchronous network algorithms (2/3)

Round r simulation
MMT Ri executes the following steps:

1. i. Determines all its round r messages using the msgsi function from A
and the current A’s simulated state

ii. Sends out these messages to their destination, using one task per
destination process.

2. waits until it has received either
I a round r message from Rj , or
I an inform-stopped(j)i input from Qi

from each j 6= i
3. Determines the new simulated state by applying transi from A to

the current simulated state and the messages received in round r
(using null for the messages of processes in stopped).
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Consensus Solution by Transformation of Synchronous Algorithms

Transformation of synchronous network algorithms (3/3)

Input/Output adaptation

In A inputs appear in the initial states, and outputs are written to
write-once local variables.
So, we need to modify A′ to obtain algorithm B:

1. Ri does not begin the simulation of A until it receives an init(v)i

input, at which time it initializes A’s simulated state.
F But Qi begins its timeout activity at the start of the timed execution.

2. When Ri simulates the write of value v to its simulated output
variable, it immediately after performs a decide(v)i output action.
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Consensus Solution by Transformation of Synchronous Algorithms

Upper bound: Theorem 25.3

Theorem 25.3

1. B solves the agreement problem in the partially synchronous network
model, and guarantes f -failure termination.

2. In any admissible timed execution in which inputs arrive at all ports
and at most f failures occur, the time from the last init event until all
nonfaulty process have decided is at most f (Ld + d) + d + O(fL`2)

Proof (part 1) It is easy to see that B simulates A, and therefore solves
the agreement problem.
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Consensus Solution by Transformation of Synchronous Algorithms

Upper bound: Proof Theor. 25.3 part 2 (1/2)
Let α be an admissible timed execution of B.
Let S = Ld + d + O(L`2) be an upper bound for the PSynchFD algorithm.
Let T (0),T (1),T (2), . . . be a sequence of times, where T (r) is defined as
follows:

T (0) is the time at which the last init occurs in α

T (1) =

{
T (0) + `2 + S , if some process fails byT (0) + `2

T (0) + `2 + d , otherwise
And for r ≥ 2:

T (r) =


T (r − 1) + `2 + S , if some process fails in the time interval

(T (r − 2) + `2,T (r − 1) + `2]
T (r − 1) + `2 + d , otherwise

Claim 25.5

For all r ≥ 0, T (r) is an upper bound on the time for all not-yet-failed
processes to complete their simulation of r rounds of A.
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Consensus Solution by Transformation of Synchronous Algorithms

Upper bound: Proof Theor. 25.3 part 2 (2/2)

T (f + 1) is an upper bound for all not-yet-failed processes to
complete their simulation of f + 1 rounds.

T (f + 1) + O(l2) is an upper bound on the time for all nonfaulty
processes to perform their decide output action.

From the definition of T (r):

T (f + 1) = T (0) + (T (1)− T (0)) + . . .+ (T (f + 1)− T (f ))

Given that there are at most f faults, and S > d we have:

T (f + 1) ≤ T (0) + f (`2 + S) + (`2 + d)

Plugging in the bound for S (= Ld + d + O(L`2)) yields:

T (f + 1) ≤ T (0) + f (Ld + d) + d + O(fL`2)

Which implies the upper bound.
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Consensus Solution by Transformation of Synchronous Algorithms

Upper bound: Proof of Claim 25.5

Claim 25.4

Let r ≥ 0 and let j be any process index.
If process j fails by time T (r) + `2, then j is detected as failed by all
not-yet-failed processes by time T (r + 1)

Proof S is an upper bound for the time to detect process failures.

Proof of Claim 25.5 (by induction on r)

Basis r = 0: trivially true.
Inductive step r ≥ 1.

1. If some process j fails by time T (r − 1) + `2, then Claim 25.4
implies that it is timed out by all not-yet-failed processes by
T (r).

2. Otherwise, it sends all its round r messages by T (r − 1) + `2.
These arrive at their destinations by time T (r − 1) + `2 + d .
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Consensus Solution by Transformation of Synchronous Algorithms

Lower bound: Theorem 25.6

Theorem 25.6

Suppose that n ≥ f + 2. Then, there is no n-process agreement algorithm
for the partially synchronous network model that guarantees f -failure
termination, in which all non-faulty processes always decide strictly before
time (f + 1)d .

Idea of proof - by contradiction

This theorem extends the lower bound of f + 1 on the number of
rounds to solve agreement in the synchronous network model to the
partially synchronous network model.

1. Assume there is such an algorithm A.

2. Transform A into an f -round synchronous algorithm A′, thus
contradicting a previously proved result.
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Consensus Solution by Transformation of Synchronous Algorithms

Lower bound: proof sketch of Theor. 25.6 (1/4)

Since this is an impossibility result, we will consider a strongly timed
model, i.e. a partially synchronous model whose executions have the
following restrictions:

1. All inputs arrive at the beginning, i.e. time 0.

2. All tasks proceed as slowly as possible, subject to the `2 upper bound.

I All locally controlled steps occur at times that are multiples of `2.

For each process, the task steps occur in a prespecified order.

3. For every r ∈ N, all messages sent in the interval [rd , (r + 1)d) are
delivered at exactly time (r + 1)d .
Also, messages delivered to a single process i at the same time, are
delivered in order of the sender indices.

4. At a time that is multiple of both `2 and d , all the message deliveries
occur prior to all the locally controlled process steps.
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Consensus Solution by Transformation of Synchronous Algorithms

Lower bound: proof sketch of Theor. 25.6 (2/4)

WLOG, let A be a “deterministic” algorithm that solves agreement in
the strongly timed model.

Since messages are delivered at times multiple of d and processes
must decide before (f + 1)d , let processes decide at their first step
after the time fd message deliveries (we assume `2 < d)

The behavior of A is very close to the behavior of an f -round
synchronous network algorithm:

I For every r ≥ 1, since no message arrives between times ((r − 1)d , rd),
the messages sent in the interval [(r − 1)d , rd) are all determined by
process states just after the time (r − 1)d deliveries. Thus we might try
to regard these messages as the round r of a synchronous algorithm.

Pedro F. Souto (FEUP) Consensus with Partial Synchrony 24 / 55



Consensus Solution by Transformation of Synchronous Algorithms

Lower bound: proof sketch of Theor. 25.6 (3/4)

Problem The assumptions wrt process failures are not identical.

strongly timed model if process i fails at some point in interval
[(r − 1)d , d), then for each node j 6= i , it may succeed in sending
some of the messages it is supposed to send and fail to send the
remaining. In the

synchronous network model if process i fails during round r , then, for
each process j , it either fails or succeeds to send round r message

This is equivalent to assume that, for each process j , i sends
either all or none of its messages in the interval [(r − 1)d , r).

Solution Generalize the synchronous network model in a way that does
not invalidate the proof of its lower bound for reaching consensus in the
synchronous network model (Theorem 6.33):

We allow process i to send, at each round r , a finite sequence of
messages, each to an arbitrary, specified destination.
Instead of sending only one message to each process.
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Consensus Solution by Transformation of Synchronous Algorithms

Lower bound: proof sketch of Theor. 25.6 (4/4)

It is possible to transform the given algorithm A into an agreement
algorithm A′ in this stronger synchronous model:

I The sequence of messages process i sends in the interval [(r − 1)d , rd)
in A, is the sequence of messages A′ sends in its round r .

I The behavior caused by the failure of i in A corresponds to a possible
behavior in A′.

The resulting algorithm A′ is an f -round agreement algorithm for the
stronger synchronous model, for n ≥ f + 2. This is a contradiction of
Theorem 6.33 (of the “honeycomb book”).

Question: Could we also overcome the differences in the behaviors of the
models in the presence of process failures, by restricting the number of
messages that each process sends to each destination in time interval
[(r − 1)d , d) of the fictitious algorithm A?
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Consensus PSynchAgreement

PSynchAgreement: Rationale

The bounds (((f + 1)d , fLd + (f + 1)d)) for the B algorithm are not
very tight.

I Furthermore, the upper bound is somewhat large.

PSynchAgreement is a more efficient algorithm that uses the
PSynchFD failure detector just like the B algorithm. I.e., each
process Pi is composed of 2 MMT automata:

Qi is i ’s portion of the PSynchFD algorithm
Ri is the main automaton. It includes the following:

informed-stoppedi inputs (which are matched with Qi outputs);
stopped state variable, that keeps track of the set of failed

processes, i.e. processes j for which it has received the inputs
informed-stopped(j)i ;
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Consensus PSynchAgreement

PSynchAgreement: Algorithm (1/2)
PSynchAgreement proceeds in rounds, numbered 0, 1, . . .

I In each round, Ri tries to reach a decision.
I Ri can decide 0 only in even numbered rounds.
I Ri can decide 1 only in odd numbered rounds.

Ri begins round 0 only after it receives its input.
Ri maintains a variable decided to keep track of the processes from
which it has received a decided message.

Round 0

If Ri ’s input is 0, then Ri does the following:

1. send goto(2) message to all processes

2. output decide(0)

3. send decided to all processes

If Ri ’s input is 1, then Ri does the following:

1. send goto(1) message to all processes

2. go to round 1
Pedro F. Souto (FEUP) Consensus with Partial Synchrony 29 / 55



Consensus PSynchAgreement

PSynchAgreement: Algorithm (2/2)

Round r (> 0)

1. Ri waits until it has received, either a:

goto(r + 1) message from some process, or
goto(r) message from every process that is not in stoppedi ∪decidedi .

2. If Ri has received a goto(r + 1) message, then it does the following:

1. send goto(r + 1) message to all processes
2. go to round r + 1

Else (Ri has received only goto(r) messages),

1. send goto(r + 2) message to all processes
2. output decide(r mod 2)
3. send decided to all processes

Note The algorithm is biased towards decision value 0.

Definition A process i tries to decide at round r ≥ 0 if it sends at least
one goto(r + 2) message in preparation for a decide event at round r .

i may end not performing decide if it fails in the meantime
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Consensus PSynchAgreement

PSynchAgreement: “Cleaned up” execution

g(1)

d

g(1)

g(2)

1

i(1)

0

i(0)

r3 = 0 r3 = 1 r3 = 2

g(2)

g(2)

2

i(0)

3

i(1)

d(0)

g(2)

d
d(0)

d

d(0)

d
d(0)

The goto(2) message sent by P2 in its round 0 is received by P1 when
it is already in round 2.

In round 1, P3 receives a goto(2) message, which was relayed by P1,
after having received a goto(1) message also from P1.
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Consensus PSynchAgreement

PSynchAgreement: Proof of safety properties (1/2)

Lemma 25.7 Theor. 25.9 Proof Lemma 25.11

In any timed execution of PSynchAgreement and for any r ≥ 0, the
following is true:

1. If any process sends a goto(r + 2) message, then some process tries
to decide in round r .

2. If any process reaches round r + 2, then some process tries to decide
at round r .

Lemma 25.8 Theor. 25.9 Proof Lemma 25.11

In any timed execution of PSynchAgreement and for any r ≥ 0, if a
process i decides at round r , then the following are true:

1 Ri sends no goto(r + 1) messages.

2 Ri sends a goto(r + 2) message to every process.

3 No process tries to decide at round r + 1.
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Consensus PSynchAgreement

PSynchAgreement: Proof of safety properties (2/2)

Theorem 25.9: Safety properties

The PSynchAgreement algorithm guarantees well-formedness,
agreement and validity.

Well-formedness is straightforward.
Validity

If all processes start with 0, then no process ever leaves round 0,
and because this is an even round cannot decide 1.

If all processes start with 1, then no process tries to decide 0 in
round 0. From Lemma 25.7 part 1 , no process reaches round
2, or any other even round. Thus no process decides 0.

Agreement Suppose that Ri decides at round r and that no process
decides at any earlier round.
By Lemma 25.8 part 3 , no process tries to decide at round r + 1.
Then by Lemma 25.7 part 1 , no process can reach round r + 3, and
so on. Thus a process can reach only rounds with the same parity as r ,
hence all the decisions must be the same.
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Consensus PSynchAgreement

PSynchAgreement: Proof of lemma25.7

Lemma 25.7

In any timed execution of PSynchAgreement and for any r ≥ 0, the
following is true:

1. If any process sends a goto(r + 2) message, then some process tries
to decide in round r .

2. If any process reaches round r + 2, then some process tries to decide
at round r .

Proof

1. The first goto(r + 2) message must be generated this way. Other
goto(r + 2) messages are generated after receiving such a message.

2. A process advances to round r + 2 only after receiving a
goto(r + 2) message.
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Consensus PSynchAgreement

PSynchAgreement: Proof Lemma 25.8

Proof (parts 1 and 2) Should be clear from the algorithm specification.

Proof (part 3) By contradiction. Assume Rj tries to decide at round
r + 1. Then at some point in round r + 1:

Rj must have received only goto(r + 1) messages and no
goto(r + 2) messages from all processes that are not in
stopped ∪ decided .
Since i sends no message goto(r + 1), then it must be in
stoppedj ∪ decidedj .
If i ∈ stoppedj , then by the upper bound on PSynchFD , Rj

must have already received all messages sent by Ri before it failed.
But, then it should have also received a goto(r + 2) message,
which is a contradiction.
If i ∈ decidedj , then Rj must have received a decided message from
Ri . But, Ri sends such a message only after sending a goto(r + 2)
message. Because the channels are FIFO, then Rj must have
already received the goto(r + 2) message, which is a contradiction.

Pedro F. Souto (FEUP) Consensus with Partial Synchrony 35 / 55



Consensus PSynchAgreement

PSynchAgreement: Lemma’s for Liveness

Definition A round r is quiet if there is some process that does not
receive a goto(r + 1) message from any other process.

Lemma 25.10 Theor. 25.14 Proof

In any admissible execution of PSynchAgreement, each process continues
to advance from round to round until it either fails or decides.

Lemma 25.13 Theor. 25.14 Proof

In any admissible execution of PSynchAgreement in which there are at
most f failures, there is a quiet round numbered at most f + 2.

Lemma 25.12 Theor. 25.14 Proof

In any admissible execution of PSynchAgreement, if round r is quiet, then
no process ever advances to round r + 1.
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Consensus PSynchAgreement

PSynchAgreement: Wait-free termination

Theorem 25.14

The PSynchAgreement algorithm guarantees wait-free termination, i.e.
that all nonfaulty processes eventually decide, for any 0 ≤ f ≤ n faulty
processes.

Proof Consider an admissible timed execution in which all init events
occur. Let i be any nonfaulty process.

- By Lemma 25.10 , Ri continues to advance from round to round
until it decides.

- But Lemma 25.13 implies that there is some quiet round r .
- And Lemma 25.12 implies that Ri cannot advance to round

r + 1.
- Therefore Ri must decide by round r .

Skip lemma proofs
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Consensus PSynchAgreement

PSynchAgreement: Proof Lemma 25.10

Lemma 25.10

In any admissible execution of PSynchAgreement, each process continues
to advance from round to round until it either fails or decides.

Proof By contradiction. Let r be the first round at which process i gets
stuck. Note that r must be at least 1.
- For any process Pj that ever fails, Qi must eventually detect its failure
and Ri will put j in stoppedi .
- Also, for any process Pj that ever decides but never fails, Ri must
eventually receive its decided message and put j in decidedi .
- Let I be the set of the remaining processes.
- Because r is the first round at which some process gets stuck, then all
processes in I must eventually reach round r or r + 1.
- Since r ≥ 1, then all processes in I must send either a goto(r) or
goto(r + 1) message to Pi , which Ri eventually receives.
- Thus the condition for Ri to either decide or move to round r + 1 is
satisfied, i.e. i does not get stuck at round r .
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Consensus PSynchAgreement

PSynchAgreement: Proof Lemma 25.13 (1/2)

Lemma 25.13

In any admissible execution of PSynchAgreement in which there are at
most f failures, there is a quiet round numbered at most f + 2.

Lemma 25.11 Proof

In any admissible execution of PSynchAgreement and for r ≥ 0, the
following are true:

1. If no process tries to decide at round r , then round r + 1 is quiet.

2. If some process decides at round r , then round r + 2 is quiet.

Remember A round r is quiet if there is some process that does not
receive a goto(r + 1) message from any other process.

Pedro F. Souto (FEUP) Consensus with Partial Synchrony 39 / 55



Consensus PSynchAgreement

PSynchAgreement: Proof Lemma 25.13 (2/2)

Proof

1 If any process decides by round f , then this follows from
Lemma 25.11, part 2 .

2 Suppose that no process decides by round f .
Since there are at most f failures, there must be some round r ,
0 ≤ r ≤ f , in which no process fails.
We claim that no process tries to decide in round r .
Thus, it follows from Lemma 25.11, part1 that round r + 1 is
quiet.

Proof of claim

- Suppose for the sake of contradiction that some process i tries to
decide in round r .

- Since process i does not fail at round r , admissibility implies that
process i must decide at round r .

- But this contradicts the assumption that no process decides by round
f .
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Consensus PSynchAgreement

PSynchAgreement: Proof of Lemma 25.12

Lemma 25.12

In any admissible execution of PSynchAgreement, if round r is quiet, then
no process ever advances to round r + 1.

Remember A round r is quiet if there is some process that does not
receive a goto(r + 1) message from any other process.

Proof (by contradiction)
If process i advances to round r + 1, then Ri has previously sent a
goto(r + 1) message to all processes. These eventually receive them,
which means that round r is not quiet.
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PSynchAgreement: Proof of Lemma 25.11

Lemma 25.11

In any admissible execution of PSynchAgreement and for r ≥ 0, the
following are true:

1. If no process tries to decide at round r , then round r + 1 is quiet.

2. If some process decides at round r , then round r + 2 is quiet.

Remember A round r is quiet if there is some process that does not
receive a goto(r + 1) message from any other process.

Proof

1. From Lemma 25.7, part1 , if no process tries to decide in round
r , then no process sends a goto(r + 2) message, and therefore
round r + 1 is quiet.

2. From Lemma 25.8, part3 , if some process decides at round r ,
then no process tries to decide at round r + 1. Then, part 1 implies
that round r + 2 is quiet.
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Consensus PSynchAgreement

PSynchAgreement: Upper bound

Theorem 25.15

In any admissible timed execution of PSynchAgreement in which inputs
arrive on all ports and there are at most f failures, the time from the last
init event until all nonfaulty processes have decided is at most
Ld + (2f + 2)d + O(f `2 + L`2)

Proof The proofs of Theorem 25.14 and its supporting lemmas have
shown that:

1. The execution must consist of:
I A sequence of non-quiet rounds, numbered up to f + 1
I Followed by a single quiet round, say r .

2. All nonfaulty processes must decide without advancing past
round r .
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Consensus PSynchAgreement

PSynchAgreement: Proof of upper bound (1/2)
Let S = Ld + d + O(L`2) be an upper bound for the PSynchFD algorithm.
Let T ′,T (0),T (1),T (2), . . . ,T (r) be a sequence of times, where, T ′ is
the time at which the last init occurs
T (k) with 0 ≤ k ≤ r , is the latest time by which every process has either
failed, decided, or advanced to the next round, k + 1.
Thus, all nonfaulty processes must decide by T (r)
Clearly:

T (0)− T ′ = O(`2) is the time for round 0.

T (k)− T (k − 1) ≤ S + O(`2), with k ≥ 1 is an upper bound for round k .
Plugging in the value for S we get:

T (k)− T (k − 1) ≤ Ld + d + O(L`2)

We claim ( Claim 25.x )that for non-quiet rounds we can get a bound
that does not depend on L:

T (k)− T (k − 1) ≤ (fk + 1)(d + O(fk`2))
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PSynchAgreement: Proof of upper bound (2/2)

Since:

T (0)− T ′ = O(`2)
T (k)− T (k − 1) ≤ (fk + 1)(d + O(fk`2)), for all k , 1 ≤ k ≤ r − 1
T (r)− T (r − 1) ≤ Ld + d + O(L`2)

It follows that:

T (r)− T ′ ≤ Ld + d + O(L`2) +
k=r∑
k=1

(fk + 1)(d + O(`2))

Finally, since
∑k=r−1

k=1 fk ≤ f and r ≤ f + 2, we obtain:

T (r)− T ′ ≤ Ld + 2(f + 2)d + O(f `2 + L`2)
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Consensus PSynchAgreement

PSynchAgreement: Proof of bound for non-quiet round

Claim 25.16 proof

Let fk denote the number of processes that fail while sending goto(k + 1)
messages. Then the total time that elapses from the sending of the first
goto(k + 1) message by Rj until the receipt of the goto(k + 1) message by
Ri is at most (fk + 1)d + O(fk`2)

- Since Rj sends the first goto(k) while in round k − 1, it follows that it
is sent before T (k − 1)

- From Claim 25.16, it follows that all processes either advance to
round k + 1, fail, or decide by:

T (k−1)+(fk +1)d +O(fk`2)+O(`2) = T (k−1)+(fk +1)(d +O(`2)

- Thus, from the definition of T (k), for any non-quiet round:

T (k)− T (k − 1) ≤ (fk + 1)(d + O(fk`2))
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PSynchAgreement: Proof of Claim 25.16 (1/2)

j

j′

i

rj = k − 1

≤ fk
g(k + 1)

g(k + 1)

g(k + 1)

g(k + 1)

Proof Rj sends its goto(k + 1) messages as part of an attempt to send
such messages to all processes including Pi .

1. If Pj does not fail in the middle of this attempt, then Rj succeeds
in sending this message to Ri , and Ri will receive it within time d
of when Rj sends it.
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PSynchAgreement: Proof of Claim 25.16 (2/2)

Proof

2. Even if Pj fails in the middle of this attempt, all the messages it
succeeds in sending will arrive to their destination within time d of
when Rj sends it.

- Likewise, each process Pj′ that relays the message from Rj to Ri

sends its goto(k + 1) message as part of an attempt to send such
message to all processes including to Pi .

- Again, if P ′
j does not fail in the middle of its attempt, then R ′

j

succeeds in sending the message to Ri , which receives it within time
d . . .

3. Because the maximum number of faulty nodes in round k is fk , the
total time from when the original goto(k + 1) message is sent by
Rj until i receives some goto(k + 1) message is at most
(fk + 1)d + O(fk`2).
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More On bounds

Theorem 25.17

Suppose that n ≤ f + 1. Then there is no n-process agreement algorithm
for the partially synchronous model that guarantees f -failure termination,
in which all non-faulty processes always decide strictly before time
Ld + (f − 1)d .

Proof See Section 25.5 of the honeycomb book.

Lower bound Upper bound

Transformed Synchronous
Algorithm

(f + 1)d fLd + (f + 1)d

PSynchAgreement Ld + 2(f + 1)d

Ld + (f − 1)d
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Consensus PSynchAgreement

Discussion

Question Is the f + 1 bound on the number of rounds surprising?

Answer Shouldn’t be!

Although the model used considers the time explicitly, the system is
still synchronous, not partially synchronous.

1. We assumed an upper bound, d , on the time a channel takes to
deliver a message.

2. We assumed both a lower bound, `1, an an upper bound, `2, on the
time a process takes to execute an action.

These are the requirements often stated in the definition of a
synchronous system

I Usually, together with access to a clock, that measures the time
within a linear envelope of “real” time.

I What happened to this assumption?
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Consensus More Partially Synchronous Models

Some results for truly partially synchronous systems

Synchronous processes, asynchronous channels I.e., the time taken by
channels to deliver a message is unbounded.

Theorem 25.23

There is no algorithm in the model with synchronous processes and
asynchronous channels that solves the agreement problem and guarantees
1-failure termination.

Asynchronous processes, synchronous channels I.e., the time taken by
processes to take an action is unbounded.

Theorem 25.24

There is no algorithm in the model with asynchronous processes and
d-bounded channels that solves the agreement problem and guarantees
1-failure termination.

Proof sketches By contradiction. The behavior observed may be the same
as in a totally asynchronous system. Thus . . .
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Consensus More Partially Synchronous Models

Some results for eventually synchronous systems

Definition eventually both the processes and the channels take a bounded
time to execute their actions.

E.g., both processes and channels may “sleep” for an arbitrary
finite time, after which they start behaving synchronously.

Result In this case, there is a solution.

But it requires n > 2f . The intuition is as follows:
I To ensure termination, a process should not wait for messages from

more than n − f responses, because up to f nodes may fail.
I To ensure agreement, every decision should take into account the

messages from at least one common process.

Theorem 25.25

The agreement problem is solvable, with f -failure termination, in the
model where process task time bounds of [`1, `2] and bounds of d for all
messages hold eventually, provided that n > 2f .
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Further Reading

Chapter 25, Consensus With Partial Synchrony, of Nancy Lynch’s
Distributed Algorithms.

Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Bounds on the time to reach agreement in the presence of timing
uncertainty. Journal of the ACM, 41(1):122–152, January 1994.
(PDF available at Nancy Lynch’s web page at MIT.)

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, April 1988. (PDF available at Nancy Lynch’s web
page at MIT.)

Flaviu Cristian, and Christof Fetzer, The Timed Asynchronous
Distributed System Model, IEEE Transactions on Parallel and
Distributed Systems, 10(6):642–657, June 1999 (PDF available from
Christof Fetzer web page.)
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