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The evolution of distributed computing and applications pat new challenges on models,
architectures and systems. To name just one, ‘reconcilivggriainty with predictability’ is
required by today’s simultaneous pressure on increasimgjtiality of service of applications,
and on degrading the assurance given by the infrastructimie.challenge can be mapped onto
more than one facet, such as time or security or others. $rptigper we explore the time facet,
reviewing past and present of distributed systems modetsnzaking the case for the use of
hybrid (vs. homogeneous) models, as a key to overcoming séthe difficulties faced when
asynchronous models (uncertainty) meet timing specifinat{predictability). The Wormholes
paradigm is described as the first experiment with hybritfiiged systems models.
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1 Introduction

The evolution of distributed computing and applications pat new challenges on models, architectures
and systems. At the same time, evolution of technology hasgit new opportunities that should not be
wasted by researchers on distributed systems [28, 26].

To name just one grand challenge, ‘reconciling uncertaivith predictability’ is required by today’s
confluence of two conflicting goals [29]. On one side, the guwes on increasing the quality of service of
applications as seen by users (response, determinisngtn@ss, security). On the other side, the continued
lack of guarantees given by the infrastructure, becaugseatra improvements in technology peer with the
increase in asymmetry and instability brought by accessarks, mobility, de-regulation, etc. To exemplify
the magnitude of the challenge, it can be mapped onto attl@astery important facets:

e Time facet where the asynchronous computing model unfortunately cat serve timed require-
ments, despite the fact that there is today practically méulisipplication where time is absent from,
be it in the explicit form of timeliness properties, or in anglicit form as an artefact to achieve
higher-level system properties (e.g., timeouts). Howeer technology improvements in networks
and computers have by no means put us in the position of béleg@use the synchronous comput-
ing model in an unrestricted manner. We have had to learn b@wvedrcome this contradiction: a few
steps were given in the past few years and maybe we stargseg@ale light at the end of the tunnel.

e Security facetwhere the Trusted Computing Base fault model, a.k.a. deaghmodel in the security
world (by designed-in intrusion prevention) has provedtodie realistic as a generic model for the
construction of secure systems. On the other hand, theashia.k.a. Byzantine fault model, a proven
pessimistic abstraction for safety-critical applicai@®ubject to independent accidental faults, suffers
from the difficulty of stochastically assessing the disttibn of malicious faults (attacks and intru-
sions) perpetrated by hackers, let alone from the more thaiowas risk of the lack of independence
(common-mode faults).

Given this scenario, one can legitimately ask a few constelg sceptical questions:

e Should we continue to use asynchronous distributed comgputiodels? And if yes, shouldn’t we try
to formalise their limitations under the constraints posgdhese new scenarios?

e Should we continue to use Byzantine fault models and algostto address security-related prob-
lems? And if yes, shouldn't we try to formalise their limitais under these new constraints?

e If no, does the answer mean jumping right into the oppositdbeabove, crash and synchronous
models? Or should we paraphrase the old saying 'the trughidiehe middle’?

In fact, take the time facet: should we talk about two modsiachronous and asynchronous? Or should
we try and find a model capable of describing, perhaps in anpetrac way, the spectrum of synchrony of
a system, sweeping between the two extremes, pretty muehhié spectrographic analysis of a chemical
substance? Will not this be a better explanation of the waifteér all the aim of any theory? Continuing the
physics metaphor, such a model would still represent dashomogeneous models (when a single stripe
occurs in the spectrum), but it would also open avenues fallariging new ways, like hybrid models (when
more than one stripe occur in the spectrum).

Suppose that such hybrid abstract distributed system madald find a mapping onto (correspondingly
hybrid) architectural models that reflect reality (the natking and computational environment) at least as
well as the current ones. That is, we would be as comfortalitetheir faithfulness as we were, until today,
with saying that the Internet is faithfully represented bg tisynchronous model. Then, under these more



expressive models we might devise computational paradajtesto solve the contradictions expressed in
the opening.

Some of these questions were equated over the past few wearsyere addressed by a few people
researching in this area. In this paper, we will survey somehat was done, trying to motivate problems
and solutions. Using time/synchrony as an anchor themehaw fow hybrid models can be a powerful
solution to some problems that push the asynchronous mote timit, and an enabler for the construction
of innovative algorithms. We present the Wormholes hybridrithuted system model, and discuss the most
relevant issues concerning it.

In the security facet there are also very interesting resuii very efficient and resilient Byzantine
wormhole-aware algorithms, but for space reasons theynailbe addressed in this paper.

2 Thecasefor hybrid distributed system models

The FLP impossibility result set the stage for the diffiadtito be encountered when wanting to solve
problems related to time (the alma mater of synchrony) irmssly time-free systems: Fischer, Lynch
and Paterson showed that any consensus protocol for asymly systems has the possibility of non-
termination if a single process is allowed to crash[15]. Tésult extended by equivalence to another
important primitive, atomic broadcast[7]. Several authimied to overcome these difficulties in a number
of ways, generally around these two important but very sjpgmioblems. See also [19, 25] for surveys.

What is the minimal synchrony to solve increasingly mordlgms in the time domain?

In the past, basically two solutions have been employedrtuigivent this result. The first resorts to
the use of randomisation [3], and the second to extendindpdlse& asynchronous model with some time-
related assumptions. These assumptions can be madexfj 13], or they can be encapsulated in some
construct such as an unreliable failure detector [7]. Dwadr&l. studied a range of restrictions to the fully
asynchronous model that would enable the solution of causenChandra & Toueg proposed the failure
detectors, a very elegant way to structure consensugdetdgjorithmics, but in a very similar manner they
gave a hierarchy of such detectors, requiring the systere twr become synchronous enough, and for long
enough periods, in order to solve consensus [7].

Cristian & Fetzer devised the timed-asynchronous modekravtthe system alternates between syn-
chronous and asynchronous behaviour [8], making progrées whe system has just enough synchronism
to make decisions such as 'detection of timing failures’.

Where should that synchrony be?

In [30] the following observation was madsynchronism is not an invariant property of syster@sm
the one hand, it was meant that the degree of synchronismsviarthe time dimension: during the timeline
of their execution, systems become faster or slower, axtiawe greater or smaller bounds. The works just
cited have indeed relied on this variation as a problem so®a the other hand, it was meant that it varies
with the part of the system being considered, that is, in jaes dimension: some components are more
predictable and/or faster than others, actions performed amongst the former have better defined and/or
smaller bounds. This was the innovative perspective atitingt, and the insight that led to the Wormholes
hybrid distributed system model reported in these pages.

Now, which of the two dimensions (time or space) is more aqoctive? That is, which dimension
allows us to think about algorithms in the abstract drawiogrd which later lead to more realistic, feasible,
resilient systems? There is no silver bullet, but a remdekdiference is that under the time dimension
oneexpectghe system to become adequately synchronous, whereas loyiegphe space dimension i.e.,
acting on the system structure, omakeghe necessary synchronism happen. That is, one can make some
parts of the system exhibit a well-defined (and perpetuaksirgd) time-domain behaviour, regardless of
the asynchronism of the rest of the system.



All the works cited above considered the eventual evolutibtihe system through periods of sufficient
synchrony, during its execution: they only explored thestidimension. In essence, this explains why we
vow for hybrid distributed systems modelghere different loci of the system have different promsrtand
can rely on different sets of assumptions (e.g., faultsglsgonism). These models allow us to take the best
from both dimensions, both in theoretical and practicahteras we exemplify during this paper.

What is there to be gained vs. homogeneous models?

Hybrid distributed systems models are:

e Expressive models w.r.t. reality Real systems are partially synchronous in the time dinoendsut
further to that, they generally have components with déffitidegrees of synchronism, i.e., in the space
dimension: different bounds or absence thereof, diffespteds, different tightness and steadiness
(metrics of synchronismgee [32]). Homogeneous models simply cannot take advantage finds,
being confined to use the worst-case values or bounds (é.the deast synchronous component),
which ultimately— and safely— mean asynchrony.

e Sound theoretical basis for crystal-clear proofs of cotress— Why were some problems found in
earlier-generation asynchronous algorithms [6, 2]? Orihefeasons was because timing assump-
tions were made for the system that were not in agreementhédtmodel. Artificially restricting such
assumptions to 'parts’ of an asynchronous system does pobira the situation much if it follows a
homogeneous model: we may fall into the same kind of corttiadis. However, by using a hybrid
model, the heterogeneous properties of the different loitiesystem (the space dimension...) are by
nature represented, and we are in consequence forced toithkphake correctness assertions about
each of these loci, and about the interfaces to one another.

e Naturally supported by hybrid architectures Sisters to hybrid distributed systems models, hybrid
architectures accommodate the existence of actual commpe subsystems possessing different
properties than the rest of the system. Hybrid models arkitaotures provide feasibility condi-
tions for powerful abstractions which are to a large exteritnplementable on canonical (homo-
geneous) asynchronous models: failure detectors; adyrmahnous channels; timely execution
triggers (a.k.a. watchdogs) or timely executed actionsdgi or event-triggered). Hybrid models
and architectures may drastically increase the usefubredapplicability of all these abstractions.

e Enablers of concepts for building totally new algorithraA powerful yet simple concept behind the
first experiments with hybrid models was: use the weakestiplesmodel for the generic system;
imagine that a “toolbox” of simple but stronger low-levehgees is available, locally accessible to
processes (e.g., timely execution triggers; timely exataictions; trusted store); these local services
can be distributed via alternative channels, to obtairh&urstrength (e.g. synchronous channels;
trusted global time; trusted binary agreement); deviserélgns which, by working between the two
space-time realms, the generic and the enhanced subsystegaining the “toolbox”, achieve new
properties (e.g., making an asynchronous process enj@jtiexecution).

Hoping to have successfully motivated the problem, we aheggim present, in a brief and necessarily
informal way, the hybrid distributed systems model, niekredWormholes modedfter the astrophysics
theory, and a companion architecting concept, calletiitectural hybridisation

3 TheWormholes model

We introduce the Wormholes model with the help of a metaphor:

The fastest speed in the universe is the speed of light, whimhld make it impractical to

2The same could be said of security-related abstractionsecoimg tamper-proofness vs. Byzantine models.



travel to, or communicate with, remote parts of the univekf@vever, a theory argues that one
could take shortcuts, through, say, another dimensionrexetherge safely at the desired point,
apparently much faster than what is allowed by the speedlf. [Those shortcuts received the
inspiring name ofWormholes. In essence, Wormholes prefigure an ancillary theory which
coexists with the classical theory, predicting subsysteigh present exceptional properties
allowing to overcome fundamental limitations of the systamder the classical theory.

A hybrid distributed system model features several subgystfollowing different sets of assumptions,
e.g. about synchrony or faults. In theory, nothing prevents/brid model where, for example, several
synchronous subsystems coexist with several asynchrammes However, note that the instance of such
model meeting the best practice of using the simplest plessibdel with the weakest possible assumptions
is the one that fulfils the metaphor: a weak main or ‘payloatisystem; a few small, simple wormholes.

Moving from metaphor to reality, let us define ttdormholes distributed system modEbr the sake of
simplicity and without loss of generality, we assume a bdaisystem, with one payload system, and one
wormhole subsystem, more complex systems can be recyrsigéhed:

e There is gpayload systen$,, where algorithms and applications normally execute, caag®fN,
payload processasg that communicate via message passing, thrquegtioad channels

¢ S, follows a set of fault and synchrony assumptiatis (normally weak, such as processing and
communication being asynchronous, and faulty behaviowaBine).

e There is avormhole subsystet$i,, composed ofV,, wormhole processes;. Wormhole processes
may or not communicate amongst themselves, in which cagalthso via message passing, through
wormhole channels

e S, follows a set of fault and synchrony assumptidiis normally stronger than the payload (such as
processing and communication being synchronous, ang/faetaviour crasf).

e The only way for payload processes to communicate with wotenprocesses is through wormhole
gateways)V¢, with well-defined interfaces. The specific type of intedfas not part of the model.

e Likewise, for payload processes the properties offeredryyveormhole are defined and enjoyatl
a wormhole gateway. The payload processes do not have to kowwvormholes are implemented,
and vice-versa.

e The relative number of payload and wormhole processes iparvtof the model. In fact, maybe
not all payload processes access wormholes in certainithligns;, or maybe more than one payload
process can access a same wormhole.

In practical terms, a wormhole is a privileged artefact taused only when needed, and supposedly
implements functionality hard to achieve on the payloadesys which in turn should run most of the
computing and communications activity.

Note that the payload and the wormholes follow different s&ft assumptions, but there is no pre-
assumption about what these sets are. For example, theapaylay be asynchronous and/or have Byzantine
failures, but it may also have some synchrony for a startdimawormhole-aware real-time systems...).
Likewise, a wormhole may be synchronous, partially syncbus, etc. as fits the needs of the problems to
solve.

So, in summary, the key innovative characteristic of the Mfasles model consists in making some
stronger properties (e.g., synchrony) happen in a welhddfand safe way, whilst preserving the canonical
model’s weak abstractions (e.g., asynchrony). Note th#dstthe most fascinating and powerful incarnation

3The interested reader may refer to URL: http://www.worcligqn/definition/Wormhole
“This is the extreme, for the sake of example, but we hope te kei/clear that wormholes can assume any weaker synchrony
or fault model.



of a wormhole would be distributed (through alternative roieds with enough synchrony), the simpler
versions, local wormholes, still provide very useful supge.g., local security and/or timeliness functions).
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Figure 1:The Wormholes model: (a) Local wormholes; (b) Distributeatmholes

Figure 1 gives a picture of the model just presented, in admahincarnation. Figure 1(a) suggests a
model with local wormholes, whereas Figure 1b depicts aibiged counterpart. The local wormholes case
is the special case of this model where wormhole processastdmmmunicate directly with one another.

This model ensures a clear separation of concerns betweeprdiperties offered by wormholes and
their construction, and between the execution on either gich wormhole gateway. For instance, consider
a system with an asynchronous payload and timely execut@mboles, which guarantee that a function
f invoked at their interface is always executed in a known bledntime. It is easy to reason about the
invocation off on a wormholew,,, by a procesg,.. Using whatever invocation method stipulated, the timing
of py getting to invokef at the interface concerns the payload system realm. Thadiwfiw, getting to
executef since invoked concerns the wormhole subsystem realm. lisleeifva possible result is expected
to be returned by the time from invocation to return at the interface is whetisgpounded in the wormhole
realm, whereas the timing for, to usethe result pertains to the payload realm. To give an intuiibout
reality, in this example one might imagine eaghco-located with a local wormhole; implemented by
some sort of real-time micro-kernel, accessegppgs a run-time system call. Although it seems counter-
intuitive, with slightly more sophistication in the exenii@d interface, asynchronous processes can indeed
take advantage from synchronous executions. The readefieised to [31, 22], where such techniques are
described.

4 Architectural hybridisation

Is it possible to travel through Wormhole§his metaphoric question translates into two practicakoie

it feasible to construct systems such as postulated aboke8yAtems with Wormholes of any real use?
Fortunately, it is easier to answer these questions tharaveltin hyperspace. Recapitulating the ob-

servations made in the introduction, hybrid modelling dftdbuted systems is the path to achieving in-

crementally stronger behaviour taking the best of two wrlgtaining the canonical and useful weakest-

assumptions paradigm of asynchronism; achieving syngmoim a predictable manner.



Architectural hybridisatiorwas proposed as a new paradigm to architect modular sysbassd on a
few simple principles:
e Systems may have realms with different non-functional progs, such as synchronism, faulty be-
haviour, quality-of-service, etc.

e The properties of each realm are obtained by constructidheofubsystem(s) therein.

e These subsystems have well-defined encapsulation anthasgstthrough which the former properties
manifest themselves.

As to the construction, architectural hybridisation is aatder of the construction of realistic hybrid
distributed systems[29]. In fact, it is quite straightfang to build architecturally-hybrid systems. Some
earlier systems already exhibited flavours of architettuyaridisation [24, 33]. More recently, a few ex-
perimental wormhole systems have been built supporteddbytactural hybridisation, and the feasibility of
these implementations, both in the time and security facetsmply discussed in [4, 10, 29]. A timeliness
and security distributed wormhole implementation is daadable from our page for experimental work
with distributed algorithms on hybrid systems.

As to the usefulness of wormholes, the reader is referre@3pfpr an overview of the multiple po-
tential uses of wormholes. In one of our experiments, we hlmetyped a specific kind of wormhole
subsystem called@imely Computing Base (TCHB)at allows achieving timely actions in systems that can be
asynchronous. At the TCB distributed wormhole gatewayt afssmple but extremely helpful services are
provided: timely execution; duration measurement; tinfaiture detection. We introduced a technique to
interface a synchronous subsystem from a time-free oneingéke asynchronous system perform timely
(synchronous) actions or detect the failure thereof [31]30] we present a formal embodiment of the TCB
model and architecture.

The power of a wormhole such as the Timely Computing Basetésdsting: immersed in an asyn-
chronous system, it makes feasible the construction otilabtractions such as perfect failure detectors,
triggers such as watchdogs, periodic task dispatchersyanw mere synchronous communication chan-
nels[18, 14, 5, 35, 17]. However, it is important to note thatCB is sufficientto implement a number
of interesting paradigms, but it is by no mearecessaryo implement all of them. The TCB, fully syn-
chronous and distributed, was intended as a proof of comfepbrmholes, and nahe ultimate wormhole.

If it proved, as it did, to be easy to implement such a compbreand feasible even in large scale set-
tings [29]— then doors would be open for weaker and simplemfoof wormholes: subsets of the TCB
services, including just local services; raw services aghynchronous bare channels or trusted real-time
clocks; partially synchronous variants; trusted varidotsecurity purposes, etc.

In the malicious failure domain, resilience to intrusioask(a. intrusion tolerance) can be drastically
augmented by using wormholes. In another experiment, weselt\a set of new functions resilient to
malicious faults for this new wormhole, calling it Trusteaiely Computing Base [10], and showed ways
to perform trusted actions in the presence of uncertaickdtand vulnerabilities, such as solving consensus
quite efficiently [9, 22].

5 Traveling through Wormholes

A few questions were raised by several readers lately, aheutise and the potential of the Wormholes
model. It is generally accepted that wormhole implemeaoitestimake interesting contributions by showing
how several typically made theoretical assumptions sudym@shrony or eventual synchrony, or paradigms
like failure detection, can be substantiated in a real “eByonous” system. However, the power of worm-
holes as hybrid distributed system models has further gafins, some of which with theoretical reach.

SURL: http://www.navigators.di.fc.ul.pt/software/tatdex.htm



The most important ones are discussed in this section.

5.1 The substance of assumptions

The issue of fault or synchrony assumptions deserves $pdigiation. It is customary to say that one should
make the weakest assumptions possible. While from the @dtpland resilience viewpoints this is not
arguable, let us take a slightly richer systems perspective

In computer science, assumptions should represent wifltisat precision the environment
they are supposed to depict. For example, people assumartiasscale (i.e., Internet) systems
are asynchronous not for the sake of it, but just becausadrto substantiate that they behave
synchronously. In other words, the confidence (also calteeragé on the former assumption
is higher than on the latter one. In other words, the asymghassumption leads to safer designs
in this case.

Note that under this viewpoint, the paiassumption;coverage and not just the assumption, is what
measures its 'weakness’ or 'strength’. This opens refresperspectives on system modelling. For example,
in open systems the assumptiof+ ‘A local function is executed in a known bounded time’ can laeto
have a significant coverage for sensible bounds. Howevenilsassumption B- A message is delivered
in a known bounded time’ would have a significantly lower pabitity of being met. So although similar,
A is weaker thamB. We would have more confidence on the correctness of a sysieetlonA than one
based om3: the former system would be safer [23, 32].

If the reader is at least moderately convinced of these aegtsn let us now take the hybrid model
perspective. Suppose assumptibior B referred to a privileged part of an otherwise asynchrongatem
(respectively a real-time microkernel, and an alternagiugchronous network): their coverage can be made
by constructiorso high that either or both could be taken for granted.

On another tone, there is some important research on hydurltirhodels [20, 34], that assumes differ-
ent failure type distributions for system processes. Irtrest with wormholes, these are not hybrid system
models, but in fact, as the name implies, heterogeneousdaiype distributions over a same homogeneous
model. In an analogy with the cited partial synchrony wotkere is a baseline weak fault assumption for
processes (the weakest of the hybrid set, e.g., Byzantinkiia assumed restriction of the actual faulty be-
haviour of some of these Byzantine processes in one or morg, waj., omissions or even crash. In essence,
these models, of stochastic inspiratiefpecta given distribution of fault types to occur in a homogeneous
system model, in which case more efficient algorithms caniiengo solve important problems (such as
Byzantine agreement, featured by most of these works). nsemuence, the hybrid faults model is subject
to the same potential issues of substance discussed abmweevet, the concept leads to quite effective
algorithms and one could envisage removing these sourcesnokrn by using architectural hybridisation
to model and build systems with hybrid faults.

5.2 Wormholesand partial synchrony

Some may ask how different this is from a partially synchismodel where communication and processes
have some synchronism, already studied in the literat@re[B]. Some reasons make it different, as we
discuss below, highlithing the contributions of the Worrdgsomodel.

Firstly, since the model adopted by those studies is honamen restrictions of asynchrony refer to
all components (processes or channels). For example, if ibrmneunication channels eventually become
synchronous’, then all channels must comply with this. Imssmuence, these restrictions are equated
solely in the time dimension (that igxpectingeventual synchronism to occur). In the example above,



channels are expected to become synchronous without tkisteng any model feature substantiating these
mutations from asynchrony to synchrony and back. Theseambsissumptions can be given a great deal of
substance under Wormhole models. For example, wormhopgsosiuthe abstraction of components with
heterogeneous properties, and as such, restrictionsrola®ny can be assumed fawmecomponents only,
rather than for the whole system. This opens avenues foyismyitighter theory results.

Secondly, one might still ask why could restrictions to atyonny not be assumed just for some com-
ponents in a classical homogeneous model. The problem isfoastance, as discussed in the previous
section. In a homogeneous asynchronous model, thereléstttsubstantiate such assumptions, and in
consequence they are really very strong assumptions. Wmel®/ormholes model, any restrictions to asyn-
chrony can be assumed also in the space dimension, matediddiy the properties of a particular locus of
the hybrid system model, that imakingsynchronism occur, in an eventual or perpetual manner. ne
ple considering, as done in some more recent works, thaifigpeactions or routines are timely triggered,
or executed, or specific messages have known delivery bedrtkdese are all hard to substantiate under a
homogeneous asynchronous system model. However, theriecevoaild drastically improve if we brought
to scene a hybrid model with wormholes of the adequate kiesis.r a watchdog, a real-time dispatcher, or
a few synchronous network channels.

Finally, whereas the problems studied under the partiattaymy umbrella are specific and have thus a
semantics attached— of which the failure detector to sabvesensus is an example— the wormholes offer
generic solutions to any problem with any mix of synchrony.

5.3 Wormholesand FLP

Wormholes are another way to circumvent the FLP impossiliésult. The first thing to notice is that a
system with wormholes is a combination of asynchronous amdasynchronous subsystems. Therefore,
the FLP result can be circumvented. However, as we have iagplaarlier, this does not mean that it is
equivalent to the partial synchrony combinations studigdtwork et al. [12, 13]. The Wormholes model
can represent all of the latter, but it also encompasses ampioations of hybrid behaviour of system
components, where synchronous properties: are encapdufatand can be confined to, subsets of the
components; and can for example be perpetual.

On the other hand, when talking about encapsulation, onétmégall the work of Chandra & Toueg
to circumvent FLP. The remarkable intuition in this work vihe separation of concerns between what is
time-free and what may not be, in a consensus algorithm. Mexvket us dissect the work of these authors:
() they encapsulated a given semantics in an oracle (éadetector properties), such that this oracle would
allow a given asynchronous algorithm to solve consensi)st $o happened that fulfilling these semantics
required synchronism; (iii) the difficulty of implementirigilure detectors in an asynchronous system for
solving consensus remained. And this is what we are goingstusls next.

5.4 Wormholesand Failure Detectors

One might think that a wormhole differs little from a failudetector: synchrony assumptions are encapsu-
lated and hidden in a component. There is much more to thisrtteets the eye, as we explain next.

Failure detectors (FDs) are a very elegant concept fromaékieal point of view [7]. Using the well-
known ‘oracle’ technique, the authors had the remarkabietion of killing two birds with one stone: sep-
arating the main computation issues (consensus) from tieteted to the dynamics of the players involved
in it (failure detection), abstracted by two intuitive pespies, accuracy and completeness; and obliging the
consensus structure to be completely time-free, which avtmgically confine to the oracle any computa-
tions that would one way or the other be related to time/ssoroh as predicted by the FLP result.



From a computational model’s perspective, the FD oractwalithe construction of algorithms that can
be completely asynchronous. From a system model’s pergpgitte one taken in this paper, an observation
is in order: nothing is advanced, in the FD work, about thaiéecture or implementability of such detectors.
In fact, the usual direct mapping of the FD computational el¢d the asynchronous system model unveils
the fundamental contradiction of building some synchromyap of a fully asynchronous environment, and
this contradiction has emerged in several works in the pesddke.

This contradiction is amplified by arguments about the athge of having perfect failure detectors
(the hardest to implement), given the applicability lintidas of weaker ones[18]. Moreover, a recent
paper has shown that “there is no free lunch”[11]: if we wisldb really useful things, in the presence
of an unbounded number of failures (or uncertain, for thetenatwe have to make correspondingly strong
assumptions about our environment. In the cited paper,uti®es argue about the need for perfect failure
detectors (and no weaker).

None of this overshadows the importance of the algorithroittribution of FDs. The wormholes just
happen to yield solutions to the FD implementability proiieunder the Wormholes distributed system
model, the contradiction is removed. In fact, an asynchusrgystem with failure detectors is a system
with asynchronous payload and a synchronous enough woemii@lupport the chosen FD’s assumptions.
A consensus algorithm would run on the payload part, and theniole gateway would offer the FD
interface.

But wormholes are more generic: the functionality in a woolehs not predefined or confined to failure
detection, and the problem to solve not confined to consenkstead, it is totally up to the algorithm
creator, and as such this opens much more generic avenuesding FDs, which are only starting to be
tracked. Stimulating results appeared recently, for exarmphe form of very efficient Byzantine-resilient
consensus without failure detectors [9, 22].

5.5 Wormholes considered necessary

As pointed out in the introduction, the Wormholes modeliiles and represents many borderline situations
where homogeneous asynchronous system models navigatiarigerous waters of timing assumptions.
For example, when we use a watchdog to timely trigger an éxgcin an otherwise asynchronous system,
we may not be aware that the only timely thing that happensciicla for the start of the execution. The
execution itself imsynchronousind as such not time bounded by definition. One may still atigaieif the
watchdog caused a hardware reset, the reboot executioarniargaed to be synchronous. In reality, maybe
so. In theory, we have a problem: either we stick to the homegeas asynchronous model, and that period
of the execution is outside the boundary conditions for tlegleh and thus not explained by it, which is a
formally incorrect situation; or we use a hybrid model, whiorrectly represents the situation, by modelling
as a wormhole both the watchdog and the low-level machiretydevelop reboot until returning control to
the (asynchronous) high-level world.

A second example is the use of local clocks in otherwise dspmous systems, for example to trigger
periodic actions. Again one may argue that it is quite réeli® rely on hardware clocks that run similarly
to real time, deployed in any PC or workstation. Indeed, gairathe only timely thing that happens are the
hardwareticks all the operating system post-processing to give usersytsé emcl ock is asynchronous
by definition of the model. In reality we cannot expect thest emcl ock function of an asynchronous
system to be a deterministic function of real time. In otherdg, we cannot guarantee any stronger se-
mantics for such function than that of a sequence countee r@ay still argue that at least down-timers
might work (e.g., PCs have hardware devices that count domumaber of time units to zero and give a
timeout, used to mark periods). Note that this is similar weeéchdog, and all that was said in the previous
paragraph applies. To give a simple intuition, imagine that (asynchronous) reader decided to rely on
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her real time alarm clock to wake her up in order to performeagetion due at that time, but instead falls
asleep again, wakes up two hours later, and executes tla:atttis would still be legitimate behaviour for
an asynchronous entity, but we fear the action might have hepelessly late...

In these situations where asynchronous models must be eomapted with timing assumptions in order
to address timeliness specifications, implicit or explii® have seen no alternative to the Wormholes model
for a correct specification of such settings.

6 Conclusions

We have presented a new perspective to distributed systemdsling and architecting, by introducing the
notion of hybridisation [30, 29]. In this paper, we discusseveral advantages of using hybrid distributed
systems models, &/ormhole modedacked byarchitectural hybridisation

From an architectural viewpoint, hybridisation shows htw theory can be put to work in practice:
by introducing feasibility conditions for the implemerndat of very important paradigms such as failure
detectors, in essence non-implementable in classicakchsymous system models; and by bridging gaps
between the possibility in theory and feasibility in praeti providing efficient building blocks for some
theoretical solutions whose previous implementationsewery complex.

The theoretical merits of the Wormholes model stand on mios&act ground. We showed that although
from a distance, one could classify such model of partiatkyony, a closer look reveals the differences:
classical partial synchrony works considered variatiohasynchrony in a homogeneous model, and as
such, they concerned the system as a whole; likewise, thgyeaplored the time dimension, in the sense
that these variations were assumed by expecting the evewoiation of the system through periods of
sufficient synchrony; finally, the problems studied under plartial synchrony umbrella were specific (e.g.
consensus) and sometimes this makes respective solutsmdeévoted to address generic problems.

Wormholes bring new insights to distributed systems maougknd architecting:

e They allow extending partial synchrony to the space dinmmnsi regardless of the asynchronism
of the whole system, some parts of it exhibit a well-defined] perpetual if desired, time-domain
behaviour.

e They enforce the desired behaviour or “better” propertigéis-comes with architectural hybridisa-
tion, whereby certain components of the system have strdye@viour by construction— leading to
designs that are simultaneously more predictable and safer

e They offer a generic framework for providing any such begeperties— such components could
host perfect failure detectors, inasmuch as they could &mgiother useful abstraction for building
algorithms.

Once the intuition behind wormholes captured, as we hopaue achieved in this paper, it is quite easy
to devise algorithms under the Wormholes model. The intedeseader is referred to [31, 9, 22], which
provide clear examples.

Facing the need for timeliness equated in the beginning, giveh the difficulty of achieving even
the slightest timed behaviour in asynchronous systemegraleauthors have introduced ad-hoc conditions
or constructs to address this problem, which explicitly maplicitly point to, or prefigure, the concept of
wormhole [18, 1, 16, 14, 5, 35, 21]. However, we hope to hawsvstithat it is important to clearly follow a
hybrid model from the beginning, if one is to achieve the completemqtal of these constructs, and avoid
potential problems deriving from implicit and non-substatied timing assumptions. As such, we hope this
paper will contribute to the advance of distributed systemoslelling and algorithmics.
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For space reasons, the security facet was not explored aigdygin this paper, though there are at least
as many challenging findings and evolutions to report, gerhia a future paper, on the use of wormholes
to build intrusion-tolerant (e.g., Byzantine-resilieafporithms. Furthermore, an important recent finding
points to the impossibility of building resilient asynchous systems (ones that stay up and correct long
enough to fulfil their mission) and to the high probabilitytbfs impossibility result causing the failure of
such systems under malicious attacks [27]. This problenbedixed through the use of wormholes.

Likewise, we almost exclusively discussed the merits ofrite@ model in representing asynchronous
systems and applications. As we said, asynchronous syssmst possibly solve problems with timeliness
specifications, and these are an increasing part of our@ags/computer-dependent life. This brings added
importance to time in distributed systems, and in fact glaee interesting results about achieving timed (and
even real-time) behaviour, by hybridisation of time-frégoaithmics with timed wormholes, which for lack
of space we could not address in this paper.
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