
ACM SIGACT News Distributed Computing Column 21

Sergio Rajsbaum∗

Abstract

The Distributed Computing Column covers the theory of systems that are composed of a number of
interacting computing elements. These include problems ofcommunication and networking, databases,
distributed shared memory, multiprocessor architectures, operating systems, verification, Internet, and
the Web. This issue consists of:

• “Travelling through Wormholes: a new look at Distributed Systems Models,” by Paulo E. Verı́ssimo.

Many thanks to Paulo for his contribution to this issue.

Request for Collaborations: Please send me any suggestions for material I should be including in this
column, including news and communications, open problems,and authors willing to write a guest column
or to review an event related to theory of distributed computing.

Travelling through Wormholes:
a new look at Distributed Systems Models

Paulo E. Verı́ssimo1

Abstract

The evolution of distributed computing and applications has put new challenges on models,
architectures and systems. To name just one, ‘reconciling uncertainty with predictability’ is
required by today’s simultaneous pressure on increasing the quality of service of applications,
and on degrading the assurance given by the infrastructure.This challenge can be mapped onto
more than one facet, such as time or security or others. In this paper we explore the time facet,
reviewing past and present of distributed systems models, and making the case for the use of
hybrid (vs. homogeneous) models, as a key to overcoming someof the difficulties faced when
asynchronous models (uncertainty) meet timing specifications (predictability). The Wormholes
paradigm is described as the first experiment with hybrid distributed systems models.

∗Instituto de Matemáticas, UNAM. Ciudad Universitaria, Mexico City, D.F. 04510.rajsbaum@math.unam.mx.
1pjv@di.fc.ul.pt. Univ. of Lisboa Faculty of Sciences. Bloco C6.3.10, Campo Grande, 1749-016 Lisboa, Portugal. Tel. +(351)

21 750 0103. Fax +(351) 21 750 0533. Navigators Home Page: http://www.navigators.di.fc.ul.pt. This work was partiallysupported
by the FCT, through the Large-Scale Informatic Systems Laboratory (LaSIGE), and by the EC, through IST projs. RESIST and
CRUTIAL.

1

pjv
Note
@article{Ver:06sigactn,
 author = "Paulo Ver\'{\i}ssimo",
 title = "Travelling through Wormholes:
 a new look at Distributed Systems Models",
 journal = "SIGACTN: SIGACT News (ACM Special Interest Group on Automata
 and Computability Theory)",
 volume = "37",
 number = "1, (Whole Number 138)",
 pages = {---},
 year = "2006",
}

1 Introduction
The evolution of distributed computing and applications has put new challenges on models, architectures
and systems. At the same time, evolution of technology has brought new opportunities that should not be
wasted by researchers on distributed systems [28, 26].

To name just one grand challenge, ‘reconciling uncertaintywith predictability’ is required by today’s
confluence of two conflicting goals [29]. On one side, the pressure on increasing the quality of service of
applications as seen by users (response, determinism, robustness, security). On the other side, the continued
lack of guarantees given by the infrastructure, because dramatic improvements in technology peer with the
increase in asymmetry and instability brought by access networks, mobility, de-regulation, etc. To exemplify
the magnitude of the challenge, it can be mapped onto at leasttwo very important facets:

• Time facet, where the asynchronous computing model unfortunately does not serve timed require-
ments, despite the fact that there is today practically no useful application where time is absent from,
be it in the explicit form of timeliness properties, or in an implicit form as an artefact to achieve
higher-level system properties (e.g., timeouts). However, the technology improvements in networks
and computers have by no means put us in the position of being able to use the synchronous comput-
ing model in an unrestricted manner. We have had to learn how to overcome this contradiction: a few
steps were given in the past few years and maybe we start seeing a pale light at the end of the tunnel.

• Security facet, where the Trusted Computing Base fault model, a.k.a. crashfault model in the security
world (by designed-in intrusion prevention) has proved notto be realistic as a generic model for the
construction of secure systems. On the other hand, the arbitrary, a.k.a. Byzantine fault model, a proven
pessimistic abstraction for safety-critical applications subject to independent accidental faults, suffers
from the difficulty of stochastically assessing the distribution of malicious faults (attacks and intru-
sions) perpetrated by hackers, let alone from the more than obvious risk of the lack of independence
(common-mode faults).

Given this scenario, one can legitimately ask a few constructively sceptical questions:

• Should we continue to use asynchronous distributed computing models? And if yes, shouldn’t we try
to formalise their limitations under the constraints posedby these new scenarios?

• Should we continue to use Byzantine fault models and algorithms to address security-related prob-
lems? And if yes, shouldn’t we try to formalise their limitations under these new constraints?

• If no, does the answer mean jumping right into the opposites of the above, crash and synchronous
models? Or should we paraphrase the old saying ’the truth lies in the middle’?

In fact, take the time facet: should we talk about two models,synchronous and asynchronous? Or should
we try and find a model capable of describing, perhaps in a parametric way, the spectrum of synchrony of
a system, sweeping between the two extremes, pretty much like the spectrographic analysis of a chemical
substance? Will not this be a better explanation of the world, after all the aim of any theory? Continuing the
physics metaphor, such a model would still represent classical homogeneous models (when a single stripe
occurs in the spectrum), but it would also open avenues for challenging new ways, like hybrid models (when
more than one stripe occur in the spectrum).

Suppose that such hybrid abstract distributed system models could find a mapping onto (correspondingly
hybrid) architectural models that reflect reality (the networking and computational environment) at least as
well as the current ones. That is, we would be as comfortable with their faithfulness as we were, until today,
with saying that the Internet is faithfully represented by the asynchronous model. Then, under these more

2

expressive models we might devise computational paradigmsable to solve the contradictions expressed in
the opening.

Some of these questions were equated over the past few years,and were addressed by a few people
researching in this area. In this paper, we will survey some of what was done, trying to motivate problems
and solutions. Using time/synchrony as an anchor theme, we show how hybrid models can be a powerful
solution to some problems that push the asynchronous model to the limit, and an enabler for the construction
of innovative algorithms. We present the Wormholes hybrid distributed system model, and discuss the most
relevant issues concerning it.

In the security facet there are also very interesting results on very efficient and resilient Byzantine
wormhole-aware algorithms, but for space reasons they willnot be addressed in this paper.

2 The case for hybrid distributed system models
The FLP impossibility result set the stage for the difficulties to be encountered when wanting to solve
problems related to time (the alma mater of synchrony) in essentially time-free systems: Fischer, Lynch
and Paterson showed that any consensus protocol for asynchronous systems has the possibility of non-
termination if a single process is allowed to crash [15]. Theresult extended by equivalence to another
important primitive, atomic broadcast [7]. Several authors tried to overcome these difficulties in a number
of ways, generally around these two important but very specific problems. See also [19, 25] for surveys.

What is the minimal synchrony to solve increasingly more problems in the time domain?
In the past, basically two solutions have been employed to circumvent this result. The first resorts to

the use of randomisation [3], and the second to extending thebasic asynchronous model with some time-
related assumptions. These assumptions can be made explicitly [12, 13], or they can be encapsulated in some
construct such as an unreliable failure detector [7]. Dworket al. studied a range of restrictions to the fully
asynchronous model that would enable the solution of consensus. Chandra & Toueg proposed the failure
detectors, a very elegant way to structure consensus-related algorithmics, but in a very similar manner they
gave a hierarchy of such detectors, requiring the system to be or become synchronous enough, and for long
enough periods, in order to solve consensus [7].

Cristian & Fetzer devised the timed-asynchronous model, where the system alternates between syn-
chronous and asynchronous behaviour [8], making progress when the system has just enough synchronism
to make decisions such as ’detection of timing failures’.

Where should that synchrony be?
In [30] the following observation was made:synchronism is not an invariant property of systems. On

the one hand, it was meant that the degree of synchronism varies in the time dimension: during the timeline
of their execution, systems become faster or slower, actions have greater or smaller bounds. The works just
cited have indeed relied on this variation as a problem solver. On the other hand, it was meant that it varies
with the part of the system being considered, that is, in the space dimension: some components are more
predictable and/or faster than others, actions performed in or amongst the former have better defined and/or
smaller bounds. This was the innovative perspective at thattime, and the insight that led to the Wormholes
hybrid distributed system model reported in these pages.

Now, which of the two dimensions (time or space) is more constructive? That is, which dimension
allows us to think about algorithms in the abstract drawing board which later lead to more realistic, feasible,
resilient systems? There is no silver bullet, but a remarkable difference is that under the time dimension
oneexpectsthe system to become adequately synchronous, whereas by exploring the space dimension i.e.,
acting on the system structure, onemakesthe necessary synchronism happen. That is, one can make some
parts of the system exhibit a well-defined (and perpetual if desired) time-domain behaviour, regardless of
the asynchronism of the rest of the system.

3

All the works cited above considered the eventual evolutionof the system through periods of sufficient
synchrony, during its execution: they only explored the time dimension. In essence, this explains why we
vow for hybrid distributed systems models, where different loci of the system have different properties and
can rely on different sets of assumptions (e.g., faults, synchronism). These models allow us to take the best
from both dimensions, both in theoretical and practical terms, as we exemplify during this paper.

What is there to be gained vs. homogeneous models?
Hybrid distributed systems models are:

• Expressive models w.r.t. reality— Real systems are partially synchronous in the time dimension. But
further to that, they generally have components with different degrees of synchronism, i.e., in the space
dimension: different bounds or absence thereof, differentspeeds, different tightness and steadiness
(metrics of synchronism,see [32]). Homogeneous models simply cannot take advantage from this,
being confined to use the worst-case values or bounds (e.g., of the least synchronous component),
which ultimately— and safely— mean asynchrony.

• Sound theoretical basis for crystal-clear proofs of correctness— Why were some problems found in
earlier-generation asynchronous algorithms [6, 2]? One ofthe reasons was because timing assump-
tions were made for the system that were not in agreement withthe model. Artificially restricting such
assumptions to ’parts’ of an asynchronous system does not improve the situation much if it follows a
homogeneous model: we may fall into the same kind of contradictions. However, by using a hybrid
model, the heterogeneous properties of the different loci of the system (the space dimension...) are by
nature represented, and we are in consequence forced to explicitly make correctness assertions about
each of these loci, and about the interfaces to one another.

• Naturally supported by hybrid architectures— Sisters to hybrid distributed systems models, hybrid
architectures accommodate the existence of actual components or subsystems possessing different
properties than the rest of the system. Hybrid models and architectures provide feasibility condi-
tions for powerful abstractions which are to a large extent unimplementable on canonical (homo-
geneous) asynchronous models: failure detectors; ad-hoc synchronous channels; timely execution
triggers (a.k.a. watchdogs) or timely executed actions (periodic or event-triggered)2. Hybrid models
and architectures may drastically increase the usefulnessand applicability of all these abstractions.

• Enablers of concepts for building totally new algorithms— A powerful yet simple concept behind the
first experiments with hybrid models was: use the weakest possible model for the generic system;
imagine that a “toolbox” of simple but stronger low-level services is available, locally accessible to
processes (e.g., timely execution triggers; timely executed actions; trusted store); these local services
can be distributed via alternative channels, to obtain further strength (e.g. synchronous channels;
trusted global time; trusted binary agreement); devise algorithms which, by working between the two
space-time realms, the generic and the enhanced subsystem containing the “toolbox”, achieve new
properties (e.g., making an asynchronous process enjoy timely execution).

Hoping to have successfully motivated the problem, we are going to present, in a brief and necessarily
informal way, the hybrid distributed systems model, nick-namedWormholes modelafter the astrophysics
theory, and a companion architecting concept, calledarchitectural hybridisation.

3 The Wormholes model
We introduce the Wormholes model with the help of a metaphor:

The fastest speed in the universe is the speed of light, whichwould make it impractical to

2The same could be said of security-related abstractions concerning tamper-proofness vs. Byzantine models.

4

travel to, or communicate with, remote parts of the universe. However, a theory argues that one
could take shortcuts, through, say, another dimension, andre-emerge safely at the desired point,
apparently much faster than what is allowed by the speed of light. Those shortcuts received the
inspiring name ofWormholes3. In essence, Wormholes prefigure an ancillary theory which
coexists with the classical theory, predicting subsystemswhich present exceptional properties
allowing to overcome fundamental limitations of the systems under the classical theory.

A hybrid distributed system model features several subsystems following different sets of assumptions,
e.g. about synchrony or faults. In theory, nothing preventsa hybrid model where, for example, several
synchronous subsystems coexist with several asynchronousones. However, note that the instance of such
model meeting the best practice of using the simplest possible model with the weakest possible assumptions
is the one that fulfils the metaphor: a weak main or ‘payload’ subsystem; a few small, simple wormholes.

Moving from metaphor to reality, let us define theWormholes distributed system model. For the sake of
simplicity and without loss of generality, we assume a bi-modal system, with one payload system, and one
wormhole subsystem, more complex systems can be recursively defined:

• There is apayload systemSp where algorithms and applications normally execute, composed ofNp

payload processespi that communicate via message passing, throughpayload channels.

• Sp follows a set of fault and synchrony assumptionsHp (normally weak, such as processing and
communication being asynchronous, and faulty behaviour Byzantine).

• There is awormhole subsystemSw composed ofNw wormhole processeswi. Wormhole processes
may or not communicate amongst themselves, in which case they do so via message passing, through
wormhole channels.

• Sw follows a set of fault and synchrony assumptionsHw normally stronger than the payload (such as
processing and communication being synchronous, and faulty behaviour crash4).

• The only way for payload processes to communicate with wormhole processes is through wormhole
gateways,WG, with well-defined interfaces. The specific type of interface is not part of the model.

• Likewise, for payload processes the properties offered by any wormhole are defined and enjoyedat
a wormhole gateway. The payload processes do not have to knowhow wormholes are implemented,
and vice-versa.

• The relative number of payload and wormhole processes is notpart of the model. In fact, maybe
not all payload processes access wormholes in certain algorithms, or maybe more than one payload
process can access a same wormhole.

In practical terms, a wormhole is a privileged artefact to beused only when needed, and supposedly
implements functionality hard to achieve on the payload system, which in turn should run most of the
computing and communications activity.

Note that the payload and the wormholes follow different sets of assumptions, but there is no pre-
assumption about what these sets are. For example, the payload may be asynchronous and/or have Byzantine
failures, but it may also have some synchrony for a start (imagine wormhole-aware real-time systems...).
Likewise, a wormhole may be synchronous, partially synchronous, etc. as fits the needs of the problems to
solve.

So, in summary, the key innovative characteristic of the Wormholes model consists in making some
stronger properties (e.g., synchrony) happen in a well-defined and safe way, whilst preserving the canonical
model’s weak abstractions (e.g., asynchrony). Note that whilst the most fascinating and powerful incarnation

3The interested reader may refer to URL: http://www.wordiq.com/definition/Wormhole
4This is the extreme, for the sake of example, but we hope to have left clear that wormholes can assume any weaker synchrony

or fault model.

5

of a wormhole would be distributed (through alternative channels with enough synchrony), the simpler
versions, local wormholes, still provide very useful support (e.g., local security and/or timeliness functions).

W d

W c

W e

W b

W a

P t

P v

P u

P s

P r

W o r m h o l e
S u b s y s t e m

S w

W d

W c

W e

W b

W a

P t

P v

P u

P s

P r

P a y l o a d S y s t e mS p

(a) (b)

P a y l o a d
S y s t e m

S p

W o r m h o l e
S u b s y s t e m

S w

W G

W G

W G

W G

W G

W G

W G

W G

W G

W G

Figure 1:The Wormholes model: (a) Local wormholes; (b) Distributed wormholes

Figure 1 gives a picture of the model just presented, in a bi-modal incarnation. Figure 1(a) suggests a
model with local wormholes, whereas Figure 1b depicts a distributed counterpart. The local wormholes case
is the special case of this model where wormhole processes donot communicate directly with one another.

This model ensures a clear separation of concerns between the properties offered by wormholes and
their construction, and between the execution on either side of a wormhole gateway. For instance, consider
a system with an asynchronous payload and timely execution wormholes, which guarantee that a function
f invoked at their interface is always executed in a known bounded time. It is easy to reason about the
invocation off on a wormholewu, by a processpk. Using whatever invocation method stipulated, the timing
of pk getting to invokef at the interface concerns the payload system realm. The timing of wu getting to
executef since invoked concerns the wormhole subsystem realm. Likewise if a possible result is expected
to be returned byf : the time from invocation to return at the interface is what gets bounded in the wormhole
realm, whereas the timing forpk to usethe result pertains to the payload realm. To give an intuition about
reality, in this example one might imagine eachpi co-located with a local wormholewi implemented by
some sort of real-time micro-kernel, accessed bypi as a run-time system call. Although it seems counter-
intuitive, with slightly more sophistication in the exemplified interface, asynchronous processes can indeed
take advantage from synchronous executions. The reader is referred to [31, 22], where such techniques are
described.

4 Architectural hybridisation
Is it possible to travel through Wormholes?This metaphoric question translates into two practical ones: Is
it feasible to construct systems such as postulated above? Are systems with Wormholes of any real use?

Fortunately, it is easier to answer these questions than to travel in hyperspace. Recapitulating the ob-
servations made in the introduction, hybrid modelling of distributed systems is the path to achieving in-
crementally stronger behaviour taking the best of two worlds: retaining the canonical and useful weakest-
assumptions paradigm of asynchronism; achieving synchronism in a predictable manner.

6

Architectural hybridisationwas proposed as a new paradigm to architect modular systems,based on a
few simple principles:

• Systems may have realms with different non-functional properties, such as synchronism, faulty be-
haviour, quality-of-service, etc.

• The properties of each realm are obtained by construction ofthe subsystem(s) therein.

• These subsystems have well-defined encapsulation and interfaces through which the former properties
manifest themselves.

As to the construction, architectural hybridisation is an enabler of the construction of realistic hybrid
distributed systems [29]. In fact, it is quite straightforward to build architecturally-hybrid systems. Some
earlier systems already exhibited flavours of architectural hybridisation [24, 33]. More recently, a few ex-
perimental wormhole systems have been built supported by architectural hybridisation, and the feasibility of
these implementations, both in the time and security facets, is amply discussed in [4, 10, 29]. A timeliness
and security distributed wormhole implementation is downloadable from our page5, for experimental work
with distributed algorithms on hybrid systems.

As to the usefulness of wormholes, the reader is referred to [29] for an overview of the multiple po-
tential uses of wormholes. In one of our experiments, we haveprototyped a specific kind of wormhole
subsystem calledTimely Computing Base (TCB)that allows achieving timely actions in systems that can be
asynchronous. At the TCB distributed wormhole gateway, a set of simple but extremely helpful services are
provided: timely execution; duration measurement; timingfailure detection. We introduced a technique to
interface a synchronous subsystem from a time-free one, making the asynchronous system perform timely
(synchronous) actions or detect the failure thereof [31]. In [30] we present a formal embodiment of the TCB
model and architecture.

The power of a wormhole such as the Timely Computing Base is interesting: immersed in an asyn-
chronous system, it makes feasible the construction of useful abstractions such as perfect failure detectors,
triggers such as watchdogs, periodic task dispatchers, or even mere synchronous communication chan-
nels [18, 14, 5, 35, 17]. However, it is important to note thata TCB issufficientto implement a number
of interesting paradigms, but it is by no meansnecessaryto implement all of them. The TCB, fully syn-
chronous and distributed, was intended as a proof of conceptof wormholes, and nottheultimate wormhole.
If it proved, as it did, to be easy to implement such a component— and feasible even in large scale set-
tings [29]— then doors would be open for weaker and simpler forms of wormholes: subsets of the TCB
services, including just local services; raw services suchas synchronous bare channels or trusted real-time
clocks; partially synchronous variants; trusted variantsfor security purposes, etc.

In the malicious failure domain, resilience to intrusions (a.k.a. intrusion tolerance) can be drastically
augmented by using wormholes. In another experiment, we devised a set of new functions resilient to
malicious faults for this new wormhole, calling it Trusted Timely Computing Base [10], and showed ways
to perform trusted actions in the presence of uncertain attacks and vulnerabilities, such as solving consensus
quite efficiently [9, 22].

5 Travelling through Wormholes
A few questions were raised by several readers lately, aboutthe use and the potential of the Wormholes
model. It is generally accepted that wormhole implementations make interesting contributions by showing
how several typically made theoretical assumptions such assynchrony or eventual synchrony, or paradigms
like failure detection, can be substantiated in a real “asynchronous” system. However, the power of worm-
holes as hybrid distributed system models has further implications, some of which with theoretical reach.

5URL: http://www.navigators.di.fc.ul.pt/software/tcb/index.htm

7

The most important ones are discussed in this section.

5.1 The substance of assumptions

The issue of fault or synchrony assumptions deserves special attention. It is customary to say that one should
make the weakest assumptions possible. While from the complexity and resilience viewpoints this is not
arguable, let us take a slightly richer systems perspective:

In computer science, assumptions should represent with sufficient precision the environment
they are supposed to depict. For example, people assume thatlarge-scale (i.e., Internet) systems
are asynchronous not for the sake of it, but just because it ishard to substantiate that they behave
synchronously. In other words, the confidence (also calledcoverage) on the former assumption
is higher than on the latter one. In other words, the asynchrony assumption leads to safer designs
in this case.

Note that under this viewpoint, the pair〈assumption;coverage〉, and not just the assumption, is what
measures its ’weakness’ or ’strength’. This opens refreshing perspectives on system modelling. For example,
in open systems the assumption ‘A- A local function is executed in a known bounded time’ can be made to
have a significant coverage for sensible bounds. However, a similar assumption ‘B- A message is delivered
in a known bounded time’ would have a significantly lower probability of being met. So although similar,
A is weaker thanB. We would have more confidence on the correctness of a system based onA than one
based onB: the former system would be safer [23, 32].

If the reader is at least moderately convinced of these arguments, let us now take the hybrid model
perspective. Suppose assumptionA or B referred to a privileged part of an otherwise asynchronous system
(respectively a real-time microkernel, and an alternativesynchronous network): their coverage can be made
by constructionso high that either or both could be taken for granted.

On another tone, there is some important research on hybrid fault models [20, 34], that assumes differ-
ent failure type distributions for system processes. In contrast with wormholes, these are not hybrid system
models, but in fact, as the name implies, heterogeneous failure type distributions over a same homogeneous
model. In an analogy with the cited partial synchrony works,there is a baseline weak fault assumption for
processes (the weakest of the hybrid set, e.g., Byzantine) and an assumed restriction of the actual faulty be-
haviour of some of these Byzantine processes in one or more ways, e.g., omissions or even crash. In essence,
these models, of stochastic inspiration,expecta given distribution of fault types to occur in a homogeneous
system model, in which case more efficient algorithms can be given to solve important problems (such as
Byzantine agreement, featured by most of these works). In consequence, the hybrid faults model is subject
to the same potential issues of substance discussed above. However, the concept leads to quite effective
algorithms and one could envisage removing these sources ofconcern by using architectural hybridisation
to model and build systems with hybrid faults.

5.2 Wormholes and partial synchrony

Some may ask how different this is from a partially synchronous model where communication and processes
have some synchronism, already studied in the literature[12, 13]. Some reasons make it different, as we
discuss below, highlithing the contributions of the Wormholes model.

Firstly, since the model adopted by those studies is homogeneous, restrictions of asynchrony refer to
all components (processes or channels). For example, if it is ‘communication channels eventually become
synchronous’, then all channels must comply with this. In consequence, these restrictions are equated
solely in the time dimension (that is,expectingeventual synchronism to occur). In the example above,

8

channels are expected to become synchronous without there existing any model feature substantiating these
mutations from asynchrony to synchrony and back. These abstract assumptions can be given a great deal of
substance under Wormhole models. For example, wormholes support the abstraction of components with
heterogeneous properties, and as such, restrictions to asynchrony can be assumed forsomecomponents only,
rather than for the whole system. This opens avenues for studying tighter theory results.

Secondly, one might still ask why could restrictions to asynchrony not be assumed just for some com-
ponents in a classical homogeneous model. The problem is oneof substance, as discussed in the previous
section. In a homogeneous asynchronous model, there is little to substantiate such assumptions, and in
consequence they are really very strong assumptions. Underthe Wormholes model, any restrictions to asyn-
chrony can be assumed also in the space dimension, materialised by the properties of a particular locus of
the hybrid system model, that is,makingsynchronism occur, in an eventual or perpetual manner. For exam-
ple considering, as done in some more recent works, that specific functions or routines are timely triggered,
or executed, or specific messages have known delivery bounds— these are all hard to substantiate under a
homogeneous asynchronous system model. However, the scenario would drastically improve if we brought
to scene a hybrid model with wormholes of the adequate kinds resp.: a watchdog, a real-time dispatcher, or
a few synchronous network channels.

Finally, whereas the problems studied under the partial synchrony umbrella are specific and have thus a
semantics attached— of which the failure detector to solve consensus is an example— the wormholes offer
generic solutions to any problem with any mix of synchrony.

5.3 Wormholes and FLP

Wormholes are another way to circumvent the FLP impossibility result. The first thing to notice is that a
system with wormholes is a combination of asynchronous and non-asynchronous subsystems. Therefore,
the FLP result can be circumvented. However, as we have explained earlier, this does not mean that it is
equivalent to the partial synchrony combinations studied by Dwork et al. [12, 13]. The Wormholes model
can represent all of the latter, but it also encompasses any combinations of hybrid behaviour of system
components, where synchronous properties: are encapsulated in, and can be confined to, subsets of the
components; and can for example be perpetual.

On the other hand, when talking about encapsulation, one might recall the work of Chandra & Toueg
to circumvent FLP. The remarkable intuition in this work wasthe separation of concerns between what is
time-free and what may not be, in a consensus algorithm. However, let us dissect the work of these authors:
(i) they encapsulated a given semantics in an oracle (failure detector properties), such that this oracle would
allow a given asynchronous algorithm to solve consensus; (ii) it so happened that fulfilling these semantics
required synchronism; (iii) the difficulty of implementingfailure detectors in an asynchronous system for
solving consensus remained. And this is what we are going to discuss next.

5.4 Wormholes and Failure Detectors

One might think that a wormhole differs little from a failuredetector: synchrony assumptions are encapsu-
lated and hidden in a component. There is much more to this than meets the eye, as we explain next.

Failure detectors (FDs) are a very elegant concept from a theoretical point of view [7]. Using the well-
known ‘oracle’ technique, the authors had the remarkable intuition of killing two birds with one stone: sep-
arating the main computation issues (consensus) from thoserelated to the dynamics of the players involved
in it (failure detection), abstracted by two intuitive properties, accuracy and completeness; and obliging the
consensus structure to be completely time-free, which would logically confine to the oracle any computa-
tions that would one way or the other be related to time/synchrony, as predicted by the FLP result.

9

From a computational model’s perspective, the FD oracle allows the construction of algorithms that can
be completely asynchronous. From a system model’s perspective, the one taken in this paper, an observation
is in order: nothing is advanced, in the FD work, about the architecture or implementability of such detectors.
In fact, the usual direct mapping of the FD computational model to the asynchronous system model unveils
the fundamental contradiction of building some synchrony on top of a fully asynchronous environment, and
this contradiction has emerged in several works in the past decade.

This contradiction is amplified by arguments about the advantage of having perfect failure detectors
(the hardest to implement), given the applicability limitations of weaker ones [18]. Moreover, a recent
paper has shown that “there is no free lunch” [11]: if we wish to do really useful things, in the presence
of an unbounded number of failures (or uncertain, for the matter), we have to make correspondingly strong
assumptions about our environment. In the cited paper, the authors argue about the need for perfect failure
detectors (and no weaker).

None of this overshadows the importance of the algorithmic contribution of FDs. The wormholes just
happen to yield solutions to the FD implementability problem: under the Wormholes distributed system
model, the contradiction is removed. In fact, an asynchronous system with failure detectors is a system
with asynchronous payload and a synchronous enough wormhole to support the chosen FD’s assumptions.
A consensus algorithm would run on the payload part, and the wormhole gateway would offer the FD
interface.

But wormholes are more generic: the functionality in a wormhole is not predefined or confined to failure
detection, and the problem to solve not confined to consensus. Instead, it is totally up to the algorithm
creator, and as such this opens much more generic avenues than using FDs, which are only starting to be
tracked. Stimulating results appeared recently, for example in the form of very efficient Byzantine-resilient
consensus without failure detectors [9, 22].

5.5 Wormholes considered necessary

As pointed out in the introduction, the Wormholes model clarifies and represents many borderline situations
where homogeneous asynchronous system models navigate thedangerous waters of timing assumptions.
For example, when we use a watchdog to timely trigger an execution in an otherwise asynchronous system,
we may not be aware that the only timely thing that happens is aclick for the start of the execution. The
execution itself isasynchronousand as such not time bounded by definition. One may still arguethat if the
watchdog caused a hardware reset, the reboot execution is guaranteed to be synchronous. In reality, maybe
so. In theory, we have a problem: either we stick to the homogeneous asynchronous model, and that period
of the execution is outside the boundary conditions for the model and thus not explained by it, which is a
formally incorrect situation; or we use a hybrid model, which correctly represents the situation, by modelling
as a wormhole both the watchdog and the low-level machinery that develop reboot until returning control to
the (asynchronous) high-level world.

A second example is the use of local clocks in otherwise asynchronous systems, for example to trigger
periodic actions. Again one may argue that it is quite realistic to rely on hardware clocks that run similarly
to real time, deployed in any PC or workstation. Indeed, but again the only timely thing that happens are the
hardwareticks, all the operating system post-processing to give users thesystem clock is asynchronous
by definition of the model. In reality we cannot expect thesystem clock function of an asynchronous
system to be a deterministic function of real time. In other words, we cannot guarantee any stronger se-
mantics for such function than that of a sequence counter. One may still argue that at least down-timers
might work (e.g., PCs have hardware devices that count down anumber of time units to zero and give a
timeout, used to mark periods). Note that this is similar to awatchdog, and all that was said in the previous
paragraph applies. To give a simple intuition, imagine thatthe (asynchronous) reader decided to rely on

10

her real time alarm clock to wake her up in order to perform some action due at that time, but instead falls
asleep again, wakes up two hours later, and executes the action: this would still be legitimate behaviour for
an asynchronous entity, but we fear the action might have been hopelessly late...

In these situations where asynchronous models must be complemented with timing assumptions in order
to address timeliness specifications, implicit or explicit, we have seen no alternative to the Wormholes model
for a correct specification of such settings.

6 Conclusions
We have presented a new perspective to distributed systems modelling and architecting, by introducing the
notion of hybridisation [30, 29]. In this paper, we discussed several advantages of using hybrid distributed
systems models, orWormhole models, backed byarchitectural hybridisation.

From an architectural viewpoint, hybridisation shows how the theory can be put to work in practice:
by introducing feasibility conditions for the implementation of very important paradigms such as failure
detectors, in essence non-implementable in classical asynchronous system models; and by bridging gaps
between the possibility in theory and feasibility in practice, providing efficient building blocks for some
theoretical solutions whose previous implementations were very complex.

The theoretical merits of the Wormholes model stand on more abstract ground. We showed that although
from a distance, one could classify such model of partial synchrony, a closer look reveals the differences:
classical partial synchrony works considered variations of asynchrony in a homogeneous model, and as
such, they concerned the system as a whole; likewise, they only explored the time dimension, in the sense
that these variations were assumed by expecting the eventual evolution of the system through periods of
sufficient synchrony; finally, the problems studied under the partial synchrony umbrella were specific (e.g.
consensus) and sometimes this makes respective solutions less devoted to address generic problems.

Wormholes bring new insights to distributed systems modelling and architecting:

• They allow extending partial synchrony to the space dimension— regardless of the asynchronism
of the whole system, some parts of it exhibit a well-defined, and perpetual if desired, time-domain
behaviour.

• They enforce the desired behaviour or “better” properties—this comes with architectural hybridisa-
tion, whereby certain components of the system have stronger behaviour by construction— leading to
designs that are simultaneously more predictable and safer.

• They offer a generic framework for providing any such betterproperties— such components could
host perfect failure detectors, inasmuch as they could hostany other useful abstraction for building
algorithms.

Once the intuition behind wormholes captured, as we hope to have achieved in this paper, it is quite easy
to devise algorithms under the Wormholes model. The interested reader is referred to [31, 9, 22], which
provide clear examples.

Facing the need for timeliness equated in the beginning, andgiven the difficulty of achieving even
the slightest timed behaviour in asynchronous systems, several authors have introduced ad-hoc conditions
or constructs to address this problem, which explicitly or implicitly point to, or prefigure, the concept of
wormhole [18, 1, 16, 14, 5, 35, 21]. However, we hope to have shown that it is important to clearly follow a
hybrid model from the beginning, if one is to achieve the complete potential of these constructs, and avoid
potential problems deriving from implicit and non-substantiated timing assumptions. As such, we hope this
paper will contribute to the advance of distributed systemsmodelling and algorithmics.

11

For space reasons, the security facet was not explored adequately in this paper, though there are at least
as many challenging findings and evolutions to report, perhaps in a future paper, on the use of wormholes
to build intrusion-tolerant (e.g., Byzantine-resilient)algorithms. Furthermore, an important recent finding
points to the impossibility of building resilient asynchronous systems (ones that stay up and correct long
enough to fulfil their mission) and to the high probability ofthis impossibility result causing the failure of
such systems under malicious attacks [27]. This problem canbe fixed through the use of wormholes.

Likewise, we almost exclusively discussed the merits of thenew model in representing asynchronous
systems and applications. As we said, asynchronous systemscannot possibly solve problems with timeliness
specifications, and these are an increasing part of our everyday’s computer-dependent life. This brings added
importance to time in distributed systems, and in fact, there are interesting results about achieving timed (and
even real-time) behaviour, by hybridisation of time-free algorithmics with timed wormholes, which for lack
of space we could not address in this paper.

Acknowledgements

I wish to thank Sergio Rajsbaum for having challenged me to write this paper and patiently accepted my
asynchrony in writing it. Interesting discussions on distributed systems models with Michel Raynal and Roy
Friedman are warmly acknowledged. Along the past few years,several researchers of the Navigators team
contributed to make the wormholes model evolve.

References

[1] M. Aguilera, G. Le Lann, and S. Toueg. On the impact of fastfailure detectors on real-time fault-tolerant systems.
In Proc. of DISC 2002, October 2002.

[2] E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg. On the formal specification of group membership
services. Technical Report RR-2695, INRIA, Rocquencourt,France, November 1995.

[3] M. Ben-Or. Another advantage of free choice: Completelyasynchronous agreement protocols. InProceedings
of the 2nd ACM Symposium on Principles of Distributed Computing, pages 27–30, August 1983.

[4] A. Casimiro, P. Martins, and P. Verı́ssimo. How to build aTimely Computing Base using Real-Time Linux. In
Proceedings of the IEEE International Workshop on Factory Communication Systems, pages 127–134, Septem-
ber 2000.

[5] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery.ACM Transactions on
Computer Systems, 20(4):398–461, November 2002.

[6] T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility of group membership. In
Proceedings of the 15th ACM Symposium on Principles of Distributed Computing, pages 322–330, May 1996.

[7] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.Journal of the ACM,
43(2):225–267, March 1996.

[8] F. Christian and C. Fetzer. The timed asynchronous system model. InProceedings of the 28th IEEE International
Symposium on Fault-Tolerant Computing, pages 140–149, 1998.

[9] M. Correia, N. F. Neves, L. C. Lung, and P. Verı́ssimo. Lowcomplexity Byzantine-resilient consensus.Dis-
tributed Computing, 17(3):237–249, 2005.

[10] M. Correia, P. Verı́ssimo, and N. F. Neves. The design ofa COTS real-time distributed security kernel. In
Proceedings of the Fourth European Dependable Computing Conference, pages 234–252, October 2002.

[11] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Arealistic look at failure detectors. InProceedings of the
International Conference on Dependable Systems and Networks, pages 213–222, Washington, USA, June 2002.

[12] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for distributed consensus.Journal
of the ACM, 34(1):77–97, January 1987.

12

[13] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.Journal of the ACM,
35(2):288–323, April 1988.

[14] Christof Fetzer. Perfect failure detection in timed asynchronous systems.IEEE Trans. Comput., 52(2):99–112,
2003.

[15] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, April 1985.

[16] R. Friedman, A. Moustefaoui, S. Rajsbaum, and M. Raynal. Error correcting codes: A future direction to solve
distributed agreement problems? InInternational Workshop on Future Directions of Distributed Computing,
FuDiCo, June 2002.

[17] Roy Friedman, Achour Mostéfaoui, and Michel Raynal. Building and using quorums despite any number of
process crashes. In5th European Dependable Computing Conference (EDCC’05), Budapest, Hungary.

[18] J.M. Helary, M. Hurfin, A. Mostefaoui, M. Raynal, and Tronel F. Computing global functions on asynchronous
distributed systems with perfect failure detectors.IEEE Transactions on Parallel and Distributed Systems, 11(9),
September 2000.

[19] I. Keidar and S. Rajsbaum. On the cost of fault-tolerantconsensus when there are no faults - a tutorial.SIGACTN:
SIGACT News (ACM Special Interest Group on Automata and Computability Theory), 32(2):45–63, 2001. Pre-
liminary version, MIT Technical Report MIT-LCS-TR-821, May 24, 2001.

[20] F. Meyer and D. Pradhan. Consensus with dual failure modes. InProceedings of the 17th IEEE International
Symposium on Fault-Tolerant Computing, pages 214–222, July 1987.

[21] A. Mostéfaoui, E. Mourgaya, and M. Raynal. Asynchronous implementation of failure detectors. InInt.
IEEE/IFIP Conference on Dependable Systems and Networks (DSN’03), San Francisco (USA).

[22] N. F. Neves, M. Correia, and P. Verı́ssimo. Solving vector consensus with a wormhole.IEEE Transactions on
Parallel and Distributed Systems, 16(12):1120–1131, December 2005.

[23] D. Powell. Fault assumptions and assumption coverage.In Proceedings of the 22nd IEEE International Sympo-
sium of Fault-Tolerant Computing, July 1992.

[24] D. Powell, D. Seaton, G. Bonn, P. Verı́ssimo, and F. Waeselynk. The Delta-4 approach to dependability in open
distributed computing systems. InProceedings of the 18th IEEE International Symposium on Fault-Tolerant
Computing, June 1988.

[25] M. Raynal. Short introduction to failure detectors forasynchronous distributed systems.SIGACTN: SIGACT
News (ACM Special Interest Group on Automata and Computability Theory), 36(1):53–70, 2005.

[26] Nicola Santoro and Peter Widmayer. Majority and unanimity in synchronous networks with ubiquitous dynamic
faults. InSIROCCO, pages 262–276, 2005.

[27] P. Sousa, N. F. Neves, and P. Verissimo. How resilient are distributedf fault/intrusion-tolerant systems? In
Proceedings of the IEEE International Conference on Dependable Systems and Networks, June 2005.

[28] Jan van Leeuwen and Jir Wiedermann. Beyond the turing limit: Evolving interactive systems. In Leszek Pa-
cholski and Peter Ruzicka, editors,SOFSEM: Theory and Practice of Informatics, 28th Conference on Current
Trends in Theory and Practice of Informatics, volume 2234 ofLecture Notes in Computer Science, pages 90–109,
Piestany, Slovak Republic, 2001. Springer.

[29] P. Verı́ssimo. Uncertainty and predictability: Can they be reconciled? InFuture Directions in Distributed
Computing, volume 2584 ofLecture Notes in Computer Science, pages 108–113. Springer-Verlag, 2003.

[30] P. Verı́ssimo and A. Casimiro. The Timely Computing Base model and architecture.IEEE Transactions on Com-
puters, 51(8):916–930, August 2002. Supersedes Tech. Rep. DI/FCUL TR-99-2, Dpt. of Informatics, University
of Lisboa, May 1999.

13

[31] P. Verı́ssimo, A. Casimiro, and C. Fetzer. The Timely Computing Base: Timely actions in the presence of
uncertain timeliness. InProceedings of the International Conference on DependableSystems and Networks,
pages 533–542, June 2000.

[32] P. Verı́ssimo and L. Rodrigues.Distributed Systems for System Architects. Kluwer Academic Publishers, 2001.

[33] P. Verı́ssimo, L. Rodrigues, and A. Casimiro. Cesiumspray: a precise and accurate global clock service for
large-scale systems.Journal of Real-Time Systems, 12(3):243–294, May 1997.

[34] C. Walter, N. Suri, and M. Hugue. Continual on-line diagnosis of hybrid faults. InProceedings of the 4th IFIP
International Working Conference on Dependable Computingfor Critical Applications, 1994.

[35] L. Zhou, F. Schneider, and R. van Renesse. COCA: A securedistributed on-line certification authority.ACM
Transactions on Computer Systems, 20(4):329–368, November 2002.

14

