
Failure Detection and Randomization:
A Hybrid Approach to Solve Consensus∗

Marcos Kawazoe Aguilera and Sam Toueg

aguilera@cs.cornell.edu sam@cs.cornell.edu

Department of Computer Science
Upson Hall, Cornell University
Ithaca, NY 14853-7501, USA.

July 3, 2003

Abstract

We present a consensus algorithm that combines unreliable failure detection and random-
ization, two well-known techniques for solving consensus in asynchronous systems with crash
failures. This hybrid algorithm combines advantages from both approaches: it guarantees
deterministic termination if the failure detector is accurate, and probabilistic termination oth-
erwise. In executions with no failures or failure detector mistakes, the most likely ones in
practice, consensus is reached in only two asynchronous rounds.

1 Introduction

1.1 Motivation

A well-known result by Fischer, Lynch and Paterson is thatconsensus cannot be solved in asyn-
chronous systems with failures, even if communication is reliable, at most one process may fail,
and it can only fail by crashing [14]. Since this seminal paper, there has been intense research
seeking to “circumvent” this negative result (e.g., [4, 5, 6, 7, 10, 13, 22]).

One promising approach is the use of unreliable failure detection [2, 3, 6, 7, 11, 16, 17, 18,
19, 20, 21, 23]. Roughly speaking, this approach assumes that each process has access to a local
failure detector module that gives some (possibly inaccurate) information on which processes may
have failed. It turns out that consensus can be solved with unreliable failure detectors that make an
infinite number of mistakes, provided that they satisfy some minimum properties [6, 7].

∗Research partially supported by NSF grants CCR-9402896 and CCR-9711403, by ARPA/ONR grant N00014-96-
1-1014, and by an Olin Fellowship.

1

In particular, [7] presents a consensus algorithm with the following features. Even if the infor-
mation provided by the failure detectors is completely wrong, the algorithm never violates safety,
i.e., no two processes ever decide differently. During “good” periods, when the failure detectors
are reasonably accurate, processes reach consensus within few asynchronous rounds; on the other
hand, when a “bad” period occurs, i.e., when failure detectors lose their accuracy, the consensus
algorithm may stop making progress until the bad period is over. Such an algorithm is useful be-
cause in practice good periods tend to be long while bad ones tend to be rare and short. However,
long bad periods do occasionally occur, and each time this happens the consensus algorithm of [7]
can be delayed for a long time.

In this paper, we seek an algorithm that terminates quickly when failure detection is accurate
(i.e., during good periods) and that makes progress and terminates, albeit more slowly, even if fail-
ure detection is inaccurate (i.e., during bad periods). We achieve this goal by combining failure de-
tection withrandomization — another technique that was used to solve consensus in asynchronous
systems [4]. In this hybrid approach, randomization “kicks in” as a back-up to failure detection
when failure detectors are inaccurate. Further discussion of the relative merits of failure detection,
randomization, and this hybrid approach is postponed to Section 7.

The idea of combining randomization and failure detection to solve consensus in asynchronous
systems first appeared in [12]. A related idea, namely, combining randomization and deterministic
algorithms to solve consensus insynchronous systems was explored in [15, 25]. A brief compari-
son with our results is given in Section 8.

1.2 Main Result

We focus on two of the major techniques to circumvent the impossibility of consensus in asyn-
chronous systems: randomization and unreliable failure detection. The first one assumes that each
process has a local random number generator (denotedR-oracle) that providesrandom bits [4].
The second technique assumes that each process has a local failure detector module (denotedFD-
oracle) that providesa list of processes suspected to have crashed [7]. Each approach has some
advantages over the other, and we seek to combine advantages from both.

With a randomized consensus algorithm, every process can query its local R-oracle, and use
the oracle’s random bit to determine its next step. With such an algorithm, termination is achieved
with probability1, within a finite expected number of steps (for a survey of randomized consensus
algorithms see [8]).

With a failure-detector based consensus algorithm, every process can query its local FD-oracle
(which provides a list of processes that are suspected to have crashed) to determine the process’s
next step. Consensus can be solved with FD-oracles that make an infinite number of mistakes. In
particular, consensus can be solved with FD-oracles that satisfy two properties,strong complete-
ness andeventual weak accuracy. Roughly speaking, the first property states that every process
that crashes is eventually suspected by every correct process, and the second one states that some
correct process is eventually not suspected. These properties define the weakest class of failure
detectors that can be used to solve consensus [6].

In this paper we describe a hybrid consensus algorithm with the following properties. Every
process has access to both an R-oracle and an FD-oracle. If the FD-oracle satisfies the above

2

two properties, the algorithm solves consensus (no matter how the R-oracle behaves). If the FD-
oracle loses its accuracy property, but the R-oracle works, the algorithm still solves consensus,
albeit “only” with probability 1. In executions with no failures or failure detector mistakes, the
most likely ones in practice, an optimized version of this algorithm reaches consensus in only two
asynchronous rounds.

2 Informal Model

Our model of asynchronous computation is patterned after the one in [14], and its extension in
[6]. We only sketch its main features here. We considerasynchronous distributed systems in
which there is no bound on message delay, clock drift, or the time necessary to execute a step. To
simplify the presentation of our model, we assume the existence of a discrete global clock. This is
merely a fictional device: the processes do not have access to it. We take the rangeT of the clock’s
ticks to be the set of natural numbersN.

The system consists of a set ofn processes, Π = {p0, p1, . . . , pn−1}. Every pair of processes
is connected by a reliable communication channel. Up tof processes can fail bycrashing. A
failure pattern indicates which processes crash, and when, during an execution. Formally, afailure
pattern F is a function fromN to 2Π, whereF (t) denotes the set of processes that have crashed
through timet. Once a process crashes, it does not “recover”, i.e.,∀t : F (t) ⊆ F (t + 1). We
definecrashed(F) =

⋃
t∈N F (t) andcorrect(F) = Π− crashed(F). If p ∈ crashed(F) we sayp

crashes (in F) and ifp ∈ correct(F) we sayp is correct (in F).
Each process has access to two oracles: a failure detector, henceforth denoted theFD-oracle,

and a random number generator, henceforth denoted theR-oracle. When a process queries its FD-
oracle, it obtains a list of processes.1 When it queries its R-oracle it obtains a bit. The properties
of these oracles are described in the two next sections.

A distributed algorithmA is a collection ofn deterministic automata (one for each process in
the system) that communicate by sending messages through reliable channels. The execution of
A occurs insteps as follows. For every timet ∈ T , at most one process takes a step. Each step
consists of receiving a message; querying the FD-oracle; querying the R-oracle; changing state;
and optionally sending a message to one process. We assume that messages are never lost. That is,
if a process does not crash, it eventually receives every message sent to it.

A schedule is a sequence{sj}j∈N of processes and a sequence{tj}j∈N of strictly increasing
times. A schedule indicates which processes take a step and when: for eachj, processsj takes a
step at timetj. A schedule isconsistent (with respect to a failure pattern F) if a process does not
take a step after it has crashed (inF). A schedule isfair (with respect to a failure pattern F) if
each process that is correct (inF) takes an infinite number of steps. We consider only schedules
that are consistent and fair.

1In general, the output of a failure detector is not restricted to be a list of processes [6, 1].

3

2.1 FD-oracles

Every processp has access to a local FD-oracle module that outputs a list of processes that are
suspected to have crashed. If some processq belongs to such list, we say thatp suspects q.2 FD-
oracles can make mistakes: it is possible for a processp to be suspected by another even though
p did not crash, or for a process to crash and never be suspected. FD-oracles can be classified
according to properties that limit the extent of such mistakes. We focus on one of the eight classes
of FD-oracles defined in [7], namely, the class ofEventually Strong failure detectors, denoted✸S.
An FD-oracle belongs to✸S if and only if it satisfies two properties:

Strong completeness: Eventually every process that crashes is permanently suspected byevery
correct process (formally,∃t ∈ T , ∀p ∈ crashed(F), ∀q ∈ correct(F), ∀t′ ≥ t : p ∈ FDt′

q ,

whereFDt′
q denotes the output ofq’s FD-oracle module at timet′).

Eventual weak accuracy: There is a time after which some correct process is never suspected by
any correct process (formally,∃t ∈ T , ∃p ∈ correct(F), ∀t′ ≥ t, ∀q ∈ correct(F) : p �∈
FDt′

q).

It is known that✸S is the weakest class of FD-oracles that can be used to solve consensus [6].

2.2 R-oracles

Each process has access to a local R-oracle module that outputs one bit each time it is queried.
We say that the R-oracle israndom if it outputs an independent random bit for each query. For
simplicity, we assume a uniform distribution, i.e., a random R-oracle outputs0 and1, each with
probability1/2.

2.3 Adversary Power

When designing fault-tolerant algorithms, we often assume that an intelligent adversary has some
control on the behavior of the system, e.g., the adversary may be able to control the occurrence and
the timing of process failures, the message delays, and the scheduling of processes. Adversaries
may have limitations on their computing power and on the information that they can obtain from
the system. Different algorithms are designed to defeat different types of adversaries [8].

We now describe the adversary that our hybrid algorithm defeats. The adversary has unbounded
computational power, and full knowledge of all process steps that already occurred. In particular,
it knows the contents of all past messages, the internal state of all processes in the system,3 and all
the previous outputs of both the R-oracle and FD-oracle. With this information, at any time in the
execution, the adversary can dynamically select which process takes the next step, which message
this process receives (if any), and which processes (if any) crash. The adversary, however, operates
under the following restrictions: the final schedule must be consistent and fair, every message sent

2In general, processes do not have to agree on the list of suspects at any one time or ever.
3This is in contrast to the assumptions made by several algorithms, e.g., those that use cryptographic techniques.

4

to a correct process must be eventually received, and at mostf processes may crash over the entire
execution.

In addition to the above power, we allow the adversary to initially selectone of the two oracles
to control, and possibly corrupt. If the adversary selects to control the R-oracle, it can predict and
even determine the bits output by that oracle. For example, the adversary can force some local
R-oracle module to always output0, or it can dynamically adjust the R-oracle’s output according
to what the processes have done so far.

If the adversary selects to control the FD-oracle, it can ensure that the FD-oracle does not
satisfy eventual weak accuracy. In other words, atany time the adversary can includeany process
(whether correct or not) in the output of the local FD-oracle module of any process. The adversary,
however, does not have the power to disrupt the strong completeness property of the FD-oracle.
This is not a limitation in practice: most failure detectors are based on time-outs and eventually
detect all process crashes.

If the adversary does not control the R-oracle then the R-oracle is random. If the adversary
does not control the FD-oracle then the FD-oracle is in✸S. We stress that the algorithm doesnot
know which one of the two oracles (FD-oracle or R-oracle) is controlled by the adversary.

3 The Consensus Problem

In theuniform binary consensus problem every processp has someinitial value vp ∈ {0, 1}, and
mustdecide on a value such that:

Uniform agreement: If processesp andp′ decidev andv′, respectively, thenv = v′;

Uniform validity: If some process decidesv, thenv is the initial value of some process;

Termination: Every correct process eventually decides some value.

For probabilistic consensus algorithms, Termination is weakened to

Termination with probability 1: With probability 1, every correct process eventually decides some
value.

4 Hybrid Consensus Algorithm

The hybrid consensus algorithm shown in Figure 1 combines Ben-Or’s algorithm [4] with failure-
detection and the rotating coordinator paradigm used in [7]. With this paradigm, we assume that
all processes havea priori knowledge that during phasek, one selected process, namelypk mod n,
is the coordinator. The algorithm works under the assumption that a majority of processes are
correct (i.e.,n > 2f). It is easy to see that this requirement is necessary for any algorithm that
solves consensus in asynchronous systems with crash failures, even if all processes have access to
a random R-oracle and an FD-oracle that belongs to✸S.

In the hybrid algorithm, every message contains a tag (R, P , S or E), a phase number, and a
value which is either 0 or 1 (for messages taggedP orS, it could also be “?”). Messages taggedR

5

are calledreports; those tagged withP are calledproposals; those with tagS are calledsuggestions
[to the coordinator]; those with tagE are calledestimates [from the coordinator]. Whenp sends
(R, k, v), (P, k, v) or (S, k, v) we say thatp reports, proposes or suggests v in phasek, respectively.
When the coordinator sends(E, k, v) we say that the coordinator sends estimatev in phasek.

Each execution of thewhile loop is called aphase, and each phase consists of four asyn-
chronous rounds. In the first round (lines 4 to 7), processes report to each other their current
estimate (0 or 1) for a decision value.

In the second round (lines 8 to 13), if a process receives a majority of reports for thesame value
then it proposes that value to all processes, otherwise it proposes “?”. Note that it is impossible
for one process to propose 0 and another process to propose 1 in the same phase. At the end of
the second round, if a process receivesf + 1 proposals for the same value different than ?, then it
decides that value. If it receives at least one value different than ?, then it adopts that value as its
new estimate, otherwise it adopts ? for estimate.

In the third round (lines 14 to 16), processes suggest their estimate to the current coordinator.
In the fourth round (lines 17 to 25), if the coordinator receives a value different than ? then

it sends that value as its estimate. Otherwise, the coordinator queries the R-oracle, and sends the
random value that it obtains as its estimate. Processes wait until they receive the coordinator’s
estimate or until their FD-oracle suspects the coordinator. If a process receives the coordinator’s
estimate, it adopts it. Otherwise, if its current estimate is ?, it adopts a random value obtained from
its R-oracle.

To simplify the presentation, the algorithm in Figure 1 does not include a halt statement. More-
over, once a correct process decides a value, it will keep deciding the same value in all subsequent
phases. However, it is easy to modify the algorithm so that every process decides at most once,
and halts at most one round after deciding.

5 Proof of Correctness

The hybrid algorithm shown in Figure 1 always satisfies the safety properties of consensus. This
holds no matter how the FD-oracle or the R-oracle behave, that is, even if these oracles are totally
under the control of the adversary. On the other hand, the algorithm satisfies liveness properties
only if the FD-oracle satisfies strong completeness. Strong completeness is easy to achieve in
practice: most failure-detectors use time-out mechanisms, and every process that crashes eventu-
ally causes a time-out, and therefore a permanent suspicion.

Assume that there is a majority of correct processes (i.e.,n > 2f). We show the following:

Theorem 1

(Safety) The hybrid algorithm always satisfies uniform validity and uniform agreement.

(Liveness) Suppose that the FD-oraclesatisfies strong completeness.

• If the FD-oraclesatisfies eventual weak accuracy, i.e., it is in ✸S, then the algorithm
satisfies termination.

6

Every processp executes the following:

0 procedure consensus(vp) {vp is the initial value of processp}
x← vp {x is p’s current estimate of the decision value}
k ← 0

while truedo
k ← k + 1 {k is the current phase number}

5 c← pk mod n {c is the current coordinator}
send (R, k, x) to all processes

wait for messages of the form(R, k, ∗) from n− f processes {“∗” can be 0 or 1}
if received more thann/2 (R, k, v) with the samev
then send (P, k, v) to all processes

10 else send (P, k, ?) to all processes

wait for messages of the form(P, k, ∗) from n− f processes {“∗” can be 0, 1 or ?}
if received at leastf + 1 (P, k, v) with the samev �= ? then decidev
if at least one(P, k, v) with v �= ? then x← v else x← ?
send (S, k, x) to c

15 if p = c then
wait for messages of the form(S, k, ∗) from n− f processes
if received at least one(S, k, v) with v �= ?
then send (E, k, v) to all processes
else

20 random bit← R-oracle {query R-oracle}
send (E, k, random bit) to all processes

wait until receive(E, k, v coord) from c or c ∈ FD-oracle {query FD-oracle}
if received(E, k, v coord)
then x← v coord

25 else if x = ? then x← R-oracle {query R-oracle}

Figure 1: Hybrid consensus algorithm

7

• If the R-oracleis random then the algorithm satisfies termination with probability 1.

Proof: We say thatprocess p starts phase k if processp completes at leastk − 1 iterations of
thewhile loop. We say thatprocess p reaches line n in phase k if processp starts phasek andp
executes past linen − 1 in that phase. We say thatv is k-locked if every process that starts phase
k does so with its variablex set tov. When ambiguities may arise, a local variable of a processp
is subscripted byp, e.g.,xp is the local variablex of processp.

We first show the safety properties.

Lemma 1 Suppose k > 0. Then (1) it is impossible for a process to propose 0 and another one to
propose 1 in the same phase k; and (2) it is impossible for a process to suggest 0 and another to
suggest 1 in the same phase k.

Proof: We prove (1) by contradiction: suppose that two processesp andq propose0 and1, re-
spectively, in phasek. Thus,p received more thann/2 reports for0 andq received more thann/2
reports for1 in phasek. But then there is a process that reports0 to p and1 to q in phasek, and
this is impossible. This proves (1).

Now (2) follows from (1) since if a process suggestsv �= ? in phasek, thenv was proposed in
phasek. ✷

Lemma 2 If some process decides v in phase k > 0, then v is (k + 1)-locked.

Proof: Suppose some processp decidesv in phasek > 0 (note thatv �= ?), and letq be any process
that starts phasek + 1. From the algorithm,p receives at leastf + 1 proposals forv in phasek
(line 12). Letr be any process that suggests a value in line 14 of phasek. Before suggesting
(line 14),r waits forn− f proposals in line 11. Becausep receivesf + 1 proposals forv, r must
have received at least one proposal forv. Moreover, by Lemma 1,r does not receive any proposals
for v̄. 4 Sor setsxr to v in line 13 and suggestsv in phasek. Thus, (1)q setsxq to v in line 13,
and (2) the coordinator of phasek can only receive suggestions forv. In particular, the coordinator
does not receive ?. So, if the coordinator sends an estimate in phasek (line 18), that estimate is
alsov. If q receives that estimate (line 22), thenq resetsxq to v in line 24. Otherwiseq does not
modify xq (becausexq is different than ?). In either case,q starts phasek + 1 with xq = v. ✷

Lemma 3 If a value v is k-locked for some k > 0, then every process that reaches line 13 in
phase k decides v in phase k.

Proof: Supposev is k-locked for somek > 0. Then, all reports sent in line 6 of phasek are
for v. Sincen− f > n/2, every process that proposes some value in phasek proposesv in line 9.
Consider a processp that reaches line 13 in phasek. Clearly,p receivesn− f proposals (line 11)
for v in phasek. Sincen− f ≥ f + 1, p decidesv in phasek. ✷

Corollary 1 If some process decides v in phase k > 0, then every process that reaches line 13 in
phase k + 1 decides v in phase k + 1.

Proof: By Lemma 2 and Lemma 3.✷

4We denote bȳv the binary complement of bitv.

8

Corollary 2 (Uniform agreement) If some processes p and p′ decide v and v′ in phase k > 0 and
k′ > 0, respectively, then v = v′.

Proof: Fork = k′ the result follows from Lemma 1 and the fact that a process can decide a value
in a phase only if that value was proposed in the same phase. Assume thatk < k ′. Sincep′ decides
in phasek′ thenp′ reaches line 13 in every phaser, k < r ≤ k′. Sincep decidesv in phasek,
by Corollary 1p′ decidesv in phasek + 1 ≤ k′. By additional applications of Corollary 1, we
conclude thatp′ decidesv in phasek′. Each process can decide at most once per phase, sov = v′.
✷

Corollary 3 (Uniform validity) If some process p decides v, then v is the initial value of some
process.

Proof: Notev ∈ {0, 1}. If the initial values of all processes are not identical, thenv is clearly the
initial value of some process. Now, suppose all processes have the same initial valuew. Thus,w
is 1-locked. From Lemma 3,p decidesw, and from Corollary 2,w = v. ✷

From now on we assume that the FD-oracle satisfies strong completeness, and proceed to prove
the liveness properties.

Lemma 4 Every correct process starts every phase k > 0.

Proof: The detailed proof is by a simple but tedious induction onk. We describe only the central
idea here. In each phase, there are fourwait statements that can potentially block processes (lines 7,
11, 16, 22). It is not possible for a correct process to be blocked forever in any of the first threewait
statements, because at leastn− f processes are correct and send the messages that this process is
waiting for. Consider the fourthwait statement. Either the coordinatorc sends its estimate to all
processes orc crashes. In the first case, every correct process receives this estimate. In the second
case,c eventually appears on the list of suspects, i.e.,c ∈ FD-oracle (because theFD-oracle
satisfies strong completeness). So no correct process waits forever at the fourthwait statement of
a phase.✷

Corollary 4 If a value v is k-locked for some k > 0, then every correct process decides v in
phase k.

Proof: Immediate from Lemmata 3 and 4.✷

Corollary 5 If some process decides v in phase k > 0, then every correct process decides v in
phase k + 1 (and thus in all subsequent phases).

Proof: Immediate from Corollary 1 and Lemma 4.✷

Lemma 5 (Termination) If the FD-oraclesatisfies eventual weak accuracy then every correct pro-
cess decides.

Proof: If the FD-oracle satisfies eventual weak accuracy then there is a timet0 after which (1)
some correct processpm is never suspected by any correct process and (2) only correct processes
take steps (faulty ones crash beforet0). Let ki be the value of variablek of processpi at timet0.

9

function FavorableToss(r, u): bit {evaluated only at timeu ≥ τk wherek = 2r}
k ← 2r {k is the first phase in epochr}
if some valuev ∈ {0, 1} is k-major at timeτk then return v

if by timeu no process receivedn− f proposals in phasek + 1 then return 0 {u < τk+1}
if before timeτk+1: {hereu ≥ τk+1}

(a) 1 isk-major, and
(b) less thann/2 processes R-got a value in phasek, and
(c) the coordinator did not query the R-oracle in line 20 of phasek

then return 1
else return 0

Figure 2: Favorable coin toss algorithm

Let k̂ be the smallest phase aftermaxi{ki} such thatpm is the coordinator of phasêk. Let q and
r be arbitrary processes that start phasek̂ + 1. Note that this occurs after timet0, and so neitherq
nor r suspect the coordinatorpm in phasêk. Thus,q andr setxq andxr to pm’s estimate in line
24. Since this estimate is different from ? and unique for phasek̂, we havexq = xr = v for some
v �= ? at the beginning of phasêk+1. Sov is (k̂+1)-locked. Therefore, by Corollary 4, all correct
processes decidev in phasêk + 1. ✷

We now proceed to show that if the R-oracle is random, then the algorithm satisfies termination
with probability 1. Fork > 0, let τk be the first time that any process receivesn− f proposals in
phasek. From Lemma 4, for everyk > 0, some process receivesn− f proposals in phasek, and
soτk is well-defined. Note that in our algorithm no process queries the R-oracle in phasek before
time τk.

A process starts a phase with its variablex set to either0 or 1 (never to ?). For eachk > 0, we
say that a valuev ∈ {0, 1} is k-major at time t if by time t more thann/2 processes have started
phasek with their variablex set tov. Clearly, for eachk > 0 and all timest andt′, it is impossible
for 0 to bek-major att, and 1 to bek-major att′.

We say thata process p R-gets v in phase k at time t if either:

• In phasek at timet, p obtainsv from the R-oracle in line 25 and setsxp to v; or

• In phasek, the coordinator obtainsv from the R-oracle in line 20, sendsv as its estimate to
all processes,p receives this estimate and setsxp to v in line 24 at timet.

Intuitively, a processp R-getsv if p setsxp to v, andp obtainedv from an R-oracle query (directly,
or indirectly through the coordinator).

10

Lemma 6 For every k ≥ 1, if at time t a process p starts phase k + 1 with xp set to some value
v ∈ {0, 1}, then v is k-major at time t or p R-gets v in phase k.

Proof: Consider phasek. Supposep did not R-getv. Let t′ be the last timep updatesxp in phasek.
Note thatt′ < t. Then, at timet′, either (a)p receives the estimate from the coordinator, and the
coordinator obtained that estimate from one of its non-? suggestions; or (b)p setsxp in line 13.
In both cases, more thann/2 processes must have reportedv in phasek before timet′. Therefore,
more thann/2 processes have started phasek by timet′ (and thus by timet) with their variablex
set tov. ✷

An immediate consequence of Lemma 6 is that for everyk ≥ 1, if v is neverk-major and no
process R-getsv in phasek thenv̄ is (k + 1)-locked.

For the rest of the proof, we group pairs of phases intoepochs as follows:epoch r consists of
phases2r and2r + 1.5 We will define the concept of a “lucky” epoch — one in which processes
toss coins that cause the termination of the algorithm (no matter what the adversary does). To do
so, we first define functionFavorableToss(r, u) given in Figure 2. We say thatepoch r is lucky if,
for every processp and any timeu, if p queries the R-oracle in epochr at timeu, thenp obtains
FavorableToss(r, u) from the R-oracle. Note that ifp queries the R-oracle in epochr at timeu,
this occurs after at least one process receivesn − f proposals in phase2r. Thus,τ2r ≤ u, so the
value ofFavorableToss(r, u) depends only on what occurred in the system up to timeu.

Lemma 7 If the R-oracle is random then the probability that some epoch is lucky is 1.

Proof: The result is immediate from the following observation: for everyr ≥ 1, (a) the probability
that epochr is lucky is at least2−(2n+2) (because in each phase there are at mostn + 1 queries to
the R-oracle, and the R-oracle is random), and (b) for anyr′ �= r, the events “epochr is lucky” and
“epochr′ is lucky” are independent (because epochsr andr′ consist of disjoint sets of phases).✷

Lemma 8 For every r ≥ 1, if epoch r is lucky then some value is (2r+1)-locked or (2r + 2)-locked.

Proof: Throughout the proof of this lemma, fix some arbitraryr ≥ 1 and assume that epochr is
lucky. Letk = 2r; recall that epochr consists of phasesk andk+1. Since epochr is lucky, if any
process R-gets a valuev at timet and in phasej = k or j = k + 1, thenv = FavorableToss(r, u)
for some timeu, τj ≤ u ≤ t (valuev was obtained either directly from the R-oracle or indirectly
through the coordinator).

Case 1: Suppose some valuev is k-major at timeτk. By the definition ofFavorableToss, for any
u such thatτk ≤ u, FavorableToss(r, u) = v. So, if a process R-gets a value in phasek, that
value isv. Note that̄v is notk-major at any time. By Lemma 6,v is (k + 1)-locked.

Case 2: Now assume that no value isk-major at timeτk.

Case 2.1: Suppose that no value isk-major before timeτk+1. Then for anyu, τk ≤ u, we have
FavorableToss(r, u) = 0. By Lemma 6, every processp that starts phasek + 1 before
timeτk+1 does so withxp set to some value thatp R-got in phasek, and such value can only

5Phase1 is not part of any epoch.

11

be0. So all reports (and thus all proposals) sent in phasek + 1 before timeτk+1 are for0.
From the definition ofτk+1, there are at leastn− f such proposals for0 in phasek + 1. By
an argument similar to the one in the proof of Lemma 2, value0 is (k + 2)-locked.

Case 2.2: Now assume some valuev is k-major before timeτk+1.

Case 2.2.1: Supposev = 0. Since1 is neverk-major, then for any timeu such thatτk ≤ u, we
haveFavorableToss(r, u) = 0. So all processes that R-get a value in phasek R-get 0. By
Lemma 6, value0 is (k + 1)-locked.

Case 2.2.2: Now assumev = 1. For any timeu, τk ≤ u < τk+1, we haveFavorableToss(r, u) = 0.
Let S be the processes that R-get a value in phasek before timeτk+1; clearly, all processes
in S R-get 0.

Case 2.2.2.1: Suppose|S| ≥ n/2. Then for any timeu, τk ≤ u, FavorableToss(r, u) = 0. So, all
processes that R-get in phasek+ 1 R-get 0. Note that|S| ≥ n/2 implies that1 can never be
(k + 1)-major. By Lemma 6, value0 is (k + 2)-locked.

Case 2.2.2.2: Now assume that|S| < n/2.

Case 2.2.2.2.1: Suppose that the coordinator of phasek does not query the R-oracle in line 20 of
phasek before timeτk+1. Then for anyu such thatτk+1 ≤ u, we haveFavorableToss(r, u) =
1. So, if the coordinator queries the R-oracle in line 20 of phasek it obtains1 from the R-
oracle. Therefore, all processes that R-get a value at or after timeτk+1 in phasek R-get1.
Thus, exactly|S| < n/2 processes R-get 0 in phasek. Since 1 isk-major, from Lemma 6
we conclude that value0 can never be(k + 1)-major. Since no process queries the R-oracle
in phasek + 1 before timeτk+1, all processes that R-get a value in phasek + 1 R-get1. By
Lemma 6, value1 is (k + 2)-locked.

Case 2.2.2.2.2: Now assume that the coordinator of phasek queries the R-oracle in line 20 of
phasek before timeτk+1. Then the coordinator obtains0 from the R-oracle. So, for any
u ≥ τk, we haveFavorableToss(r, u) = 0. Since the coordinator queries the R-oracle in
line 20, it receivedn − f suggestions for ? in line 16, and this occurred before timeτk+1.
Thus,n − f processes have set their variablex to ? in line 13 in phasek before timeτk+1.
Note that if any such process starts phasek + 1, then it R-gets a value in phasek, and that
value is0, and thus such process starts phasek + 1 with its variablex set to0. Therefore at
mostn− (n− f) = f < n/2 processes start phasek + 1 with their variablex set to1. So1
can never be(k + 1)-major. All processes that R-get in phasek + 1 R-get 0. By Lemma 6,
value0 is (k + 2)-locked.✷

Lemma 9 (Termination with probability 1) If the R-oracle is random then the probability that all
correct processes decide is 1.

Proof: Immediate from Lemmata 7 and 8, and Corollary 4.✷

The proof of Theorem 1 is now complete: uniform validity and uniform agreement were shown in
Corollary 3 and Corollary 2, respectively. Termination was proved in Lemma 5, and termination
with probability 1 was shown in Lemma 9. ✷Theorem 1

12

c← p0 {p0 is the first coordinator}
if p = c then send (E, 0, vp) to all processes {if p is the first coordinator}
wait until receive(E, 0, v coord) from c or c ∈FD-oracle {query FD-oracle}
if received(E, 0, v coord)
then send (P, 0, v coord) to all processes
else send (P, 0, ?) to all processes

wait for messages of the form(P, 0, ∗) from n− f processes {“∗” can be 0, 1 or ?}
if received at leastf + 1 (P, 0, v) with the samev �= ? then decidev
if received at least one(P, 0, v) with v �= ? then x← v

Figure 3: Optimization for the hybrid algorithm

From the proof of Lemma 7, it is easy to see that the expected number of rounds for termination is
O(22n). However, it can be shown that, as in [4], termination is reached in constant expected num-
ber of rounds iff = O(

√
n). In Section 7, we outline a similar hybrid algorithm that terminates in

constant expected number of rounds even forf = O(n).

6 An Optimization

The algorithm in Figure 1 was designed to be simple rather than efficient, because our main goal
here is to demonstrate the viability of a “robust” hybrid approach (one in which termination can
occur in more than one way: by “good” failure detection or by “good” random draws). The
following optimization suggests that such hybrid algorithms can also be efficient in practice.

In many systems, failures are rare, and failure detectors can be tuned to seldom make mistakes
(i.e., erroneous suspicions). The algorithm in Figure 1 can be optimized to perform particularly
well in such systems. The optimized version ensures that all correct processes decide by the end
of two asynchronous rounds when the first coordinator does not crash and no process erroneously
suspects it.6

This optimization is obtained by inserting some extra code between lines 2 and 3 of the hybrid
algorithm. This code, given in Figure 3, consists of a phase (phase0) with two asynchronous
rounds. In the first round,p0 sends a message to all processes; in the second round, every process
sends a message to all processes. We claim that: (1) the optimization code preserves the correctness
of the original algorithm; and (2) processes decide quickly in the absence of failures and erroneous
suspicions. To see (1) note that:

• No correct process blocks during the execution of the optimization code (phase0), i.e., all
correct processes start phase1;

6Actually, decision occurs in two rounds even if up ton− 2f − 1 processes erroneously suspect it.

13

• Any processp that starts phase1 does so withxp set to the initial value of some process;

• If some process decidesv in phase0 thenv is 1-locked. Thus, (by Corollary 4) all correct
processes decidev in phase1.

To see (2), note that ifp0 is correct and no process suspectsp0, then all processes wait for its
estimatev and proposev in phase 0; so every process receivesn − f proposals forv and thus
decidesv in phase0. Thus we have:

Theorem 2 Theorem 1 holds for the optimized hybrid algorithm. Moreover, in executions with no
crashes or false suspicions, all processes decide in two rounds.

7 Discussion

In practice, many systems are well-behaved most of the time: few failures actually occur, and most
messages are received within some predictable time. Failure-detector based algorithms (whether
“pure” ones like in [7] or hybrid ones like in this paper) are particularly well-suited to take advan-
tage of this: (time-out based) failure detectors can be tuned so that the algorithms perform opti-
mally when the system behaves as predicted, and performance degrades gracefully as the system
deviates from its “normal” behavior (i.e., if failures occur or messages take longer than expected).
For example, the optimized version of our hybrid algorithm solves consensus in only two asyn-
chronous rounds in the executions that are most likely to occur in practice, namely, runs with no
failures or erroneous suspicions.

The above discussion suggests that using this hybrid approach is better than using the random-
ized approach alone. In fact, randomized consensus algorithms for asynchronous systems tend to
be inefficient in practical settings.7 Typically, their performance depends more on “luck” (e.g.,
many processes happen to start with the same initial value or happen to draw the same random bit)
than on how “well-behaved” the underlying system is (e.g., on the number of failures that actually
occur during execution). The fact that randomized algorithms are extremely “robust”, i.e., they do
not depend on how the system behaves, may also be an inherent source of inefficiency.

Note that our hybrid algorithm terminates with probability1 even if the FD-oracle is completely
inaccurate (in fact even if every process suspects every other process all the time). So it is more
robust than algorithms that are simply failure-detector based.

An important remark is now in order about the expected termination time of our hybrid algo-
rithm. We developed this algorithm by combining Ben-Or’s randomized algorithm [4] with the
failure detection ideas in [7]. We selected Ben-Or’s algorithm because it is the simplest, and thus
the most appropriate to illustrate this approach, even though its expected number of rounds is ex-
ponential inn for f = O(n). By starting from an efficient randomized algorithm, due to Choret
al. [9], we can obtain a hybrid algorithm that terminates in constant expected number of rounds,
as we now briefly explain.

7Algorithms that assume that processesa priori agree on a long sequence of random bits [22, 24] are more efficient
than others. But this assumption may be too strong for some systems.

14

Roughly speaking, the randomized asynchronous consensus algorithm in [9] is obtained from
Ben-Or’s algorithm by replacing each coin toss with the toss of a “weakly global coin” computed
by acoin toss procedure. We can do exactly the same: replace the coin tosses of the algorithm in
Figure 1 with those obtained by using thecoin toss procedure. More precisely, in each phase, every
process: (a) invokes this procedure between the second and third rounds (i.e., between lines 13
and 14) to obtain a random bit, and (b) uses this random bit rather than querying the R-oracle (in
lines 20 and 25).8

As in [9], this modified hybrid algorithm terminates9 in constant expected number of rounds
for f ≤ n (3 −

√
5) / 2 ≈ 0.38n. But also as in [9], and in contrast to the algorithm in Section 4,

it assumes that the adversary cannot see the internal state of processes or the content of messages.
With the optimization of Figure 3, this modified hybrid algorithm also terminates in two rounds in
failure-free and suspicion-free runs.

8 Related Work

The idea of combining randomization with a deterministic consensus algorithm appeared in [15],
and was further developed in [25]. These works, however, assume that the system issynchronous
and do not use failure detectors.

Dolev and Malki were the first to combine randomization and unreliable failure detection to
solve consensus in asynchronous systems with process crashes [12]. That work differs from ours
in many respects:

• In contrast to our algorithm, those in [12] require thatboth R-oracle and FD-oracle always
work correctly.

• In our hybrid algorithm, safety is always preserved: even if the failure detector continuously
misbehaves, no two processes ever decide differently. In contrast, with the hybrid algorithms
given in [12], if at any point the failure detector loses its accuracy property, processes may
decide differently.

• Our goal is to use randomization to improve failure-detector based algorithms: We use ran-
domization as a “back-up” to ensure termination in the occasional “bad” periods when the
failure detector loses its accuracy property.

Two goals of [12] are to use failure detection to increase the resiliency of randomized Con-
sensus algorithms, and to ensure their deterministic termination. The hybrid Consensus
algorithms given in [12] achieve the first goal, by increasing the resiliency fromf < n/2 to
f < n, but not the second one. It is stated, however, that a future version of the paper will
give an algorithm that achieves both goals.

8As in [9], another simple modification is necessary: the addition of a “synchronization round” just before the
coin toss procedure. In this round, processes broadcast “wait” messages, then wait untiln − f such messages are
received.

9Provided, of course, that the FD-oracle satisfies strong completeness.

15

• The two hybrid algorithms in [12] use failure detectors that are stronger than✸S (the failure
detector that we use). The first algorithm — which supposes that thesame sequence of
random bits is shared by all the processes, as in [22] — assumes that some correct process
is never suspected by any process. The second algorithm — which drops the assumption of
a common sequence of bits — assumes thatΩ(n) correct processes are never suspected by
any process. Both algorithms reach consensus in constant expected time.

Acknowledgement

We are grateful to Vassos Hadzilacos: some of our proofs are based on his lecture notes. We would
also like to thank the anonymous referees for their valuable comments.

References

[1] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: a timeout-free failure
detector for quiescent reliable communication. InProceedings of the 11th International
Workshop on Distributed Algorithms, Lecture Notes on Computer Science. Springer-Verlag,
September 1997. A full version is also available as Technical Report 97-1631, Computer
Science Department, Cornell University, Ithaca, New York, May 1997.

[2] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Quiescent reliable communication
and quiescent consensus in partitionable networks. Technical Report 97-1632, Department
of Computer Science, Cornell University, June 1997.

[3] Özalp Babao˘glu, Renzo Davoli, and Alberto Montresor. Failure detectors, group membership
and view-synchronous communication in partitionable asynchronous systems (preliminary
version). Technical Report UBLCS-95-18, Department of Computer Science, University of
Bologna, Bologna, Italy, November 1995.

[4] Michael Ben-Or. Another advantage of free choice: completely asynchronous agreement
protocols. InProceedings of the Second ACM Symposium on Principles of Distributed Com-
puting, pages 27–30, August 1983.

[5] Gabriel Bracha and Sam Toueg. Resilient consensus protocols. InProceedings of the Second
ACM Symposium on Principles of Distributed Computing, pages 12–26, August 1983. An
extended and revised version appeared as “Asynchronous consensus and broadcast protocols”
in theJournal of the ACM, 32(4):824-840, October 1985.

[6] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector
for solving consensus.Journal of the ACM, 43(4):685–722, July 1996.

[7] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems.Journal of the ACM, 43(2):225–267, March 1996.

16

[8] Benny Chor and Cynthia Dwork. Randomization in Byzantine Agreement.Advances in
Computer Research (JAI Press Inc.), 4:443–497, 1989.

[9] Benny Chor, Michael Merritt, and David B. Shmoys. Simple constant-time consensus proto-
cols in realistic failure models.Journal of the ACM, 36(3):591–614, July 1989.

[10] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed
for distributed consensus.Journal of the ACM, 34(1):77–97, January 1987.

[11] Danny Dolev, Roy Friedman, Idit Keidar, and Dahlia Malkhi. Failure detectors in omis-
sion failure environments. Technical Report TR96-1608, Department of Computer Science,
Cornell University, Ithaca, New York, September 1996.

[12] Danny Dolev and Dalia Malki. Consensus made practical. Technical Report CS94-7, The
Hebrew University of Jerusalem, March 1994.

[13] Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony.Journal of the ACM, 35(2):288–323, April 1988.

[14] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process.Journal of the ACM, 32(2):374–382, April 1985.

[15] Oded Goldreich and Erez Petrank. The best of both worlds: guaranteeing termination in fast
randomized Byzantine Agreement protocols.Information Processing Letters, 36(1):45–49,
October 1990.

[16] Rachid Guerraoui and Andr´e Schiper. Non blocking atomic commitment with an unreliable
failure detector. InProceedings of the 14th IEEE Symposium on Reliable Distributed Systems,
pages 41–50, Bad Neuenahr, Germany, September 1995.

[17] Rachid Guerraoui and Andr´e Schiper. Consensus service: a modular approach for building
agreement protocols in distributed systems. InProceedings of the 26th IEEE International
Symposium on Fault-Tolerant Computing, pages 168–177, June 1996.

[18] Michel Hurfin, Achour Mostefaoui, and Michel Raynal. Consensus in asynchronous systems
where processes can crash and recover. Technical Report 1144, Institut de Recherche en
Informatique et Syst`emes Aléatoires, Universit´e de Rennes, November 1997.

[19] Wai-Kau Lo and Vassos Hadzilacos. Using failure detectors to solve consensus in asyn-
chronous shared-memory systems. InProceedings of the Eighth International Workshop on
Distributed Algorithms, pages 284–295, 1994.

[20] Dahlia Malkhi and Mike Reiter. Unreliable intrusion detection in distributed computations.
In Proceedings of the 10th IEEE Computer Security Foundations Workshop, pages 116–124,
June 1997.

17

[21] Rui Oliveira, Rachid Guerraoui, and Andr´e Schiper. Consensus in the crash-recover model.
Technical Report 97-239, D´epartement d’Informatique, Ecole Polytechnique F´edérale, Lau-
sanne, Switzerland, August 1997.

[22] Michael Rabin. Randomized Byzantine Generals. InProceedings of the Twenty-Fourth Sym-
posium on Foundations of Computer Science, pages 403–409, November 1983.

[23] André Schiper. Early consensus in an asynchronous system with a weak failure detector.
Distributed Computing, 10(3):149–157, April 1997.

[24] Sam Toueg. Randomized Byzantine Agreements. InProceedings of the Third ACM Sympo-
sium on Principles of Distributed Computing, pages 163–178, August 1984.

[25] Arkady Zamsky. A randomized Byzantine Agreement protocol with constant expected time
and guaranteed termination in optimal (deterministic) time. InProceedings of the Fifteenth
ACM Symposium on Principles of Distributed Computing, pages 201–208, May 1996.

18

