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AbstractThis paper describes a modular approach for the construction of fault-tolerantagreement protocols. The approach is based on a generic consensus service. Fault-tolerant agreement protocols are built using a client-server interaction, where theclients are the processes that must solve the agreement problem, and the serversimplement the consensus service. This service is accessed through a generic consensus�lter, customized for each speci�c agreement problem. We illustrate our approach onthe construction of various fault-tolerant agreement protocols such as non-blockingatomic commitment, group membership, view synchronous communication and totalorder multicast. Through a systematic reduction to consensus, we provide a simpleway to solve agreement problems, and this leads to original solutions for problemslike group membership and view synchronous communication. In addition to itsmodularity, our approach enables e�cient implementations of agreement protocols,and precise characterization of their liveness and safety properties.Keywords: Asynchronous distributed systems, consensus, fault-tolerant agreement pro-tocols, failure detectors, modularity, atomic commitment, group membership, view syn-chrony, total order multicast.This paper is an extended and revised version of a paper that appeared, under the title\Consensus Service: A Modular Approach for Building Agreement Protocols in DistributedSystems", in the proceedings of the 26th IEEE International Symposium on Fault-TolerantComputing (FTCS-26), Sendai (Japan), June 1996, pages 168-177.



1 IntroductionAgreement protocols such as atomic commitment, group membership, and total orderbroadcast or multicast, are at the heart of many distributed applications, including trans-actional and time critical applications. Based on some recent theoretical results on solvingagreement problems in distributed systems [8, 7, 14, 25], we present in this paper a uni-�ed framework to develop fault-tolerant agreement protocols in a modular, correct, ande�cient way.In our framework, we suggest the use of a generic consensus service to build fault-tolerant agreement protocols. The consensus service is implemented by a set of consensusserver processes and the number of these processes depends on the desired resilience ofthe service. We introduce the generic notion of consensus �lter to customize the consensusservice for speci�c agreement protocols. Building a fault-tolerant agreement protocol leadsto a client-server interaction where, (1) the clients are the processes that have to solve theagreement problem and, (2) the servers implement the consensus service, accessed throughthe consensus �lter. The client-server interaction di�ers however from the usual client-server interaction scheme: we have here an nc-ns interaction (nc clients, ns servers), withnc > 1, ns > 1, rather than the usual 1-1 or 1-ns interaction.We show how various agreement protocols are built simply by adapting the consensus�lter. The modularity of our infrastructure enables us to derive correctness properties ofagreement protocols from the properties of the consensus service, and leads to e�ectiveoptimizations that trade resilience with e�ciency.Behind our approach, we argue that consensus is not only a fundamental paradigmin theoretical distributed computing [27], but also a useful building block for practicaldistributed systems.The paper is structured as follows. Section 2 recalls some background on the devel-opment of distributed services and distributed agreement protocols. Section 3 presentsour system model and recalls some results about the consensus problem. Section 4 givesan overview of our generic consensus service. Section 5 details how non-blocking atomiccommitment protocols can be constructed using our consensus service. Section 6 illus-trates the use of the consensus service in building protocols for group membership andview synchronous communication. Section 7 considers atomic broadcast and atomic multi-cast protocols. Section 8 presents a cost analysis and discusses e�ciency issues. Section 9points out some possible uses and generalizations of our framework.2 BackgroundGeneral services, used to build distributed applications, or to implement higher level dis-tributed services, have become common in distributed systems. Examples are numerous:�le servers, time servers, name servers, authentication servers, etc. However, there havebeen very few proposals of services speci�cally dedicated to the construction of fault-tolerant agreement protocols such as atomic commitment, total order broadcast, etc. Usu-2



ally, these protocols are considered separately and do not rely on a common infrastructure.A notable exception is the group membership service [23], which was used to implementvarious total order broadcast protocols [6, 11, 12, 1]. However, the group membership prob-lem (solved by the membership service) is just one example of an agreement problem thatarises in distributed systems. In fact, all agreement problems (atomic commitment, totalorder broadcast, group membership) are related to the abstract consensus problem [8, 30]and thus are subject, in asynchronous systems, to the Fischer-Lynch-Paterson impossibil-ity result [13, 7, 9].1 Most of the agreement protocols described in the literature usuallyguarantee the required safety property, but fail to de�ne the conditions under which live-ness is ensured. Thanks to the recent work of Chandra and Toueg on failure detectors, wenow have a formalism that allows to de�ne precise conditions under which the consensusproblem is solvable in asynchronous distributed systems. By de�ning a uni�ed consensus-based framework for solving various agreement problems, we provide a way to reuse thatformalism in proving the correctness of agreement protocols.Our work can be viewed as continuation of the work of Schneider [27], who suggestedthe use of consensus as a central paradigm for reliable distributed programming. We goa step further by describing a generic and systematic way to transform various agreementproblems into consensus. Our transformation leads to original solutions for problems likegroup membership and view synchronous communication, and leads to highlight their com-mon characteristics with problems usually considered separately like non-blocking atomiccommitment.3 System architecture and modelOur system architecture is depicted on Figure 1. We describe below the process modeland the communication layer, then we recall the failure detection abstraction (layer 1) andthe de�nition of the consensus problem. The generic consensus layer (layer 2) is describedin Section 4. Examples of using the generic consensus service to solve various agreement(layer 3) problems are given in Section 5, 6, and 7.3.1 ProcessesWe consider a distributed system composed of processes denoted by p1; p2; : : : ; pi; : : :. Theprocesses are completely connected through a set of channels. Every process can send amessage, receive a message, and perform a local computation (e.g., modify its state orconsult its local failure detector module). We do not make any assumption on processrelative speeds but we assume a crash-stop failure model: a process fails by crashing, andafter it does so, the process does never execute any action. We do not consider for instance1We recall the de�nition of the consensus problem later in the paper. The Fischer-Lynch-Patersonimpossibility result states that there is no deterministic algorithm that solves consensus in an asynchronoussystem, when one process can crash [13]. 3
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Figure 1: The architecture modelByzantine failures, i.e., we assume that processes do not behave maliciously. 2 A correctprocess is a process that does not crash, and a process that crashes is said to be faulty.3.2 Communication primitivesWe consider an asynchronous communication model, i.e., we do not assume any bound onthe time it takes for a message to be transmitted from the sender to a destination process.We assume however that the channels are eventually reliable [2]. In other words:� A message sent by a process pi to a process pj is eventually received by pj, if pi andpj are both correct.Eventual reliable channels can be implemented by retransmitting messages. They donot exclude the possibility of temporary link failures (temporary partitions). An eventualreliable channel is weaker than a reliable channel [2] which ensures that a messagem sent bypi to pj is eventually received by pj if pj is correct, i.e., the latter de�nition does not requirepi to be correct. This means that reliable channels do not lose messages, whereas eventualreliable channels can lose messages and hence more adequately model real communicationlinks.For the modularity of our construction, we introduce the following communicationprimitives, which can be built using eventual reliable channels.� Rmulticast(m) to Dst(m): reliable multicast of m to the set of processes Dst(m).This primitive ensures that, if the sender is correct, or if one correct process pj inDst(m) receives m, then every correct process in Dst(m) eventually receives m.� multisend(m) to Dst(m): equivalent to for every pj 2 Dst(m), send(m) to pj.The primitive multisend is introduced as a convenient notation, whereas Rmulticastprovides a stronger semantics. To understand the di�erence, consider (1) Rmulticast(m)2We will discuss in Section 9 the generalization of our framework to other fault models.4



to Dst(m), and (2) multisend(m) to Dst(m), both performed by some process pi. If picrashes, then multisend(m) to Dst(m) can lead to partial reception of m: some correctprocess pj in Dst(m) might receive m, and some other correct process pk in Dst(m) mightnever receive m. Such a situation does not occur with a reliable multicast. A multisend isimplemented simply by sending multiple messages, whereas a Rmulticast requires messageretransmission by a destination process (see [8] for more details on implementation ofreliable multicast).3.3 Failure detectorsFailure detectors have been formally introduced in [8, 7] for solving the consensus problem.A failure detector can be viewed as a distributed oracle. Each process pi has access to alocal failure detector moduleDi. This module maintains a list of processes that it currentlysuspects to have crashed.As we consider in this paper consensus as a black box, we are not concerned with aformal characterization of failure detectors. For the general purpose of our framework, wejust assume that the failure detector satis�es the so called \strong completeness" property:if some process pi crashes, then every process pj eventually suspects pi forever. Thisproperty is easily implementable using heartbeat messages, or Are you alive?/I am alivemessage exchange. Later in the paper, and only when required, we will recall strongerproperties of failure detectors.3.4 ConsensusThe consensus problem is de�ned over a set of processes. Every process pi in this set startswith an initial value vi, and the processes have to decide on a common value v. Consensusis de�ned by the following three properties [8]:Uniform Agreement. No two processes decide di�erently.Termination. Every correct process eventually decides.Uniform Validity. If a process decides v, then v is the initial value of some process.The de�nition considered above speci�es the uniform version of the consensus problem.It requires agreement and validity properties to be satis�ed even by faulty processes. Wedo not discuss here speci�c algorithms that solve consensus: we just assume the existenceof such algorithm. The reader interested in learning more about solving consensus in anasynchronous system model augmented with failure detectors can consult [8, 25].4 The consensus frameworkIn this section, we give an abstract view of our consensus service based framework. Ourdescription is abstract in the sense that we do not consider here any speci�c agreement5



problem. Examples of solving agreement problems in our framework are given in Section 5,Section 6 and Section 7.4.1 The roles: overviewOur framework distinguishes the following process roles:� The \initiator" of an agreement problem.� The processes that have to solve an agreement problem. These processes play therole of \clients" (of the consensus service).� The processes that solve consensus. These processes are the \server" processes.The di�erent roles can overlap: an initiator process can also be a client process, and therole of the server processes can be played by all or by a subset of the client processes:in practice this would be the typical scenario (we will come back to this in Section 8).We will also see that, depending on the agreement problem, the initiator can be either aclient process, or distinct from the client processes. However, for simplicity of presentation,we will mainly consider the case where the initiator, the client processes and the serverprocesses are distinct. We will denote the server processes by s1; s2; : : : ; sm. The numberm of these processes depends on the desired resilience of the service.The interaction between the initiator, the clients and the consensus servers is based onthe Rmulticast and the multisend communication primitives de�ned in the previous section.A basic interaction has three phases:1. an initiator process starts by multicasting a message to the set of client processes,using the Rmulticast primitive (Arrow 1, Fig. 2).2. clients invoke the consensus service, using a multisend primitive (Arrow 2, Fig. 2).3. the consensus service sends a decision back to the clients, using a multisend primitive(Arrow 3, Fig. 2).We will see throughout the paper that many agreement problems can be solved bythe above three phase interaction. In most of the cases (Sect. 5 and Sect. 6), there isa 1-1 correspondence between one instance of an agreement problem and one instance ofconsensus. We will also brie
y mention in Section 7 the case of a n-1 correspondence, whereseveral instances of an agreement problem correspond to one single instance of consensus.4.2 The roles: descriptionThe initiator. The invocation of the consensus service is started by an initiator process,which reliably multicasts (Rmulticast primitive) the message (cid; data; clients) to theset clients (Arrow 1 on Fig. 2; and Fig. 3). The parameter cid (consensus id) uniquely6
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InitV alue can be called and the consensus protocol started. It is a stable predicate, i.e., ifCallInitV alue is true at a time t, it is true for any time t0 > t. As soon as the predicateCallInitV alue returns true (line 1, Fig. 5), the function InitV alue is called (line 2, Fig. 5).InitV alue returns the initial value for the consensus. In Figure 5 (line 3), the consensusprotocol is represented as a function consensus(cid; vj). The consensus decision, onceknown, is multisent to the set clients (line 4, Fig. 5).1 wait reception of (cid; data0i; clients) from clients until CallInitValue(cid) ;2 vj  InitV alue(fdata0i j message (cid; data0i; clients) receivedg) ;3 decision consensus(cid; vj) ;4 multisend(cid; decision) to clients ;Figure 5: Algorithm of a server sj
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clients serversFigure 6: Invocation-reply from the point of view of server s1We say that a consensus �lter is live at a correct server if the predicate CallInitV alueeventually becomes true and the function InitV alue eventually returns some value.4.3 CorrectnessWe present here two properties that are ensured by our generic framework, and from whichwe derive the correctness proofs of agreement protocols (see Sections 5, 6 and 7).CS-Agreement. No two client processes receive two di�erent decision messages (cid; decision).CS-Termination. If the consensus �lter is live, then the decision message (cid; decision)is eventually received by every client.The CS-Agreement (Consensus Service Agreement) property directly follows from con-sensus (Sect. 3.4). Consider the CS-Termination (Consensus Service Termination) prop-erty. If the consensus �lter is live, then all correct members of the consensus serviceeventually start consensus. By the termination property of consensus (Sect. 3.4), everycorrect server eventually decides, and sends the (cid; decision) message to the clients. As8



we assume at least one correct server and eventual reliable channels, every correct clienteventually receives the decision message (cid; decision).5 Non-Blocking Atomic CommitmentThroughout this section we show how a modular non-blocking atomic commit protocol canbe built using our consensus service together with an adequate �lter. We �rst recall theproblem, then we show how it can be solved in our consensus framework. In Section 8,we will compare the performances of our protocol with those of non-blocking atomic pro-tocol that were proposed in the literature so far, namely Skeen's Three Phase Commitprotocols [28].5.1 BackgroundA transaction originates at a process called the transaction manager, which issues read andwrite operations to data manager processes [4]. At the end of the transaction, the transac-tion manager, together with the data managers, must solve an Atomic Commit problem inorder to decide on the commit or abort outcome of the transaction. We consider here the\Non-blocking" Atomic Commit problem (NB-AC for short) where correct processes musteventually decide despite failures [28]. The outcome of the transaction depends on votesfrom the data managers. A data manager votes yes to indicate that it is able to make thetemporary writes permanent, and votes no otherwise. If the outcome of the NB-AC proto-col is commit, then all the temporary writes are made permanent; if the outcome is abort,then all temporary writes are ignored. The NB-AC problem is de�ned more accurately bythe following properties:NB-AC-Agreement. No two processes decide di�erently.NB-AC-Termination. Every correct process eventually decides.NB-AC-Validity. The decision must be abort if one process votes no, and the decisionmust be commit if all processes vote yes and no process is suspected.It is important to notice that the NB-AC-Validity property enables an abort decisionif any process is suspected. This condition actually de�nes the weak NB-AC problem [14].The distinction between weak NB-AC and strong NB-AC problems is however irrelevantin the context of this paper (see [14] for more details).5.2 NB-AC based on a consensus serviceIn the following, we show how a NB-AC protocol is derived from our consensus serviceframework (Sect. 4). We �rst focus on the NB-AC-Agreement and NB-AC-Terminationproperties. Then we describe a consensus �lter adapted to the NB-AC-Validity property.9



5.2.1 NB-AC: Agreement and TerminationThe transaction manager is the initiator of an interaction with the consensus service.Arrow 1 in Figure 2 represents the message (tid; vote-request; data-managers) sent by thetransaction manager to the data managers, at the commitment of the transaction: thetransaction identi�er tid is the consensus id, the generic data �eld is instantiated as vote-request, and data-managers is the set of data managers accessed by the transaction. Thedata0i value (Fig. 4) is the yes/no vote of the data manager pi, and the decision awaitedfrom the consensus service is either commit or abort.NB-AC-Agreement follows directly from the CS-Agreement property of the consensusservice (Sect. 4.3) and, if we assume that the consensus �lter is live (see below), NB-AC-Termination follows from the CS-Termination property of the consensus service (Sect. 4.3).5.2.2 NB-AC: ValidityNB-AC consensus �lter. The consensus �lter, given below, tailors the consensus ser-vice to the NB-AC-Validity property. The NB-AC-CallInitValue predicate is de�ned insuch a way that the votes from all non-suspected processes are received by the servers. Inother words, NB-AC-CallInitValue at a server sj, returns true as soon as for every clientprocess pi, either (1) the message (cid; votei; clients) from pi has been received by sj, or(2) pi is suspected by sj.The function NB-AC-InitValue, at a server sj, returns commit if and only if a yes votehas been received by sj from every process in clients. Otherwise, if any process in clientshas been suspected, or has voted no, then the function NB-AC-InitValue returns abort(note that the commit/abort values returned by the function NB-AC-InitValue are hereinitial values for the consensus service, and not yet the decision of the consensus.).The consensus �lter for a NB-AC protocol is thus speci�ed as follows at every server processsj:Predicate NB-AC-CallInitValue(cid) :if [ for every process pi 2 clients:sj has received (cid; votei; clients) from pi or sj suspects pi ]then return true else return false.Function NB-AC-InitValue(dataReceivedj) :if [ for every process pi 2 clients:(cid; votei; clients) 2 dataReceivedj and votei = yes ]then return commit else return abort. 3We show now that the NB-AC consensus �lter is live (property needed above to provethe NB-AC-Termination) and ensures the NB-AC-Validity property.3Notice that, depending on the failure suspicions, it might occur that one server sj starts the consensuswith the initial value commit, while another server sk starts the consensus with the initial value abort.In this case, the two possible outcomes of the consensus service, i.e., commit and abort, both satisfy thespeci�cation given in Section 5.1. 10



Liveness of the NB-AC consensus �lter. If the initiator is correct or some correctprocess pi 2 clients has received the message (cid; vote-request; clients) sent by the ini-tiator, then by the properties of the reliable multicast, every correct client receives themessage (cid; vote-request; clients), and multisends the message (cid; votei; clients) to themembers of the consensus service. For every client pi, there are two cases to consider:(1) pi is correct, or (2) pi crashes. In case (1), pi's message (cid; votei; clients) is eventu-ally received by all correct servers. In case (2), pi is eventually suspected by all correctservers (remember that we assume a failure detector that satis�es the strong completenessproperty, see Sect 3.3). In both cases, at every server process, the predicate CallInitValueeventually returns true and the function NB-AC-InitValue eventually returns some value:the consensus �lter of NB-AC is thus live.NB-AC-Validity is satis�ed. The NB-AC-Validity property states that (1) the deci-sion must be commit if all processes vote yes and no process is ever suspected, and (2) thedecision must be abort if one process votes no. Consider (1). If no client is ever suspectedthen CallInitValue waits the vote of every process in clients. If all the votes are yes, thenInitValue ensures that every server starts consensus with the initial value commit. By thevalidity property of consensus (Sect. 3.4), the decision can only be commit. Consider now(2). If one process votes no, then CallInit ensures that every server starts consensus withthe initial value abort. By the validity property of consensus, the decision can only beabort.5.3 Variations on the consensus �lterThe de�nition of atomic commitment we have considered so far (Section 5.1) is the classicalde�nition usually given in the literature. According to this de�nition, the commit decisionrequires a yes vote from all the data managers involved in the transaction (NB-AC-Validityproperty). This requirement is too strong in speci�c situations where the data managersmaintain replicated data. In this case, one might require a weaker NB-AC-Validity propertywhere commit can be decided when for every logical datai that is replicated, a majority ofdata managers for datai vote yes.4We show in the following how to solve this variation of the NB-AC problem, de�nedby the classical NB-AC-Agreement and NB-AC-Termination properties and the modi�edNB-AC-Validity property. We consider �rst the case of one single replicated data, and thenthe case of multiple replicated data. We obtain adequate protocols simply by modifyingthe consensus �lter. This conveys the 
exibility gained by our modular approach.4We do not justify such a majority condition. Our goal is just to show how such a validity conditiontranslates into a consensus �lter. Notice however that such a majority condition assumes for every logicaldatai a majority of correct data manager replicas.
11



Atomic commitment on one replicated dataConsider a transaction on one single replicated data, and denote by clients the set of datamanagers that handle these replicas. Assume that a majority of data managers is correct.A simple modi�cation of the consensus �lter given in Section 5.2 for a server sj allows toadapt our generic framework to this speci�c atomic commitment problem (r stands for\replication00, o for \one00 data):Predicate ro-NB-AC-CallInitValue(cid) :if [ for a majority of processes pi 2 clients: sj has received (cid; votei; clients) from pi ]then return true else return false.Function ro-NB-AC-InitValue(dataReceivedj) :if [ for every (cid; votei; clients) 2 dataReceivedj, votei = yes ]then return commit else return abort.The predicate ro-NB-AC-CallInitValue returns true as soon as a majority of votes havebeen received. The function ro-NB-AC-InitValue returns commit only if all these votesare yes.Atomic commitment on multiple replicated dataConsider now a transaction on multiple replicated data. The previous �lter can easily beextended to handle this case. Let us denote by clientsi the set of data managers thathandle the replicas of datai, and by clients the union of the sets clientsi. The consensus�lter follows immediately (r stands for \replication00, m for \multiple00 data):Predicate rm-NB-AC-CallInitValue(cid) :if [ for every set clientsi:for a majority of processes pi 2 clientsi:sj has received (cid; votei; clients) from pi ]then return true else return false.Function rm-NB-AC-InitValue(dataReceivedj) :if [ for every set clientsi:for a majority of processes pi 2 clientsi:(cid; votei; clients) 2 dataReceivedj and votei = yes ]then return commit else return abort.The predicate rm-NB-AC-CallInitValue returns true as soon as a majority of votes havebeen received from every set of data managers clientsi. The function rm-NB-AC-InitValuereturns commit only if there is a majority of yes votes from every set of data managersclientsi.6 Group membership and view synchronyThe generic construction of agreement protocols based on a consensus service has beenillustrated in the previous section on the non-blocking atomic commitment problem. Inthis section we illustrate our approach on the group membership problem, and an extension12



of it known as view synchrony, or more accurately view synchronous communication. Wedo not focus on particular speci�cations of these problems, but we rather show how givena speci�cation, a simple and original solution is obtained using our reduction to consensus.6.1 Group membership6.1.1 BackgroundRoughly speaking, the group membership problem consists for a group of processes to agreeon the set of operational processes within the group. A process calls this information itsview of the group. As processes may join or leave a group, a process view of the groupmembership may change over time. When a process changes its view, we say that it installsa new view. We consider here the so-called primary partition membership [6] where, for anygiven group, a unique totally-ordered sequence of views is de�ned (i.e., we do not considerthe case where concurrent views may coexist [3]).As there is no agreed on de�nition for the group membership problem, we follow thesame approach as in [9]: we consider a problem speci�cation which, although simple, isnot trivial. As we point out later in this section, our modular construction could easily beused with other speci�cations of the problem.As in [9], we restrict ourselves to the case where processes can only be excluded froma view (there is no join). A process can be excluded if it wishes to leave the view, if itcrashes, or of it is suspected to have crashed. We consider a given group g, an integeri � 0, and we assume that all processes in vi(g) have installed the view vi(g) (initiallyv0(g) = g). We then de�ne the problem for the processes in vi(g) to install a new viewvi+1(g) through the following properties:GM-Termination. If a process pk 2 vi(g) wishes to leave vi(g), then there is at least onecorrect process in vi(g) that eventually installs vi+1(g).GM-Agreement. If a process pk 2 vi(g) installs vi+1(g) and a process pk0 2 vi(g) installsv0i+1(g), then vi+1(g) = v0i+1(g).GM-Validity. If no process is suspected and pk 2 vi(g) is the only process wishing toleave vi(g), then if a process installs vi+1(g) we have vi+1(g) = vi(g) n fpkg.6.1.2 Group membership based on a consensus serviceThe consensus service is used to enable processes in view vi(g) to install a new view vi+1(g),as follows:The initiator. If a process pk suspects some process in vi(g) or pk wishes to leave vi(g),then pk reliably multicasts the message (cid; view-change; vi(g)) to the set of clients vi(g).Process pk is the initiator of the consensus interaction. The consensus id \cid" is the pair(gid; i+ 1), where gid is g's group id, and i the current view number of process pk.13



The clients. Upon reception of the message sent by the initiator,5 a client process \mul-tisends" to the consensus servers either (1) the message (cid; no; vi(g)) if it wishes to leavevi(g), or (2) the message (cid; yes; vi(g)) otherwise. The decision computed by the consen-sus service is the new view vi+1(g).GM-Agreement and GM-Termination follow from the consensus service (CS-Agreementand CS-Termination properties) and from the liveness of the GM consensus �lter (seebelow).The consensus �lter. The GM-Validity property is ensured by the following GM con-sensus �lter (�lter of server sj):Predicate GM-CallInitValue(cid) :if received (cid;�; clients) from one process in clientsand for every process pi 2 clients:[ received (cid;�; clients) from pi or sj suspects pi ]then return true else return false.Function GM-InitValue(dataReceivedj) :return fpk j (cid; yes; clients) from pk 2 dataReceivedjg .We show now that the GM consensus �lter is live and ensures the GM-Validity property.Liveness of the GM consensus �lter. The �lter is live if there is at least one correctprocess in vi(g). Let pk be a process that wishes to leave view vi(g). (1) If pk is correct,then pk initiates an interaction with the consensus service and all correct members of vi(g)send messages (cid;�; vi(g)) to the consensus servers. (2) If pk crashes, then by the strongcompleteness property of the failure detector, pk is eventually suspected by all correctprocesses of vi(g), and at least one correct process in vi(g) initiates an interaction with theconsensus service. In both cases (i.e., (1) and (2)), every correct consensus server receivesat least one message (cid;�; vi(g)). As we assume a failure detector that satis�es strongcompleteness and at least one process is correct in vi(g), then the consensus �lter is live.GM-Validity property is satis�ed. Assume that no process is suspected. Then GM -CallInitV alue waits for the message (cid;�; clients) from every process in vi(g). If pk isthe only process wishing to leave vi(g), then pk is the only process to send (cid; no; clients).In this case, the function GM -InitV alue ensures that every server starts consensus withthe initial value vi(g) n fpkg. By the Validity property of consensus, the new view vi+1(g)can only be vi(g) n fpkg.As pointed out earlier, alternative de�nitions of the group membership problem couldbe considered. The GM-Validity property above does not for instance prevent excludingall processes from a view (this can happen if these processes suspect each others). We5Notice that there can be more than one initiator for the view change from vi(g) to vi+1(g). Ourprotocol also works in the case of multiple initiators.14



could consider a variation of the GM-Validity property which always requires preserving amajority of processes within a view: the �lter could be easily adapted to such a propertyand it will be live under the assumption that there always is a majority of correct processeswithin a view.6.2 View synchronous communication6.2.1 BackgroundView synchronous communication (in the context of the primary partition model) hasbeen introduced by the Isis system [6], and later formalized in [26]. It augments a groupmembership protocol with an additional group broadcast primitive that orders messageswith respect to the installation of views. We use here the term view synchronous broadcast,denoted by VScast.As in Section 6.1, we restrict ourselves to the case where processes can only be excludedfrom a view. Let vi(g) be the current view of process pk in g, and let pk VScast messagem inside group g. We denote by V Sdeliver the corresponding delivery of m. Roughlyspeaking, the VScast primitive ensures that (1) either no new view is installed and all themembers of vi(g) eventually VSdeliver m, or (2) a new view vi+1(g) is installed, and ifany process in vi+1(g) has VSdelivered m before installing vi+1(g), then all the processesthat install vi+1(g) VSdeliver m before installing vi+1(g). View synchronous multicastis adequate, for example, in the context of the primary-backup replication technique, tomulticast the update message from the primary to the backups [19].We specify here the view synchronous communication problem as an extension of thegroup membership problem de�ned in Section 6.1. Let vi(g) be the current view, and letpk 2 vi(g) VScast message m:VS-Termination. GM-Termination plus the following \message-view ordering" property:every process in vi(g) eventually VSdelivers m, or there is at least one correct processin vi(g) that installs vi+1(g).VS-Agreement. Identical to GM-Agreement.VS-Validity. GM-Validity plus the following property: if there exists one process pk 2vi(g) \ vi+1(g) that has VSdelivered m before installing vi+1(g), then every processin vi(g) \ vi+1(g) must VSdeliver m before installing vi+1(g).The VS-Termination property requires a new view to be de�ned whenever VSdelivery of mby all processes in vi(g) cannot be ensured. The VS-Agreement property requires agreementon the views. The VS-Validity property, in addition to the GM-Validity property, requiresthe VSdelivery of messages with respect to the installation of new views.
15



6.2.2 VScast based on a consensus serviceLet vi(g) be the current view of process pk 2 vi(g), and let pk VScast message m: messagem is sent to all processes in vi(g). Upon reception of m, message m is VSdelivered.However, this is not enough to ensure the semantics of view synchronous communication.The implementation of VScast requires the notion of message stability. The predicatestablek0(m) holds at process pk0 2 vi(g) when process pk0 knows that all the processes invi(g) have received m.6 Based on the notion of message stability, and assuming the currentview vi(g), the interaction with the consensus service ensures the VScast semantics asfollows.The initiator. If (1) a process pk suspects some process in vi(g), or (2) pk wishes toleave vi(g), or (3) pk has VSdelivered a message m and stablek(m) still does not hold at pkafter some time-out period following the VSdelivery of m by pk, then pk reliably multicaststhe message (cid; view-change; vi(g)) to the set of clients vi(g). The consensus id \cid" isthe pair (gid; i + 1), where gid is g's group id, and i the current view number of processpk.The clients. Upon reception of the message sent by the initiator, every client processpk multisends either (1) the message (cid; no; vi(g)) to the consensus service if pk wishesto leave vi(g), or (2) the message (cid; (unstablek; yes); vi(g)), where unstablek denotes theset of messages unstable at pk. The decision computed by the consensus service is a pair(unstab; v), where unstab is a set of messages and v a view. Upon reception of the decision(unstab; v), every client process pk �rst VSdelivers the messages in unstab that it has notyet VSdelivered, and then installs the new view v.The VS-Agreement property follows from the CS-Agreement property of the consensusservice. For the VS-Termination property, there are two cases two consider. Case 1: noprocess pk 2 vi(g) wishes to leave vi(g) and every process in vi(g) VSdeliversm. Case 2: theother cases. In case 1, the VS-Termination trivially holds. In case 2, the VS-Terminationproperty follows from the liveness of the VS consensus �lter (see below).The consensus �lter. The VS consensus �lter de�nes initial values for the consensusproblem. The initial value for server sj is a pair (unstabj; vj), where unstabj is a set ofunstable messages, and vj a set of processes. The decision computed by the consensusservice is a pair (unstab; v), where unst is the set of unstable messages to be VS-deliveredbefore installing the new view v (i.e., vi+1(g)). The VS consensus �lter is as follows:Predicate VS-CallInitValue(cid) : Identical to the predicate GM-CallInitValue6This can be implemented by having each process, upon reception of m, sending acknowledgements toall processes in vi(g). 16



Function VS-InitValue(dataReceivedj) :vj  fpk j (cid; (unstablek; yes); clients) 2 dataReceivedjg;unstabj  fm j (cid; (unstablek; yes); clients) has been received and m 2 unstablekg;return (unstabj ; vj)The proof of liveness of the VS consensus �lter is similar to the proof of liveness of the GMconsensus �lter (Sect. 6.1.2).The VS-Validity property consists of two sub-properties: the GM-Validity propertyplus the additional \message-view ordering" property. For the proof of the GM-Validityproperty, refer to Section 6.1.2. The additional property is satis�ed for the followingreason. Consider process pk 2 vi(g), pk 2 vi+1(g), and assume that pk has VSdeliveredsome messagem before installing vi+1(g). As pk 2 vi+1(g), process pk has multisent message(cid; (unstablek; yes); clients) to the consensus service. There are two cases to consider:(1) m 2 unstabk, or (2) m =2 unstabk. In case (1), stablek(m) holds, i.e., every processin vi(g) has received and VSdelivered m (before installing vi+1(g)). So the additional\message-view ordering" property holds. In case (2), m 2 unstab, where (unstab; v) is thedecision of the consensus service. Because every client process VSdelivers the messagesin unstab that it has not yet VSdelivered before installing the new view, the additional\message-view ordering" property also holds.7 Total order multicast/broadcast7.1 Total order multicast vs. total order broadcastThe di�erence between total order multicast and broadcast has to do with message des-tination sets. Let Dst(m) denote the destination set of message m, and let m1 and m2be two messages. With total order broadcast, if p 2 Dst(m1) and p 2 Dst(m2), thenDst(m1) = Dst(m2). In other words, total order broadcast forbids overlapping desti-nations. This restriction does not apply for total order multicast, which allows issuingmessages to overlapping destinations (we discuss these di�erences in detail in [18]).Most of total order algorithms that were proposed in the literature are total orderbroadcast algorithms, and many of them rely on a membership service or view synchronouscommunication (e.g. [6, 1, 11]). These algorithms operate in two modes: (1) a normalmode which lasts as long as no process is suspected to have crashed, and (2) a specialmode in which a termination protocol ensures the ordering property while installing a newmembership. The special mode is based on protocols that have been discussed in theprevious section (membership and view synchronous communication).We restrict our discussion below to algorithms that do not require a membership ser-vice, i.e., to algorithms that operate in one single mode. Total order algorithms di�erslightly from the agreement problems discussed in the previous sections for the followingreason: agreeing on an order requires agreeing on a value �rst, and then inferring an orderfrom that value. Such an algorithm for total order broadcast has been described in [8],where agreement is on a set of messages. This algorithm can be expressed in our generic17



communication scheme with an empty consensus �lter. 7 In the following, we illustrate ourgeneric solution on a total order multicast algorithm.7.2 Total Order Multicast7.2.1 BackgroundThe algorithm we describe is an extension of a non-fault-tolerant total order multicastalgorithm proposed by Skeen [29]. Basically, we show how to make that protocol fault-tolerant by using our consensus service.We denote by TO-multicast(m;Dst(m)) the event by which a process multicasts mes-sage m according to total order multicast semantics, and TO-deliver(m) the correspondingdelivery event. The basic idea of Skeen's algorithm consists in having the processes agreeon a sequence number sn(m) for every message m, and TO-deliver the messages in theorder of their sequence numbers. The sequence number is based on Lamport's logicalclocks [20]. More precisely, when TO-multicast(m;Dst(m)) is executed by pi, processpi sends the message m to all processes in Dst(m) and collects the timestamps of thereceive(m) events from these processes. Process pi then de�nes sn(m) as the maximum ofthese timestamps and sends back sn(m) to Dst(m). Skeen's algorithm does not toleratethe failure of a single process. Indeed, to compute a sequence number sn(m), the senderof a message m waits for timestamps from all destination processes.We consider here the problem of agreeing on the sequence number sn(m) in spite ofprocess crashes. Inferring the order from that value is not discussed here: it can be foundin [17] and [8]. Given a message m, and TO-multicast(m;Dst(m)), the computation ofsn(m) is de�ned by the following properties:SN-Termination. If a correct process TO-multicasts a message m, then every correctprocess in Dst(m) eventually decides sn(m).SN-Agreement. No two processes in Dst(m) decide on two di�erent sequence numbers.SN-Validity. The sequence number sn(m) is computed as the maximum of the inputsprovided by all correct processes in Dst(m).7.2.2 Computing sn(m) using a consensus serviceLet TO-multicast(m;Dst(m)) executed by some process pi, and let id(m) denote the idof message m. The consensus service is used as follows to compute sn(m):The initiator. Process pi reliably multicasts (cid;m; clients(cid)) to the set clients(cid);cid is id(m), and the set clients(cid) is Dst(m).7This actually leads to a degenerated version of our generic communication scheme.18



The clients. Upon reception of (cid;m; clients(cid)), a client pi de�nes data0i as thetimestamp tsi of the receive event, according to Lamport's clock, and multisends (ci; tsi; clients(cid))to the consensus servers.The SN consensus �lter. The �lter of server sj is de�ned as follows:Predicate SN-CallInitValue :if [ for every process pi 2 clients:[ received (cid;�; clients) from pi or sj suspects pi ]then return true else return false.Function SN-InitValue(dataReceivedj) :sn(m) maxftsi(m) j (cid; tsi(m); clients(cid)) 2 dataReceivedjgreturn sn(m)It is easy to show that the �lter ensures the SN-Termination, SN-Agreement and SN-Validity properties de�ned above. Basically, the SN-CallInitValue predicate returns trueas soon as the message (cid; tsi(m); clients(cid)) has been received from all non-suspectedprocesses in Dst(m). The function SN-InitValue returns the maximum of the timestampstsi(m) received. More details on this protocol are given in [17]. It is worthwhile to point outhere that the protocol is correct under the assumption of a perfect failure detector: besidesthe strong completeness property (every process that crashes is eventually suspected byevery correct process), the failure detector also needs to satisfy the strong accuracy property,i.e., no process is suspected before it crashes [8]. Given this assumption and the de�nitionof the consensus �lter, we ensure that sn(m) is always computed as the maximum of thetimestamps from all correct processes in Dst(m). We show in [18] that in order to tolerateeven a single crash failure, any genuine total order multicast protocol requires a perfectfailure detector. Overcoming the need for a perfect failure detector in speci�c models isdiscussed in [17] and in [18].8 Cost evaluationWe describe below the overall cost of a general interaction with the consensus service interms of the number of messages and communication steps. This cost is the same for allagreement protocols presented in the previous sections. We will use this cost to compare thee�ciency of agreement protocols built following our modular approach with the e�ciencyof specialized agreement protocols. As we will show, the generality of the consensus serviceapproach does not lead to a loss of e�ciency. On the contrary, our modular architectureenables interesting optimizations.Up to know, we have considered consensus as a black box. To discuss consensus imple-mentations, we distinguish two approaches: a centralized one where the consensus decisionis taken through one coordinator, and a decentralized one where there is no coordinator.For both approaches, we �rst point out some optimizations and then we present imple-mentation costs in terms of messages and communication steps.19



We reasonably assume that runs with no failure and no failure suspicion are the mostfrequent ones, and implementations should be optimized for these runs. We call a \goodrun" a run in which no failure occurs and no failure suspicion is generated.8.1 Centralized algorithmWe consider the (centralized) consensus algorithm presented by Chandra and Toueg [8],noted here 3S-consensus. This algorithm requires a majority of correct processes and afailure detector of class 3S. In the original description of the 3S-consensus protocol, everyprocess pj starts with an initial value vj. In fact, it is su�cient for one correct processto start with an initial value. In other words, when invoking the consensus service, it issu�cient that one correct member of the consensus service has an initial value. Hence,client processes need not send their messages to all consensus servers. It is su�cient thatthey send their messages to one server, unless they suspect this server to have crashed. Inthe following, we consider the 3S-consensus protocol with this optimization.We also assume an optimized implementation of reliable multicast (used by the initiatorto send its message to the clients). If the initiator process pi executing \Rmulticast(m)"to the clients is correct, no client needs to relay m. A client process relays m only whenit suspects pi. This optimized implementation costs only 1 communication step and O(n)messages in good runs.Let nc be the number of clients, and ns the number of servers. Figure 7, illustrates the�ve communication steps and 3nc+2ns� 3 messages needed before the clients receive thedecision of the consensus (i.e., the solution of the agreement problem):� step 1, the reliable multicast from the initiator to the set of clients, costs nc � 1messages;� step 2, the multisend from the clients to one of the servers (say s1) costs nc messages;� steps 3 and 4 correspond to messages sent within the 3S-consensus protocol. Ingood runs, s1 knows the decision at the end of step 4. Steps 3 and 4 each costs ns�1messages (see Fig. 7);� step 5, the multisend initiated by the server s1 to the clients costs nc messages.8.2 Decentralized schemeThis implementation takes advantage of the validity property of consensus: if each memberof the consensus service starts the consensus with the same initial value v (8si; sj, we havevi = vj = v), then the decision is v. We exploit this property through the followinginteraction scheme (see Figure 8):� step 1, as before, is the (optimized) reliable multicast from the initiator to the set ofclients, and it costs nc � 1 messages; 20
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multisend multisendFigure 7: Centralized scheme (in good runs): p1 is the initiator; p1, p2, p3 are the clients;s1, s2, s3 implement the consensus service.� in step 2, the clients multisend their messages to all the server processes and everymember of the consensus service gets an initial value. This costs nc � ns messages;� in step 3, the consensus servers simply send their initial value to the clients. Thiscosts ns �nc messages. A client receiving the same initial value v from every memberof the consensus service, knows that v is the decision. If this is not the case, the 3S-consensus is used as a termination protocol. This case in not depicted in Figure 8(we give a detailed description in [16] for the case of atomic commit).
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Assume that the consensus service is implemented by the clients themselves, and con-sider only runs where no process crashes or is suspected to have crashed. The communica-tion scheme of our NB-AC protocol using the centralized implementation above is similarto the communication scheme of the 3PC protocol [28]. Furthermore, if we consider thedecentralized implementation, the communication scheme of our NB-AC protocol is similarto the communication scheme of the D3PC protocol (Decentralized 3PC of Skeen) [28]Our solution based on a consensus service is however more modular, and in both cases(centralized or decentralized) allows to trade the number of messages against resilience. Ifwe denote by nc the number of clients and ns the number of servers, then if ns decreases,the resilience of the consensus server decreases, but the number of messages also decreases.In the case nc > ns, our centralized solution requires less messages than 3PC, and ourdecentralized solution requires less messages than D3PC. For instance, our centralizedsolution requires 3nc + 2ns � 3 messages, whereas the 3PC requires 5nc � 3 messages. Inpractice, ns = 3 achieves a sensible resilience. In this case, 3nc + 2ns � 3 < 5nc � 3 is truealready for nc = 4 (a transaction on three objects, i.e., one transaction manager and threedata managers, leads to nc = 4). In [16], we present experimental results con�rming thatan optimized consensus-based NB-AC protocol is more e�cient that a 3PC protocol.9 Concluding remarksThe paper advocates the idea that consensus is a central abstraction for building fault-tolerant agreement protocols in a modular way: The paper has presented a uni�ed frame-work from which one can derive, simply by customizing a generic consensus �lter, protocolsthat are usually considered and implemented separately. The same framework allows usto express protocols for atomic commitment, group membership, view synchrony and totalorder multicast.To the best of our knowledge, this is the �rst time that solutions to the \group mem-bership" and \virtual synchrony" problems are given based on a reduction to consensus,with well de�ned conditions under which liveness is ensured. Additionally, our frameworksuggests that, in the context of these two problems, the real open issue is the speci�cation,rather than the implementation. Our framework can thus be viewed as a �rst step towardsbuilding practical systems that provide support for various paradigms, mixing for instancetransactions and view synchronous communication. In this context, consensus would notonly be a useful theoretical concept [27, 30], but also a useful service for the clean devel-opment of reliable distributed systems. Apart from the agreement problems consideredin the paper, one could of course consider other agreement problems like election [24] orterminating reliable broadcast [8].Our framework was designed in the context of asynchronous distributed systems withprocess crash failures and failure detectors. That is, the framework needs \no assumption"on process communication delays and process relative speeds. One could apply the sameframework in systems with stronger assumptions (e.g., a synchronous model) or di�erentfailure models. This might require modi�cation of the implementations of our framework22
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