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Abstract

This paper describes a modular approach for the construction of fault-tolerant
agreement protocols. The approach is based on a generic consensus service. Fault-
tolerant agreement protocols are built using a client-server interaction, where the
clients are the processes that must solve the agreement problem, and the servers
implement the consensus service. This service is accessed through a generic consensus
filter, customized for each specific agreement problem. We illustrate our approach on
the construction of various fault-tolerant agreement protocols such as non-blocking
atomic commitment, group membership, view synchronous communication and total
order multicast. Through a systematic reduction to consensus, we provide a simple
way to solve agreement problems, and this leads to original solutions for problems
like group membership and view synchronous communication. In addition to its
modularity, our approach enables efficient implementations of agreement protocols,
and precise characterization of their liveness and safety properties.
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1 Introduction

Agreement protocols such as atomic commitment, group membership, and total order
broadcast or multicast, are at the heart of many distributed applications, including trans-
actional and time critical applications. Based on some recent theoretical results on solving
agreement problems in distributed systems [8, 7, 14, 25], we present in this paper a uni-
fied framework to develop fault-tolerant agreement protocols in a modular, correct, and
efficient way.

In our framework, we suggest the use of a generic consensus service to build fault-
tolerant agreement protocols. The consensus service is implemented by a set of consensus
server processes and the number of these processes depends on the desired resilience of
the service. We introduce the generic notion of consensus filter to customize the consensus
service for specific agreement protocols. Building a fault-tolerant agreement protocol leads
to a client-server interaction where, (1) the clients are the processes that have to solve the
agreement problem and, (2) the servers implement the consensus service, accessed through
the consensus filter. The client-server interaction differs however from the usual client-
server interaction scheme: we have here an n.-ng interaction (n. clients, n, servers), with
n. > 1, ng > 1, rather than the usual 1-1 or 1-n, interaction.

We show how various agreement protocols are built simply by adapting the consensus
filter. The modularity of our infrastructure enables us to derive correctness properties of
agreement protocols from the properties of the consensus service, and leads to effective
optimizations that trade resilience with efficiency.

Behind our approach, we argue that consensus is not only a fundamental paradigm
in theoretical distributed computing [27], but also a useful building block for practical
distributed systems.

The paper is structured as follows. Section 2 recalls some background on the devel-
opment of distributed services and distributed agreement protocols. Section 3 presents
our system model and recalls some results about the consensus problem. Section 4 gives
an overview of our generic consensus service. Section 5 details how non-blocking atomic
commitment protocols can be constructed using our consensus service. Section 6 illus-
trates the use of the consensus service in building protocols for group membership and
view synchronous communication. Section 7 considers atomic broadcast and atomic multi-
cast protocols. Section 8 presents a cost analysis and discusses efficiency issues. Section 9
points out some possible uses and generalizations of our framework.

2 Background

General services, used to build distributed applications, or to implement higher level dis-
tributed services, have become common in distributed systems. Examples are numerous:
file servers, time servers, name servers, authentication servers, etc. However, there have
been very few proposals of services specifically dedicated to the construction of fault-
tolerant agreement protocols such as atomic commitment, total order broadcast, etc. Usu-



ally, these protocols are considered separately and do not rely on a common infrastructure.

A notable exception is the group membership service [23], which was used to implement
various total order broadcast protocols [6, 11, 12, 1]. However, the group membership prob-
lem (solved by the membership service) is just one example of an agreement problem that
arises in distributed systems. In fact, all agreement problems (atomic commitment, total
order broadcast, group membership) are related to the abstract consensus problem [8, 30]
and thus are subject, in asynchronous systems, to the Fischer-Lynch-Paterson impossibil-
ity result [13, 7, 9].' Most of the agreement protocols described in the literature usually
guarantee the required safety property, but fail to define the conditions under which live-
ness is ensured. Thanks to the recent work of Chandra and Toueg on failure detectors, we
now have a formalism that allows to define precise conditions under which the consensus
problem is solvable in asynchronous distributed systems. By defining a unified consensus-
based framework for solving various agreement problems, we provide a way to reuse that
formalism in proving the correctness of agreement protocols.

Our work can be viewed as continuation of the work of Schneider [27], who suggested
the use of consensus as a central paradigm for reliable distributed programming. We go
a step further by describing a generic and systematic way to transform various agreement
problems into consensus. Our transformation leads to original solutions for problems like
group membership and view synchronous communication, and leads to highlight their com-
mon characteristics with problems usually considered separately like non-blocking atomic
commitment.

3 System architecture and model

Our system architecture is depicted on Figure 1. We describe below the process model
and the communication layer, then we recall the failure detection abstraction (layer 1) and
the definition of the consensus problem. The generic consensus layer (layer 2) is described
in Section 4. Examples of using the generic consensus service to solve various agreement
(layer 3) problems are given in Section 5, 6, and 7.

3.1 Processes

We consider a distributed system composed of processes denoted by py,pa, ..., pi,.... The
processes are completely connected through a set of channels. Every process can send a
message, receive a message, and perform a local computation (e.g., modify its state or
consult its local failure detector module). We do not make any assumption on process
relative speeds but we assume a crash-stop failure model: a process fails by crashing, and
after it does so, the process does never execute any action. We do not consider for instance

'We recall the definition of the consensus problem later in the paper. The Fischer-Lynch-Paterson
impossibility result states that there is no deterministic algorithm that solves consensus in an asynchronous
system, when one process can crash [13].



Agreement protocols
LAYER 3
group membership view synchrony
atomic commitment  total order broadcast/multicast
LAYER 2 Generic Consensus Service
LAYER 1 Communication and Failure Detection

Figure 1: The architecture model

Byzantine failures, i.e., we assume that processes do not behave maliciously. > A correct
process is a process that does not crash, and a process that crashes is said to be faulty.

3.2 Communication primitives

We consider an asynchronous communication model, i.e., we do not assume any bound on
the time it takes for a message to be transmitted from the sender to a destination process.
We assume however that the channels are eventually reliable [2]. In other words:

e A message sent by a process p; to a process p; is eventually received by p;, if p; and
p; are both correct.

Eventual reliable channels can be implemented by retransmitting messages. They do
not exclude the possibility of temporary link failures (temporary partitions). An eventual
reliable channel is weaker than a reliable channel [2] which ensures that a message m sent by
pi to p; is eventually received by p; if p; is correct, i.e., the latter definition does not require
p; to be correct. This means that reliable channels do not lose messages, whereas eventual
reliable channels can lose messages and hence more adequately model real communication
links.

For the modularity of our construction, we introduce the following communication
primitives, which can be built using eventual reliable channels.

e Rmulticast(m) to Dst(m): reliable multicast of m to the set of processes Dst(m).
This primitive ensures that, if the sender is correct, or if one correct process p; in
Dst(m) receives m, then every correct process in Dst(m) eventually receives m.

e multisend(m) to Dst(m): equivalent to for every p; € Dst(m), send(m) to p,.

The primitive multisend is introduced as a convenient notation, whereas Rmulticast
provides a stronger semantics. To understand the difference, consider (1) Rmulticast(m)

2We will discuss in Section 9 the generalization of our framework to other fault models.



to Dst(m), and (2) multisend(m) to Dst(m), both performed by some process p;. If p;
crashes, then multisend(m) to Dst(m) can lead to partial reception of m: some correct
process p; in Dst(m) might receive m, and some other correct process py in Dst(m) might
never receive m. Such a situation does not occur with a reliable multicast. A multisend is
implemented simply by sending multiple messages, whereas a Rmulticast requires message
retransmission by a destination process (see [8] for more details on implementation of
reliable multicast).

3.3 Failure detectors

Failure detectors have been formally introduced in [8, 7] for solving the consensus problem.
A failure detector can be viewed as a distributed oracle. Each process p; has access to a
local failure detector module D;. This module maintains a list of processes that it currently
suspects to have crashed.

As we consider in this paper consensus as a black box, we are not concerned with a
formal characterization of failure detectors. For the general purpose of our framework, we
just assume that the failure detector satisfies the so called “strong completeness” property:
if some process p; crashes, then every process p; eventually suspects p; forever. This
property is easily implementable using heartbeat messages, or Are you alive?/I am alive
message exchange. Later in the paper, and only when required, we will recall stronger
properties of failure detectors.

3.4 Consensus

The consensus problem is defined over a set of processes. Every process p; in this set starts
with an initial value v;, and the processes have to decide on a common value v. Consensus
is defined by the following three properties [8]:

Uniform Agreement. No two processes decide differently.
Termination. Every correct process eventually decides.
Uniform Validity. If a process decides v, then v is the initial value of some process.

The definition considered above specifies the uniform version of the consensus problem.
It requires agreement and validity properties to be satisfied even by faulty processes. We
do not discuss here specific algorithms that solve consensus: we just assume the existence
of such algorithm. The reader interested in learning more about solving consensus in an
asynchronous system model augmented with failure detectors can consult [8, 25].

4 The consensus framework

In this section, we give an abstract view of our consensus service based framework. Our
description is abstract in the sense that we do not consider here any specific agreement



problem. Examples of solving agreement problems in our framework are given in Section 5,
Section 6 and Section 7.

4.1 The roles: overview

Our framework distinguishes the following process roles:

e The “initiator” of an agreement problem.

e The processes that have to solve an agreement problem. These processes play the
role of “clients” (of the consensus service).

e The processes that solve consensus. These processes are the “server” processes.

The different roles can overlap: an initiator process can also be a client process, and the
role of the server processes can be played by all or by a subset of the client processes:
in practice this would be the typical scenario (we will come back to this in Section 8).
We will also see that, depending on the agreement problem, the initiator can be either a
client process, or distinct from the client processes. However, for simplicity of presentation,
we will mainly consider the case where the initiator, the client processes and the server
processes are distinct. We will denote the server processes by si, s, ..., s,. The number
m of these processes depends on the desired resilience of the service.

The interaction between the initiator, the clients and the consensus servers is based on
the Rmulticast and the multisend communication primitives defined in the previous section.
A basic interaction has three phases:

1. an nitiator process starts by multicasting a message to the set of client processes,
using the Rmulticast primitive (Arrow 1, Fig. 2).

2. clients invoke the consensus service, using a multisend primitive (Arrow 2, Fig. 2).

3. the consensus service sends a decision back to the clients, using a multisend primitive
(Arrow 3, Fig. 2).

We will see throughout the paper that many agreement problems can be solved by
the above three phase interaction. In most of the cases (Sect. 5 and Sect. 6), there is
a 1-1 correspondence between one instance of an agreement problem and one instance of
consensus. We will also briefly mention in Section 7 the case of a n-1 correspondence, where
several instances of an agreement problem correspond to one single instance of consensus.

4.2 The roles: description

The initiator. The invocation of the consensus service is started by an initiator process,
which reliably multicasts (Rmulticast primitive) the message (cid,data,clients) to the
set clients (Arrow 1 on Fig. 2; and Fig. 3). The parameter cid (consensus id) uniquely
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Figure 2: Interaction from a client’s point of view

identifies the interaction with the consensus service, data contains some problem specific
information, and the parameter clients is the set of processes that have to solve an agree-
ment problem.

1 compute data, the set clients, and get a consensus identifier cid ;
2 Rmulticast(cid, data, clients) to clients ;

Figure 3: Initiator’s algorithm

The clients. Upon reception of the message (cid, data, clients) multicast by the ini-
tiator, every process p; € clients computes data) (which contains problem specific infor-
mation), multisends the message (cid, datal, clients) to the consensus service and waits for
the decision of the consensus service (Fig. 4).

1 upon reception of (cid, data, clients) by a client p;:
compute data; ;

multisend(cid, data}, clients) to the members of the consensus service ;
wait reception of (cid, decision) from the consensus service ;

- W N

Figure 4: Algorithm of a client p;

The servers. The interaction between the clients processes and the consensus service
is illustrated from the point of view of a server process in Figures 6 and 5. The genericity
of the consensus service is obtained thanks to the notion of “consensus filter”, depicted
in Figure 6 as a shaded ring (arrows to and from sy and s3 have not been drawn). The
consensus filter allows to tailor the consensus service to specific agreement problems. The
filter transforms the messages received by a server process s; into a consensus initial value
v; for s;.

The Consensus filter. A consensus filter, attached to every server process s;, is
defined by two parameters: (1) a predicate CalllnitValue and (2) a function InitValue
(Figure 5). The predicate CallInitValue defines the condition under which the function



InitValue can be called and the consensus protocol started. It is a stable predicate, i.e., if
CallInitValue is true at a time ¢, it is true for any time ¢’ > t. As soon as the predicate
CallInitV alue returns true (line 1, Fig. 5), the function InitV alue is called (line 2, Fig. 5).
InitValue returns the initial value for the consensus. In Figure 5 (line 3), the consensus
protocol is represented as a function consensus(cid,v;). The consensus decision, once
known, is multisent to the set clients (line 4, Fig. 5).

1 wait reception of (cid, data}, clients) from clients until CalllnitValue(cid) ;
2 vj « InitValue({data} | message (cid, data}, clients) received}) ;

3 decision < consensus(cid, v;) ;

4 multisend(cid, decision) to clients ;

Figure 5: Algorithm of a server s;
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Figure 6: Invocation-reply from the point of view of server s,

We say that a consensus filter is live at a correct server if the predicate CallInitV alue
eventually becomes true and the function I'nitV alue eventually returns some value.

4.3 Correctness

We present here two properties that are ensured by our generic framework, and from which
we derive the correctness proofs of agreement protocols (see Sections 5, 6 and 7).

CS-Agreement. No two client processes receive two different decision messages (cid, decision).

CS-Termination. If the consensus filter is live, then the decision message (cid, decision)
is eventually received by every client.

The CS-Agreement (Consensus Service Agreement) property directly follows from con-
sensus (Sect. 3.4). Consider the CS-Termination (Consensus Service Termination) prop-
erty. If the consensus filter is live, then all correct members of the consensus service
eventually start consensus. By the termination property of consensus (Sect. 3.4), every
correct server eventually decides, and sends the (cid, decision) message to the clients. As
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we assume at least one correct server and eventual reliable channels, every correct client
eventually receives the decision message (cid, decision).

5 Non-Blocking Atomic Commitment

Throughout this section we show how a modular non-blocking atomic commit protocol can
be built using our consensus service together with an adequate filter. We first recall the
problem, then we show how it can be solved in our consensus framework. In Section 8,
we will compare the performances of our protocol with those of non-blocking atomic pro-
tocol that were proposed in the literature so far, namely Skeen’s Three Phase Commit
protocols [28].

5.1 Background

A transaction originates at a process called the transaction manager, which issues read and
write operations to data manager processes [4]. At the end of the transaction, the transac-
tion manager, together with the data managers, must solve an Atomic Commit problem in
order to decide on the commit or abort outcome of the transaction. We consider here the
“Non-blocking” Atomic Commit problem (NB-AC for short) where correct processes must
eventually decide despite failures [28]. The outcome of the transaction depends on votes
from the data managers. A data manager votes yes to indicate that it is able to make the
temporary writes permanent, and votes no otherwise. If the outcome of the NB-AC proto-
col is commit, then all the temporary writes are made permanent; if the outcome is abort,
then all temporary writes are ignored. The NB-AC problem is defined more accurately by
the following properties:

NB-AC-Agreement. No two processes decide differently.
NB-AC-Termination. Every correct process eventually decides.

NB-AC-Validity. The decision must be abort if one process votes no, and the decision
must be commit if all processes vote yes and no process is suspected.

It is important to notice that the NB-AC-Validity property enables an abort decision
if any process is suspected. This condition actually defines the weak NB-AC problem [14].
The distinction between weak NB-AC and strong NB-AC problems is however irrelevant
in the context of this paper (see [14] for more details).

5.2 NB-AC based on a consensus service

In the following, we show how a NB-AC protocol is derived from our consensus service
framework (Sect. 4). We first focus on the NB-AC-Agreement and NB-AC-Termination
properties. Then we describe a consensus filter adapted to the NB-AC-Validity property.



5.2.1 NB-AC: Agreement and Termination

The transaction manager is the initiator of an interaction with the consensus service.
Arrow 1 in Figure 2 represents the message (tid, vote-request, data-managers) sent by the
transaction manager to the data managers, at the commitment of the transaction: the
transaction identifier tid is the consensus id, the generic data field is instantiated as vote-
request, and data-managers is the set of data managers accessed by the transaction. The
datal; value (Fig. 4) is the yes/no vote of the data manager p;, and the decision awaited
from the consensus service is either commit or abort.

NB-AC-Agreement follows directly from the CS-Agreement property of the consensus
service (Sect. 4.3) and, if we assume that the consensus filter is live (see below), NB-AC-
Termination follows from the CS-Termination property of the consensus service (Sect. 4.3).

5.2.2 NB-AC: Validity

NB-AC consensus filter. The consensus filter, given below, tailors the consensus ser-
vice to the NB-AC-Validity property. The NB-AC-CalllnitValue predicate is defined in
such a way that the votes from all non-suspected processes are received by the servers. In
other words, NB-AC-CalllnitValue at a server s;, returns true as soon as for every client
process p;, either (1) the message (cid, vote;, clients) from p; has been received by s;, or
(2) pi is suspected by s;.

The function NB-AC-InitValue, at a server s;, returns commit if and only if a yes vote
has been received by s; from every process in clients. Otherwise, if any process in clients
has been suspected, or has voted no, then the function NB-AC-InitValue returns abort
(note that the commit/abort values returned by the function NB-AC-InitValue are here
initial values for the consensus service, and not yet the decision of the consensus.).

The consensus filter for a NB-AC protocol is thus specified as follows at every server process
Sji
Predicate NB-AC-CalllnitValue(cid) :

if [ for every process p; € clients:

s; has received (cid, vote;, clients) from p; or s; suspects p; ]
then return true else return false.

Function NB-AC-InitValue(dataReceived;) :
if [ for every process p; € clients:
(cid,vote;, clients) € dataReceived; and vote; = yes |
then return commit else return abort. 3

We show now that the NB-AC consensus filter is live (property needed above to prove
the NB-AC-Termination) and ensures the NB-AC-Validity property.

$Notice that, depending on the failure suspicions, it might occur that one server s; starts the consensus
with the initial value commit, while another server s, starts the consensus with the initial value abort.
In this case, the two possible outcomes of the consensus service, i.e., commit and abort, both satisfy the
specification given in Section 5.1.
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Liveness of the NB-AC consensus filter. If the initiator is correct or some correct
process p; € clients has received the message (cid, vote-request, clients) sent by the ini-
tiator, then by the properties of the reliable multicast, every correct client receives the
message (cid, vote-request, clients), and multisends the message (cid, vote;, clients) to the
members of the consensus service. For every client p;, there are two cases to consider:
(1) p; is correct, or (2) p; crashes. In case (1), p;’s message (cid, vote;, clients) is eventu-
ally received by all correct servers. In case (2), p; is eventually suspected by all correct
servers (remember that we assume a failure detector that satisfies the strong completeness
property, see Sect 3.3). In both cases, at every server process, the predicate CalllnitValue
eventually returns ¢rue and the function NB-AC-InitValue eventually returns some value:
the consensus filter of NB-AC is thus live.

NB-AC-Validity is satisfied. The NB-AC-Validity property states that (1) the deci-
sion must be commit if all processes vote yes and no process is ever suspected, and (2) the
decision must be abort if one process votes no. Consider (1). If no client is ever suspected
then CalllnitValue waits the vote of every process in clients. If all the votes are yes, then
InitValue ensures that every server starts consensus with the initial value commsit. By the
validity property of consensus (Sect. 3.4), the decision can only be commit. Consider now
(2). If one process votes no, then Calllnit ensures that every server starts consensus with
the initial value abort. By the validity property of consensus, the decision can only be
abort.

5.3 Variations on the consensus filter

The definition of atomic commitment we have considered so far (Section 5.1) is the classical
definition usually given in the literature. According to this definition, the commit decision
requires a yes vote from all the data managers involved in the transaction (NB-AC-Validity
property). This requirement is too strong in specific situations where the data managers
maintain replicated data. In this case, one might require a weaker NB-AC-Validity property
where commit can be decided when for every logical data; that is replicated, a majority of
data managers for data; vote yes.*

We show in the following how to solve this variation of the NB-AC problem, defined
by the classical NB-AC-Agreement and NB-AC-Termination properties and the modified
NB-AC-Validity property. We consider first the case of one single replicated data, and then
the case of multiple replicated data. We obtain adequate protocols simply by modifying
the consensus filter. This conveys the flexibility gained by our modular approach.

4We do not justify such a majority condition. Qur goal is just to show how such a validity condition
translates into a consensus filter. Notice however that such a majority condition assumes for every logical
data; a majority of correct data manager replicas.
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Atomic commitment on one replicated data

Consider a transaction on one single replicated data, and denote by clients the set of data
managers that handle these replicas. Assume that a majority of data managers is correct.
A simple modification of the consensus filter given in Section 5.2 for a server s; allows to
adapt our generic framework to this specific atomic commitment problem (r stands for
“replication”, o for “one” data):

Predicate ro-NB-AC-Calllnit Value(cid) :
if [ for a majority of processes p; € clients: s; has received (cid, vote;, clients) from p; ]
then return true else return false.

Function ro-NB-AC-InitValue(dataReceived;) :
if [ for every (cid,vote;, clients) € dataReceived;, vote; = yes |
then return commit else return abort.

The predicate ro-NB-AC-CalllnitValue returns true as soon as a majority of votes have
been received. The function ro-NB-AC-InitValue returns commit only if all these votes
are yes.

Atomic commitment on multiple replicated data

Consider now a transaction on multiple replicated data. The previous filter can easily be
extended to handle this case. Let us denote by clients; the set of data managers that
handle the replicas of data;, and by clients the union of the sets clients;. The consensus
filter follows immediately (r stands for “replication”, m for “multiple” data):

Predicate rm-NB-AC-CalllnitValue(cid) :
if [ for every set clients;:
for a majority of processes p; € clients;:
s; has received (cid, vote;, clients) from p; ]
then return true else return false.

Function rm-NB-AC-InitValue(dataReceived;) :
if [ for every set clients;:
for a majority of processes p; € clients;:
(cid,vote;, clients) € dataReceived; and vote; = yes |
then return commit else return abort.

The predicate rm-NB-AC-Calllnit Value returns true as soon as a majority of votes have
been received from every set of data managers clients;. The function rm-NB-AC-InitValue
returns commat only if there is a majority of yes votes from every set of data managers
clients;.

6 Group membership and view synchrony

The generic construction of agreement protocols based on a consensus service has been
illustrated in the previous section on the non-blocking atomic commitment problem. In
this section we illustrate our approach on the group membership problem, and an extension
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of it known as wview synchrony, or more accurately view synchronous communication. We
do not focus on particular specifications of these problems, but we rather show how given
a specification, a simple and original solution is obtained using our reduction to consensus.

6.1 Group membership
6.1.1 Background

Roughly speaking, the group membership problem consists for a group of processes to agree
on the set of operational processes within the group. A process calls this information its
view of the group. As processes may join or leave a group, a process view of the group
membership may change over time. When a process changes its view, we say that it installs
a new view. We consider here the so-called primary partition membership [6] where, for any
given group, a unique totally-ordered sequence of views is defined (i.e., we do not consider
the case where concurrent views may coexist [3]).

As there is no agreed on definition for the group membership problem, we follow the
same approach as in [9]: we consider a problem specification which, although simple, is
not trivial. As we point out later in this section, our modular construction could easily be
used with other specifications of the problem.

As in [9], we restrict ourselves to the case where processes can only be excluded from
a view (there is no join). A process can be excluded if it wishes to leave the view, if it
crashes, or of it is suspected to have crashed. We consider a given group ¢, an integer
i > 0, and we assume that all processes in v;(g) have installed the view v;(g) (initially
vo(g) = g). We then define the problem for the processes in v;(g) to install a new view
vi+1(g) through the following properties:

GM-Termination. If a process py € v;(g) wishes to leave v;(g), then there is at least one
correct process in v;(g) that eventually installs v;11(g).

GM-Agreement. If a process p; € v;(g) installs v;41(g) and a process pyp € v;(g) installs
Vis1(9); then v (g) = viy,(9).

GM-Validity. If no process is suspected and p, € v;(g) is the only process wishing to
leave v;(g), then if a process installs v;,1(g) we have v;11(g9) = v;(9) \ {pr}

6.1.2 Group membership based on a consensus service

The consensus service is used to enable processes in view v;(g) to install a new view v;11(g),

as follows:

The initiator. If a process p; suspects some process in v;(g) or py wishes to leave v;(g),
then py reliably multicasts the message (cid, view-change, v;(g)) to the set of clients v;(g).
Process p; is the initiator of the consensus interaction. The consensus id “cid” is the pair
(gid,i+ 1), where gid is g’s group id, and i the current view number of process py.
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The clients. Upon reception of the message sent by the initiator,? a client process “mul-
tisends” to the consensus servers either (1) the message (cid, no,v;(g)) if it wishes to leave
v;(g), or (2) the message (cid, yes, v;(g)) otherwise. The decision computed by the consen-
sus service is the new view v;,1(g).

GM-Agreement and GM-Termination follow from the consensus service (CS-Agreement
and CS-Termination properties) and from the liveness of the GM consensus filter (see
below).

The consensus filter. The GM-Validity property is ensured by the following GM con-
sensus filter (filter of server s;):

Predicate GM-CalllnitValue(cid) :
if received (cid, —, clients) from one process in clients
and for every process p; € clients:
[ received (cid, —, clients) from p; or s; suspects p; ]
then return true else return false.

Function GM-InitValue(dataReceived;) :
return {p; | (cid, yes, clients) from p; € dataReceived;} .

We show now that the GM consensus filter is live and ensures the GM-Validity property.

Liveness of the GM consensus filter. The filter is live if there is at least one correct
process in v;(g). Let py be a process that wishes to leave view v;(g). (1) If py is correct,
then py, initiates an interaction with the consensus service and all correct members of v;(g)
send messages (cid, —, v;(g)) to the consensus servers. (2) If p; crashes, then by the strong
completeness property of the failure detector, p, is eventually suspected by all correct
processes of v;(g), and at least one correct process in v;(g) initiates an interaction with the
consensus service. In both cases (i.e., (1) and (2)), every correct consensus server receives
at least one message (cid, —,v;(g)). As we assume a failure detector that satisfies strong
completeness and at least one process is correct in v;(g), then the consensus filter is live.

GM-Validity property is satisfied. Assume that no process is suspected. Then G M-
CallInitValue waits for the message (cid, —, clients) from every process in v;(g). If py is
the only process wishing to leave v;(g), then py is the only process to send (cid, no, clients).
In this case, the function GM-InitValue ensures that every server starts consensus with
the initial value v;(g) \ {pr}. By the Validity property of consensus, the new view v;41(g)
can only be v;(g) \ {px}-

As pointed out earlier, alternative definitions of the group membership problem could
be considered. The GM-Validity property above does not for instance prevent excluding
all processes from a view (this can happen if these processes suspect each others). We

®Notice that there can be more than one initiator for the view change from v;(g) to viy1(g). Our
protocol also works in the case of multiple initiators.
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could consider a variation of the GM-Validity property which always requires preserving a
majority of processes within a view: the filter could be easily adapted to such a property
and it will be live under the assumption that there always is a majority of correct processes
within a view.

6.2 View synchronous communication
6.2.1 Background

View synchronous communication (in the context of the primary partition model) has
been introduced by the Isis system [6], and later formalized in [26]. Tt augments a group
membership protocol with an additional group broadcast primitive that orders messages
with respect to the installation of views. We use here the term view synchronous broadcast,
denoted by VScast.

As in Section 6.1, we restrict ourselves to the case where processes can only be excluded
from a view. Let v;(g) be the current view of process py in g, and let py VScast message
m inside group ¢g. We denote by V Sdeliver the corresponding delivery of m. Roughly
speaking, the VScast primitive ensures that (1) either no new view is installed and all the
members of v;(g) eventually VSdeliver m, or (2) a new view v;;(g) is installed, and if
any process in v;;1(g) has VSdelivered m before installing v;;1(g), then all the processes
that install v;41(g) VSdeliver m before installing v;11(g). View synchronous multicast
is adequate, for example, in the context of the primary-backup replication technique, to
multicast the update message from the primary to the backups [19].

We specify here the view synchronous communication problem as an extension of the
group membership problem defined in Section 6.1. Let v;(g) be the current view, and let
pr € v;(g) VScast message m:

VS-Termination. GM-Termination plus the following “message-view ordering” property:
every process in v;(g) eventually VSdelivers m, or there is at least one correct process
in v;(g) that installs v;;1(g).

VS-Agreement. Identical to GM-Agreement.

VS-Validity. GM-Validity plus the following property: if there exists one process p, €
vi(g) Nvit1(g) that has VSdelivered m before installing v;,1(g), then every process
in v;(g) Nv;i;1(g) must VSdeliver m before installing v; 1(g)-

The VS-Termination property requires a new view to be defined whenever VSdelivery of m
by all processes in v;(g) cannot be ensured. The VS-Agreement property requires agreement
on the views. The VS-Validity property, in addition to the GM-Validity property, requires
the VSdelivery of messages with respect to the installation of new views.
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6.2.2 VScast based on a consensus service

Let v;(g) be the current view of process py € v;(g), and let p; VScast message m: message
m is sent to all processes in v;(g). Upon reception of m, message m is VSdelivered.
However, this is not enough to ensure the semantics of view synchronous communication.
The implementation of VScast requires the notion of message stability. The predicate
stabley (m) holds at process py € v;(g) when process py knows that all the processes in
v;(g) have received m.% Based on the notion of message stability, and assuming the current
view v;(g), the interaction with the consensus service ensures the VScast semantics as
follows.

The initiator. If (1) a process py suspects some process in v;(g), or (2) p, wishes to
leave v;(g), or (3) px has VSdelivered a message m and stable,(m) still does not hold at py
after some time-out period following the VSdelivery of m by py, then p; reliably multicasts
the message (cid, view-change,v;(g)) to the set of clients v;(g). The consensus id “cid” is
the pair (gid,i + 1), where gid is g’s group id, and i the current view number of process

Pk

The clients. Upon reception of the message sent by the initiator, every client process
pr. multisends either (1) the message (cid, no,v;(g)) to the consensus service if p; wishes
to leave v;(g), or (2) the message (cid, (unstabley, yes),v;(g)), where unstable, denotes the
set of messages unstable at p;. The decision computed by the consensus service is a pair
(unstab,v), where unstab is a set of messages and v a view. Upon reception of the decision
(unstab, v), every client process py first VSdelivers the messages in unstab that it has not
yet VSdelivered, and then installs the new view v.

The VS-Agreement property follows from the CS-Agreement property of the consensus
service. For the VS-Termination property, there are two cases two consider. Case 1: no
process pi € v;(g) wishes to leave v;(g) and every process in v;(g) VSdelivers m. Case 2: the
other cases. In case 1, the VS-Termination trivially holds. In case 2, the VS-Termination
property follows from the liveness of the VS consensus filter (see below).

The consensus filter. The VS consensus filter defines initial values for the consensus
problem. The initial value for server s; is a pair (unstab;,v;), where unstab; is a set of
unstable messages, and v; a set of processes. The decision computed by the consensus
service is a pair (unstab, v), where unst is the set of unstable messages to be VS-delivered
before installing the new view v (i.e., v;11(g)). The VS consensus filter is as follows:

Predicate VS-CalllnitValue(cid) : Identical to the predicate GM-CalllnitValue

6This can be implemented by having each process, upon reception of m, sending acknowledgements to
all processes in v;(g).
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Function VS-InitValue(dataReceived;) :
vj < {pr | (cid, (unstabley, yes), clients) € dataReceived;};
unstab; < {m | (cid, (unstabley, yes), clients) has been received and m € unstabley};
return (unstab;,v;)

The proof of liveness of the VS consensus filter is similar to the proof of liveness of the GM
consensus filter (Sect. 6.1.2).

The VS-Validity property consists of two sub-properties: the GM-Validity property
plus the additional “message-view ordering” property. For the proof of the GM-Validity
property, refer to Section 6.1.2. The additional property is satisfied for the following
reason. Consider process p, € v;(g), pr € viy1(g), and assume that p, has VSdelivered
some message m before installing v;11(g). As pr € v;11(g), process py has multisent message
(cid, (unstabley, yes), clients) to the consensus service. There are two cases to consider:
(1) m € unstaby, or (2) m ¢ unstabg. In case (1), stablex(m) holds, i.e., every process
in v;(g) has received and VSdelivered m (before installing v;11(g)). So the additional
“message-view ordering” property holds. In case (2), m € unstab, where (unstab, v) is the
decision of the consensus service. Because every client process VSdelivers the messages
in unstab that it has not yet VSdelivered before installing the new view, the additional
“message-view ordering” property also holds.

7 Total order multicast/broadcast

7.1 Total order multicast vs. total order broadcast

The difference between total order multicast and broadcast has to do with message des-
tination sets. Let Dst(m) denote the destination set of message m, and let m; and msy
be two messages. With total order broadcast, if p € Dst(m;) and p € Dst(ms), then
Dst(my) = Dst(msy). In other words, total order broadcast forbids overlapping desti-
nations. This restriction does not apply for total order multicast, which allows issuing
messages to overlapping destinations (we discuss these differences in detail in [18]).

Most of total order algorithms that were proposed in the literature are total order
broadcast algorithms, and many of them rely on a membership service or view synchronous
communication (e.g. [6, 1, 11]). These algorithms operate in two modes: (1) a normal
mode which lasts as long as no process is suspected to have crashed, and (2) a special
mode in which a termination protocol ensures the ordering property while installing a new
membership. The special mode is based on protocols that have been discussed in the
previous section (membership and view synchronous communication).

We restrict our discussion below to algorithms that do not require a membership ser-
vice, i.e., to algorithms that operate in one single mode. Total order algorithms differ
slightly from the agreement problems discussed in the previous sections for the following
reason: agreeing on an order requires agreeing on a value first, and then inferring an order
from that value. Such an algorithm for total order broadcast has been described in [8],
where agreement is on a set of messages. This algorithm can be expressed in our generic
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communication scheme with an empty consensus filter. 7 In the following, we illustrate our
generic solution on a total order multicast algorithm.

7.2 Total Order Multicast
7.2.1 Background

The algorithm we describe is an extension of a non-fault-tolerant total order multicast
algorithm proposed by Skeen [29]. Basically, we show how to make that protocol fault-
tolerant by using our consensus service.

We denote by TO-multicast(m, Dst(m)) the event by which a process multicasts mes-
sage m according to total order multicast semantics, and TO-deliver(m) the corresponding
delivery event. The basic idea of Skeen’s algorithm consists in having the processes agree
on a sequence number sn(m) for every message m, and T'O-deliver the messages in the
order of their sequence numbers. The sequence number is based on Lamport’s logical
clocks [20]. More precisely, when TO-multicast(m, Dst(m)) is executed by p;, process
pi sends the message m to all processes in Dst(m) and collects the timestamps of the
receive(m) events from these processes. Process p; then defines sn(m) as the maximum of
these timestamps and sends back sn(m) to Dst(m). Skeen’s algorithm does not tolerate
the failure of a single process. Indeed, to compute a sequence number sn(m), the sender
of a message m waits for timestamps from all destination processes.

We consider here the problem of agreeing on the sequence number sn(m) in spite of
process crashes. Inferring the order from that value is not discussed here: it can be found
in [17] and [8]. Given a message m, and TO-multicast(m, Dst(m)), the computation of
sn(m) is defined by the following properties:

SN-Termination. If a correct process TO-multicasts a message m, then every correct
process in Dst(m) eventually decides sn(m).

SN-Agreement. No two processes in Dst(m) decide on two different sequence numbers.

SN-Validity. The sequence number sn(m) is computed as the maximum of the inputs
provided by all correct processes in Dst(m).

7.2.2 Computing sn(m) using a consensus service

Let TO-multicast(m, Dst(m)) executed by some process p;, and let id(m) denote the id

of message m. The consensus service is used as follows to compute sn(m):

The initiator. Process p; reliably multicasts (cid, m, clients(cid)) to the set clients(cid);
cid is id(m), and the set clients(cid) is Dst(m).

"This actually leads to a degenerated version of our generic communication scheme.
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The clients. Upon reception of (cid, m, clients(cid)), a client p; defines data) as the
timestamp ts; of the receive event, according to Lamport’s clock, and multisends (¢;, ts;, clients(cid))
to the consensus servers.

The SN consensus filter. The filter of server s; is defined as follows:

Predicate SN-CalllnitValue :
if [ for every process p; € clients:
[ received (cid, —, clients) from p; or s; suspects p; |
then return true else return false.

Function SN-InitValue(dataReceived;) :
sn(m) ¢ max{ts;(m) | (cid,ts;(m), clients(cid)) € dataReceived;}
return sn(m)

It is easy to show that the filter ensures the SN-Termination, SN-Agreement and SN-
Validity properties defined above. Basically, the SN-CalllnitValue predicate returns true
as soon as the message (cid, ts;(m), clients(cid)) has been received from all non-suspected
processes in Dst(m). The function SN-Init Value returns the maximum of the timestamps
ts;(m) received. More details on this protocol are given in [17]. It is worthwhile to point out
here that the protocol is correct under the assumption of a perfect failure detector: besides
the strong completeness property (every process that crashes is eventually suspected by
every correct process), the failure detector also needs to satisfy the strong accuracy property,
i.e., no process is suspected before it crashes [8]. Given this assumption and the definition
of the consensus filter, we ensure that sn(m) is always computed as the maximum of the
timestamps from all correct processes in Dst(m). We show in [18] that in order to tolerate
even a single crash failure, any genuine total order multicast protocol requires a perfect
failure detector. Overcoming the need for a perfect failure detector in specific models is
discussed in [17] and in [18].

8 Cost evaluation

We describe below the overall cost of a general interaction with the consensus service in
terms of the number of messages and communication steps. This cost is the same for all
agreement protocols presented in the previous sections. We will use this cost to compare the
efficiency of agreement protocols built following our modular approach with the efficiency
of specialized agreement protocols. As we will show, the generality of the consensus service
approach does not lead to a loss of efficiency. On the contrary, our modular architecture
enables interesting optimizations.

Up to know, we have considered consensus as a black box. To discuss consensus imple-
mentations, we distinguish two approaches: a centralized one where the consensus decision
is taken through one coordinator, and a decentralized one where there is no coordinator.
For both approaches, we first point out some optimizations and then we present imple-
mentation costs in terms of messages and communication steps.
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We reasonably assume that runs with no failure and no failure suspicion are the most
frequent ones, and implementations should be optimized for these runs. We call a “good
run” a run in which no failure occurs and no failure suspicion is generated.

8.1 Centralized algorithm

We consider the (centralized) consensus algorithm presented by Chandra and Toueg [8],
noted here ©&S-consensus. This algorithm requires a majority of correct processes and a
failure detector of class ¢&. In the original description of the ¢S-consensus protocol, every
process p; starts with an initial value »;. In fact, it is sufficient for one correct process
to start with an initial value. In other words, when invoking the consensus service, it is
sufficient that one correct member of the consensus service has an initial value. Hence,
client processes need not send their messages to all consensus servers. It is sufficient that
they send their messages to one server, unless they suspect this server to have crashed. In
the following, we consider the &S-consensus protocol with this optimization.

We also assume an optimized implementation of reliable multicast (used by the initiator
to send its message to the clients). If the initiator process p; executing “Rmulticast(m)”
to the clients is correct, no client needs to relay m. A client process relays m only when
it suspects p;. This optimized implementation costs only 1 communication step and O(n)
messages in good runs.

Let n. be the number of clients, and n, the number of servers. Figure 7, illustrates the
five communication steps and 3n. 4+ 2n, — 3 messages needed before the clients receive the
decision of the consensus (i.e., the solution of the agreement problem):

e step 1, the reliable multicast from the initiator to the set of clients, costs n, — 1
messages;

e step 2, the multisend from the clients to one of the servers (say s;) costs n. messages;

e steps 3 and 4 correspond to messages sent within the ¢S-consensus protocol. In
good runs, s; knows the decision at the end of step 4. Steps 3 and 4 each costs ny, — 1
messages (see Fig. 7);

e step 5, the multisend initiated by the server s; to the clients costs n. messages.

8.2 Decentralized scheme

This implementation takes advantage of the validity property of consensus: if each member
of the consensus service starts the consensus with the same initial value v (Vs;, s;, we have
v; = vj = v), then the decision is v. We exploit this property through the following
interaction scheme (see Figure 8):

e step 1, as before, is the (optimized) reliable multicast from the initiator to the set of
clients, and it costs n,. — 1 messages;
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Figure 7: Centralized scheme (in good runs): p; is the initiator; p;, pa, ps are the clients;
S1, 8o, S3 implement the consensus service.

e in step 2, the clients multisend their messages to all the server processes and every
member of the consensus service gets an initial value. This costs n. * n, messages;

e in step 3, the consensus servers simply send their initial value to the clients. This
costs n, * n. messages. A client receiving the same initial value v from every member
of the consensus service, knows that v is the decision. If this is not the case, the &S-
consensus is used as a termination protocol. This case in not depicted in Figure 8
(we give a detailed description in [16] for the case of atomic commit).

s2

s3

<~
s
™\

Rmulticast

Figure 8: Decentralized scheme (in good runs):p; is the initiator; p;, pa, ps are the clients;
s1, S9, S3 implement the consensus service.

Despite the fact that, whenever ny, > 2, the number of messages is higher in Figure 8 than
in Figure 7, reducing the number of communication steps from 5 to 3 reduces the latency.
Moreover, with a network that provides broadcast capabilities, the decentralized scheme
can be far more efficient than the centralized one, because the cost of sending a message
to n processes is the same as the cost of sending a message to one process.

8.3 Comparison with Three Phase Commit

We compare below the performances of a Non-Blocking Commit Protocol built following
our approach with those of Skeen’s well known Three Phase Commit protocols (3PC) [28]
(these are the only non-blocking atomic commit protocols we know about).
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Assume that the consensus service is implemented by the clients themselves, and con-
sider only runs where no process crashes or is suspected to have crashed. The communica-
tion scheme of our NB-AC protocol using the centralized implementation above is similar
to the communication scheme of the 3PC protocol [28]. Furthermore, if we consider the
decentralized implementation, the communication scheme of our NB-AC protocol is similar
to the communication scheme of the D3PC protocol (Decentralized 3PC of Skeen) [28]

Our solution based on a consensus service is however more modular, and in both cases
(centralized or decentralized) allows to trade the number of messages against resilience. If
we denote by n. the number of clients and n, the number of servers, then if n, decreases,
the resilience of the consensus server decreases, but the number of messages also decreases.
In the case n. > ng, our centralized solution requires less messages than 3PC, and our
decentralized solution requires less messages than D3PC. For instance, our centralized
solution requires 3n. + 2n, — 3 messages, whereas the 3PC requires 5n. — 3 messages. In
practice, n, = 3 achieves a sensible resilience. In this case, 3n, 4+ 2n, — 3 < bn, — 3 is true
already for n, = 4 (a transaction on three objects, i.e., one transaction manager and three
data managers, leads to n. = 4). In [16], we present experimental results confirming that
an optimized consensus-based NB-AC protocol is more efficient that a 3PC protocol.

9 Concluding remarks

The paper advocates the idea that consensus is a central abstraction for building fault-
tolerant agreement protocols in a modular way: The paper has presented a unified frame-
work from which one can derive, simply by customizing a generic consensus filter, protocols
that are usually considered and implemented separately. The same framework allows us
to express protocols for atomic commitment, group membership, view synchrony and total
order multicast.

To the best of our knowledge, this is the first time that solutions to the “group mem-
bership” and “virtual synchrony” problems are given based on a reduction to consensus,
with well defined conditions under which liveness is ensured. Additionally, our framework
suggests that, in the context of these two problems, the real open issue is the specification,
rather than the implementation. Our framework can thus be viewed as a first step towards
building practical systems that provide support for various paradigms, mixing for instance
transactions and view synchronous communication. In this context, consensus would not
only be a useful theoretical concept [27, 30], but also a useful service for the clean devel-
opment of reliable distributed systems. Apart from the agreement problems considered
in the paper, one could of course consider other agreement problems like election [24] or
terminating reliable broadcast [8].

Our framework was designed in the context of asynchronous distributed systems with
process crash failures and failure detectors. That is, the framework needs “no assumption”
on process communication delays and process relative speeds. One could apply the same
framework in systems with stronger assumptions (e.g., a synchronous model) or different
failure models. This might require modification of the implementations of our framework
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basic building blocks, i.e., communication primitives, failure detectors and consensus. For
instance, if a crash-recovery semantics is assumed, one could use the consensus protocol
of [22]. However, the generic interaction and the consensus filter, would remain the same.
An interesting question in this context is to which extend the assumptions on the underlying
system model impacts the performances. It is not clear for example whether assuming a
completely synchronous model would lead to better performances.
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