
Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time, Logical Time and Causality

Carlos Baquero
Distributed Systems Group

Universidade do Minho

MAPI 2007

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Plan

We will try to cover a few of the many aspects of time and logical
sequences of events in distributed systems:

Time Synchronization

Order Relations

Logical Time and Causality

Process Causality vs Data Causality

Global Snapshots and Termination will only be covered in the next
talk, so we will carefully avoid them.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Plan

We will try to cover a few of the many aspects of time and logical
sequences of events in distributed systems:

Time Synchronization

Order Relations

Logical Time and Causality

Process Causality vs Data Causality

Global Snapshots and Termination will only be covered in the next
talk, so we will carefully avoid them.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Time, which time?

Non relativistic real time can be tracked by clocks. But clocks have
drift. Where drift is the variation between a clock’s time and a
reference clock.

Quartz clocks drift at about 10−6 to 10−8 seconds per second.

10−6 amounts to about 1 second each 12 days. Not very good.

Atomic clocks drift at about 1013 seconds per second.

Coordinated Universal Time (UTC) is a high-precision atomic
time standard. It closely tracks Universal Time (UT), that maps
earth rotation, by adding leap seconds when needed.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Time, which time?

Non relativistic real time can be tracked by clocks. But clocks have
drift. Where drift is the variation between a clock’s time and a
reference clock.

Quartz clocks drift at about 10−6 to 10−8 seconds per second.

10−6 amounts to about 1 second each 12 days. Not very good.

Atomic clocks drift at about 1013 seconds per second.

Coordinated Universal Time (UTC) is a high-precision atomic
time standard. It closely tracks Universal Time (UT), that maps
earth rotation, by adding leap seconds when needed.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Time, which time?

Non relativistic real time can be tracked by clocks. But clocks have
drift. Where drift is the variation between a clock’s time and a
reference clock.

Quartz clocks drift at about 10−6 to 10−8 seconds per second.

10−6 amounts to about 1 second each 12 days. Not very good.

Atomic clocks drift at about 1013 seconds per second.

Coordinated Universal Time (UTC) is a high-precision atomic
time standard. It closely tracks Universal Time (UT), that maps
earth rotation, by adding leap seconds when needed.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Time, which time?

Non relativistic real time can be tracked by clocks. But clocks have
drift. Where drift is the variation between a clock’s time and a
reference clock.

Quartz clocks drift at about 10−6 to 10−8 seconds per second.

10−6 amounts to about 1 second each 12 days. Not very good.

Atomic clocks drift at about 1013 seconds per second.

Coordinated Universal Time (UTC) is a high-precision atomic
time standard. It closely tracks Universal Time (UT), that maps
earth rotation, by adding leap seconds when needed.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Synchronization

External Synchronization

Measures expected precision with reference to an authoritative time
source.
For an envelope D > 0, a UTC source S and at any given instant t
we need to have |S(t)− Ci (t)| ≤ D.

Internal Synchronization

Measures synchronization between two machines.
For an envelope D > 0, at any given instant t we need to have
|Cj(t)− Ci (t)| ≤ D.

A system with D external synchronization also depicts 2D internal
synchronization.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Synchronization

External Synchronization

Measures expected precision with reference to an authoritative time
source.
For an envelope D > 0, a UTC source S and at any given instant t
we need to have |S(t)− Ci (t)| ≤ D.

Internal Synchronization

Measures synchronization between two machines.
For an envelope D > 0, at any given instant t we need to have
|Cj(t)− Ci (t)| ≤ D.

A system with D external synchronization also depicts 2D internal
synchronization.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Synchronization

External Synchronization

Measures expected precision with reference to an authoritative time
source.
For an envelope D > 0, a UTC source S and at any given instant t
we need to have |S(t)− Ci (t)| ≤ D.

Internal Synchronization

Measures synchronization between two machines.
For an envelope D > 0, at any given instant t we need to have
|Cj(t)− Ci (t)| ≤ D.

A system with D external synchronization also depicts 2D internal
synchronization.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Synchronous System

Consider the simple case of two node synchronization in a
synchronous setting.

Node C asks node S the time. S replies with time t and node C
knows the transit time td . C can set its time to t + td .

Tipically td varies in a range, tm ≤ td ≤ tM . Leading to a
variation range of tM − tm.

If we set in C time to t + TM−tm
2 one can achieve

synchronization within an envelope D of TM−tm
2 .

Asynchronous

In an asynchronous system td now varies in range tm ≤ td ≤ ∞.
Apparently, the envelope is now D = ∞−tm

2 =∞. Not a very usefull
bound, but its easy to do better.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Synchronous System

Consider the simple case of two node synchronization in a
synchronous setting.

Node C asks node S the time. S replies with time t and node C
knows the transit time td . C can set its time to t + td .

Tipically td varies in a range, tm ≤ td ≤ tM . Leading to a
variation range of tM − tm.

If we set in C time to t + TM−tm
2 one can achieve

synchronization within an envelope D of TM−tm
2 .

Asynchronous

In an asynchronous system td now varies in range tm ≤ td ≤ ∞.
Apparently, the envelope is now D = ∞−tm

2 =∞. Not a very usefull
bound, but its easy to do better.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Synchronous System

Consider the simple case of two node synchronization in a
synchronous setting.

Node C asks node S the time. S replies with time t and node C
knows the transit time td . C can set its time to t + td .

Tipically td varies in a range, tm ≤ td ≤ tM . Leading to a
variation range of tM − tm.

If we set in C time to t + TM−tm
2 one can achieve

synchronization within an envelope D of TM−tm
2 .

Asynchronous

In an asynchronous system td now varies in range tm ≤ td ≤ ∞.
Apparently, the envelope is now D = ∞−tm

2 =∞. Not a very usefull
bound, but its easy to do better.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Synchronous System

Consider the simple case of two node synchronization in a
synchronous setting.

Node C asks node S the time. S replies with time t and node C
knows the transit time td . C can set its time to t + td .

Tipically td varies in a range, tm ≤ td ≤ tM . Leading to a
variation range of tM − tm.

If we set in C time to t + TM−tm
2 one can achieve

synchronization within an envelope D of TM−tm
2 .

Asynchronous

In an asynchronous system td now varies in range tm ≤ td ≤ ∞.
Apparently, the envelope is now D = ∞−tm

2 =∞. Not a very usefull
bound, but its easy to do better.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Synchronous System

Consider the simple case of two node synchronization in a
synchronous setting.

Node C asks node S the time. S replies with time t and node C
knows the transit time td . C can set its time to t + td .

Tipically td varies in a range, tm ≤ td ≤ tM . Leading to a
variation range of tM − tm.

If we set in C time to t + TM−tm
2 one can achieve

synchronization within an envelope D of TM−tm
2 .

Asynchronous

In an asynchronous system td now varies in range tm ≤ td ≤ ∞.
Apparently, the envelope is now D = ∞−tm

2 =∞. Not a very usefull
bound, but its easy to do better.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Asynchronous System: Cristian’s algorithm

Two node synchronization in an asynchronous setting.

Node C memorizes time ti = t asks node S the time. S replies
with time ts and node C memorizes the reception time tf = t.

Node C calculates the roundtrip time as tr = tf − ti .

C can set the time to ts + tr
2 and expect to have a

synchronization of D = tr
2 .

tr can be made smaller if we adjust for a lower bound b on
message transmition time. tr = tf − (ti + b).

The algorithm can be repeated until we eventually observe a tr
that gives us a “tight enough” synchronization.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Asynchronous System: Cristian’s algorithm

Two node synchronization in an asynchronous setting.

Node C memorizes time ti = t asks node S the time. S replies
with time ts and node C memorizes the reception time tf = t.

Node C calculates the roundtrip time as tr = tf − ti .

C can set the time to ts + tr
2 and expect to have a

synchronization of D = tr
2 .

tr can be made smaller if we adjust for a lower bound b on
message transmition time. tr = tf − (ti + b).

The algorithm can be repeated until we eventually observe a tr
that gives us a “tight enough” synchronization.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Asynchronous System: Cristian’s algorithm

Two node synchronization in an asynchronous setting.

Node C memorizes time ti = t asks node S the time. S replies
with time ts and node C memorizes the reception time tf = t.

Node C calculates the roundtrip time as tr = tf − ti .

C can set the time to ts + tr
2 and expect to have a

synchronization of D = tr
2 .

tr can be made smaller if we adjust for a lower bound b on
message transmition time. tr = tf − (ti + b).

The algorithm can be repeated until we eventually observe a tr
that gives us a “tight enough” synchronization.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Asynchronous System: Cristian’s algorithm

Two node synchronization in an asynchronous setting.

Node C memorizes time ti = t asks node S the time. S replies
with time ts and node C memorizes the reception time tf = t.

Node C calculates the roundtrip time as tr = tf − ti .

C can set the time to ts + tr
2 and expect to have a

synchronization of D = tr
2 .

tr can be made smaller if we adjust for a lower bound b on
message transmition time. tr = tf − (ti + b).

The algorithm can be repeated until we eventually observe a tr
that gives us a “tight enough” synchronization.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Asynchronous System: Cristian’s algorithm

Two node synchronization in an asynchronous setting.

Node C memorizes time ti = t asks node S the time. S replies
with time ts and node C memorizes the reception time tf = t.

Node C calculates the roundtrip time as tr = tf − ti .

C can set the time to ts + tr
2 and expect to have a

synchronization of D = tr
2 .

tr can be made smaller if we adjust for a lower bound b on
message transmition time. tr = tf − (ti + b).

The algorithm can be repeated until we eventually observe a tr
that gives us a “tight enough” synchronization.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Summary

Both in synchronous and asynchronous settings one can expect
at most time synchronization in an envelope D.

Synchronization
can be usefull to coordinate access to shared channels; either to
avoid two senders at the same time or to make shure that sender
and receiver are both awake.

With enough timing resolution, tight envelopes, and slow
computation steps (or slow processors) one could expect to
tottaly order a distributed computation.
The resulting total order is not realistic and not always usefull,
since it orders events that are in fact unrelated.

Even on physical systems real time total ordering is not always
consistent for diferent observers.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Summary

Both in synchronous and asynchronous settings one can expect
at most time synchronization in an envelope D. Synchronization
can be usefull to coordinate access to shared channels; either to
avoid two senders at the same time or to make shure that sender
and receiver are both awake.

With enough timing resolution, tight envelopes, and slow
computation steps (or slow processors) one could expect to
tottaly order a distributed computation.
The resulting total order is not realistic and not always usefull,
since it orders events that are in fact unrelated.

Even on physical systems real time total ordering is not always
consistent for diferent observers.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Summary

Both in synchronous and asynchronous settings one can expect
at most time synchronization in an envelope D. Synchronization
can be usefull to coordinate access to shared channels; either to
avoid two senders at the same time or to make shure that sender
and receiver are both awake.

With enough timing resolution, tight envelopes, and slow
computation steps (or slow processors) one could expect to
tottaly order a distributed computation.

The resulting total order is not realistic and not always usefull,
since it orders events that are in fact unrelated.

Even on physical systems real time total ordering is not always
consistent for diferent observers.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Summary

Both in synchronous and asynchronous settings one can expect
at most time synchronization in an envelope D. Synchronization
can be usefull to coordinate access to shared channels; either to
avoid two senders at the same time or to make shure that sender
and receiver are both awake.

With enough timing resolution, tight envelopes, and slow
computation steps (or slow processors) one could expect to
tottaly order a distributed computation.
The resulting total order is not realistic and not always usefull,
since it orders events that are in fact unrelated.

Even on physical systems real time total ordering is not always
consistent for diferent observers.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Summary

Both in synchronous and asynchronous settings one can expect
at most time synchronization in an envelope D. Synchronization
can be usefull to coordinate access to shared channels; either to
avoid two senders at the same time or to make shure that sender
and receiver are both awake.

With enough timing resolution, tight envelopes, and slow
computation steps (or slow processors) one could expect to
tottaly order a distributed computation.
The resulting total order is not realistic and not always usefull,
since it orders events that are in fact unrelated.

Even on physical systems real time total ordering is not always
consistent for diferent observers.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Ordering Explosions: Two independent ones

A ^B ^C

B F

88qqqqqqqqqqqq

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

C F

''OOOOOOOOOOOOO

77ooooooooooooooooooooooooooooooo

D ^C ^B

Observers

While A sees 〈B, C 〉, D sees 〈C , B〉.

If we really need a total order (e.g. to make a replicated state
machine) maybe we can give an arbitrary order to these events. As
long as no one can contradict these decisions.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Ordering Explosions: Two independent ones

A ^B ^C

B F

88qqqqqqqqqqqq

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

C F

''OOOOOOOOOOOOO

77ooooooooooooooooooooooooooooooo

D ^C ^B

Observers

While A sees 〈B, C 〉, D sees 〈C , B〉.

If we really need a total order (e.g. to make a replicated state
machine) maybe we can give an arbitrary order to these events. As
long as no one can contradict these decisions.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Ordering Explosions: One triggers the next

A ^B ^C

B F

99ssssssssss

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

C ^BF

((PPPPPPPPPPPPP

77pppppppppppppppppppppppppppp

D ^B ^C

Observers

Now, both A and D see 〈B, C 〉.

If message propagation speed is uniform, independent observers make
consistent observations of events that might be causaly related.
Otherwise the world would be much more confusing . . .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Time Synchronization
Ordering Explosions: One triggers the next

A ^B ^C

B F

99ssssssssss

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

C ^BF

((PPPPPPPPPPPPP

77pppppppppppppppppppppppppppp

D ^B ^C

Observers

Now, both A and D see 〈B, C 〉.

If message propagation speed is uniform, independent observers make
consistent observations of events that might be causaly related.
Otherwise the world would be much more confusing . . .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Before digging deeper into order in distributed systems lets review
some notions of order relations.

Order

Concerns the comparison between pairs of objects.

Is a binary relation on a set of objects. In order 〈B, <B〉 we have
<B ⊆ B × B.

Order is transitive. a < b ∧ b < c ⇒ a < c .

Order is antisymmetric. a < b ⇒ b 6< a.

If we miss antisymmetry we only have a preorder.
Orders can be strict < or non-strict ≤.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Before digging deeper into order in distributed systems lets review
some notions of order relations.

Order

Concerns the comparison between pairs of objects.

Is a binary relation on a set of objects. In order 〈B, <B〉 we have
<B ⊆ B × B.

Order is transitive. a < b ∧ b < c ⇒ a < c .

Order is antisymmetric. a < b ⇒ b 6< a.

If we miss antisymmetry we only have a preorder.
Orders can be strict < or non-strict ≤.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Before digging deeper into order in distributed systems lets review
some notions of order relations.

Order

Concerns the comparison between pairs of objects.

Is a binary relation on a set of objects. In order 〈B, <B〉 we have
<B ⊆ B × B.

Order is transitive. a < b ∧ b < c ⇒ a < c .

Order is antisymmetric. a < b ⇒ b 6< a.

If we miss antisymmetry we only have a preorder.
Orders can be strict < or non-strict ≤.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Before digging deeper into order in distributed systems lets review
some notions of order relations.

Order

Concerns the comparison between pairs of objects.

Is a binary relation on a set of objects. In order 〈B, <B〉 we have
<B ⊆ B × B.

Order is transitive. a < b ∧ b < c ⇒ a < c .

Order is antisymmetric. a < b ⇒ b 6< a.

If we miss antisymmetry we only have a preorder.
Orders can be strict < or non-strict ≤.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Before digging deeper into order in distributed systems lets review
some notions of order relations.

Order

Concerns the comparison between pairs of objects.

Is a binary relation on a set of objects. In order 〈B, <B〉 we have
<B ⊆ B × B.

Order is transitive. a < b ∧ b < c ⇒ a < c .

Order is antisymmetric. a < b ⇒ b 6< a.

If we miss antisymmetry we only have a preorder.

Orders can be strict < or non-strict ≤.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Before digging deeper into order in distributed systems lets review
some notions of order relations.

Order

Concerns the comparison between pairs of objects.

Is a binary relation on a set of objects. In order 〈B, <B〉 we have
<B ⊆ B × B.

Order is transitive. a < b ∧ b < c ⇒ a < c .

Order is antisymmetric. a < b ⇒ b 6< a.

If we miss antisymmetry we only have a preorder.
Orders can be strict < or non-strict ≤.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Non-strict order (or non strict partial order)

Let B be a set and ≤ a binary relation on B such that, for all
x , y , z ∈ B:

reflexivity x ≤ x .

antisymmetry x ≤ y and y ≤ x imply x = y .

transitivity x ≤ y and y ≤ z imply x ≤ z .

In a preorder we can have x 6= y and x ≤ y ∧ y ≤ x .
One also writes x ‖ y to mean x 6≤ y ∧ y 6≤ x .

Chains and antichains

If for all x , y ∈ B either x ≤ y or y ≤ x we have a chain. Also
known as total order, where all elements are comparable.

We have an antichain if x ≤ y iff x = y .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Non-strict order (or non strict partial order)

Let B be a set and ≤ a binary relation on B such that, for all
x , y , z ∈ B:

reflexivity x ≤ x .

antisymmetry x ≤ y and y ≤ x imply x = y .

transitivity x ≤ y and y ≤ z imply x ≤ z .

In a preorder we can have x 6= y and x ≤ y ∧ y ≤ x .
One also writes x ‖ y to mean x 6≤ y ∧ y 6≤ x .

Chains and antichains

If for all x , y ∈ B either x ≤ y or y ≤ x we have a chain. Also
known as total order, where all elements are comparable.

We have an antichain if x ≤ y iff x = y .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Non-strict order (or non strict partial order)

Let B be a set and ≤ a binary relation on B such that, for all
x , y , z ∈ B:

reflexivity x ≤ x .

antisymmetry x ≤ y and y ≤ x imply x = y .

transitivity x ≤ y and y ≤ z imply x ≤ z .

In a preorder we can have x 6= y and x ≤ y ∧ y ≤ x .
One also writes x ‖ y to mean x 6≤ y ∧ y 6≤ x .

Chains and antichains

If for all x , y ∈ B either x ≤ y or y ≤ x we have a chain. Also
known as total order, where all elements are comparable.

We have an antichain if x ≤ y iff x = y .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Non-strict order (or non strict partial order)

Let B be a set and ≤ a binary relation on B such that, for all
x , y , z ∈ B:

reflexivity x ≤ x .

antisymmetry x ≤ y and y ≤ x imply x = y .

transitivity x ≤ y and y ≤ z imply x ≤ z .

In a preorder we can have x 6= y and x ≤ y ∧ y ≤ x .
One also writes x ‖ y to mean x 6≤ y ∧ y 6≤ x .

Chains and antichains

If for all x , y ∈ B either x ≤ y or y ≤ x we have a chain. Also
known as total order, where all elements are comparable.

We have an antichain if x ≤ y iff x = y .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Non-strict order (or non strict partial order)

Let B be a set and ≤ a binary relation on B such that, for all
x , y , z ∈ B:

reflexivity x ≤ x .

antisymmetry x ≤ y and y ≤ x imply x = y .

transitivity x ≤ y and y ≤ z imply x ≤ z .

In a preorder we can have x 6= y and x ≤ y ∧ y ≤ x .

One also writes x ‖ y to mean x 6≤ y ∧ y 6≤ x .

Chains and antichains

If for all x , y ∈ B either x ≤ y or y ≤ x we have a chain. Also
known as total order, where all elements are comparable.

We have an antichain if x ≤ y iff x = y .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Non-strict order (or non strict partial order)

Let B be a set and ≤ a binary relation on B such that, for all
x , y , z ∈ B:

reflexivity x ≤ x .

antisymmetry x ≤ y and y ≤ x imply x = y .

transitivity x ≤ y and y ≤ z imply x ≤ z .

In a preorder we can have x 6= y and x ≤ y ∧ y ≤ x .
One also writes x ‖ y to mean x 6≤ y ∧ y 6≤ x .

Chains and antichains

If for all x , y ∈ B either x ≤ y or y ≤ x we have a chain. Also
known as total order, where all elements are comparable.

We have an antichain if x ≤ y iff x = y .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Non-strict order (or non strict partial order)

Let B be a set and ≤ a binary relation on B such that, for all
x , y , z ∈ B:

reflexivity x ≤ x .

antisymmetry x ≤ y and y ≤ x imply x = y .

transitivity x ≤ y and y ≤ z imply x ≤ z .

In a preorder we can have x 6= y and x ≤ y ∧ y ≤ x .
One also writes x ‖ y to mean x 6≤ y ∧ y 6≤ x .

Chains and antichains

If for all x , y ∈ B either x ≤ y or y ≤ x we have a chain. Also
known as total order, where all elements are comparable.

We have an antichain if x ≤ y iff x = y .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations

Non-strict order (or non strict partial order)

Let B be a set and ≤ a binary relation on B such that, for all
x , y , z ∈ B:

reflexivity x ≤ x .

antisymmetry x ≤ y and y ≤ x imply x = y .

transitivity x ≤ y and y ≤ z imply x ≤ z .

In a preorder we can have x 6= y and x ≤ y ∧ y ≤ x .
One also writes x ‖ y to mean x 6≤ y ∧ y 6≤ x .

Chains and antichains

If for all x , y ∈ B either x ≤ y or y ≤ x we have a chain. Also
known as total order, where all elements are comparable.

We have an antichain if x ≤ y iff x = y .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Examples

Sets

A set X can be ordered by set inclusion, yielding 〈X ,⊆〉.

The powerset P(X), consisting of all subsets of X , is ordered by set
inclusion.
Q: Does ⊆ form a total order on P(X)?
A: No, by counter example: {a, x , f } ‖ {x , b}.

Binary sequences

Exhibit a prefix ordering. Let 2∗ be the set of all finite binary strings,
including 〈〉. For x , y ∈ 2∗ we have x ≤ y iff x is a finite initial
substring of v . E.g. 0100 < 010011, 010 ‖ 100.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Examples

Sets

A set X can be ordered by set inclusion, yielding 〈X ,⊆〉.
The powerset P(X), consisting of all subsets of X , is ordered by set
inclusion.

Q: Does ⊆ form a total order on P(X)?
A: No, by counter example: {a, x , f } ‖ {x , b}.

Binary sequences

Exhibit a prefix ordering. Let 2∗ be the set of all finite binary strings,
including 〈〉. For x , y ∈ 2∗ we have x ≤ y iff x is a finite initial
substring of v . E.g. 0100 < 010011, 010 ‖ 100.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Examples

Sets

A set X can be ordered by set inclusion, yielding 〈X ,⊆〉.
The powerset P(X), consisting of all subsets of X , is ordered by set
inclusion.
Q: Does ⊆ form a total order on P(X)?

A: No, by counter example: {a, x , f } ‖ {x , b}.

Binary sequences

Exhibit a prefix ordering. Let 2∗ be the set of all finite binary strings,
including 〈〉. For x , y ∈ 2∗ we have x ≤ y iff x is a finite initial
substring of v . E.g. 0100 < 010011, 010 ‖ 100.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Examples

Sets

A set X can be ordered by set inclusion, yielding 〈X ,⊆〉.
The powerset P(X), consisting of all subsets of X , is ordered by set
inclusion.
Q: Does ⊆ form a total order on P(X)?
A: No, by counter example: {a, x , f } ‖ {x , b}.

Binary sequences

Exhibit a prefix ordering. Let 2∗ be the set of all finite binary strings,
including 〈〉. For x , y ∈ 2∗ we have x ≤ y iff x is a finite initial
substring of v . E.g. 0100 < 010011, 010 ‖ 100.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Examples

Sets

A set X can be ordered by set inclusion, yielding 〈X ,⊆〉.
The powerset P(X), consisting of all subsets of X , is ordered by set
inclusion.
Q: Does ⊆ form a total order on P(X)?
A: No, by counter example: {a, x , f } ‖ {x , b}.

Binary sequences

Exhibit a prefix ordering. Let 2∗ be the set of all finite binary strings,
including 〈〉. For x , y ∈ 2∗ we have x ≤ y iff x is a finite initial
substring of v . E.g. 0100 < 010011, 010 ‖ 100.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Examples

Coordinatewise (pointwise) order

Let P1, . . . ,Pn be ordered sets. The cartesian product P1 × · · · × Pn

can define a ordered set by pointwise order:

(x1, . . . , xn) ≤ (y1, . . . , yn)⇔ (∀i)xi ≤ yi in Pi .

Lexicographic order

Let A, B be two ordered sets. The product A× B can have a
lexicographic order defined by
(x1, x2) ≤ (y1, y2) if x1 < y1 or (x1 = y1 and x2 ≤ y2).
By iteration a lexicographic order can be defined on any finite
product.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Examples

Coordinatewise (pointwise) order

Let P1, . . . ,Pn be ordered sets. The cartesian product P1 × · · · × Pn

can define a ordered set by pointwise order:

(x1, . . . , xn) ≤ (y1, . . . , yn)⇔ (∀i)xi ≤ yi in Pi .

Lexicographic order

Let A, B be two ordered sets. The product A× B can have a
lexicographic order defined by
(x1, x2) ≤ (y1, y2) if x1 < y1 or (x1 = y1 and x2 ≤ y2).
By iteration a lexicographic order can be defined on any finite
product.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Relations among orders

Order isomorphism

Given two partially ordered sets 〈S ,≤S〉 and 〈T ,≤T 〉 an order
isomorphism is a surjective (onto) total function h : S → T such
that for all u, v ∈ S :
h(u) ≤T h(v) iff u ≤S v .

We say that 〈S ,≤S〉 and 〈T ,≤T 〉 are equivalente and that one
characterizes the other and vice-versa.

A weaker form is

Order preserving

Given two partially ordered sets 〈S ,≤S〉 and 〈T ,≤T 〉 an order
preserving maping is a total function h : S → T such that for all
u, v ∈ S :
h(u) ≤T h(v) if u ≤S v .
We say that 〈T ,≤T 〉 is consistent with 〈S ,≤S〉.

For instance, we will see that real time total ordering is consistent
with causality.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Relations among orders

Order isomorphism

Given two partially ordered sets 〈S ,≤S〉 and 〈T ,≤T 〉 an order
isomorphism is a surjective (onto) total function h : S → T such
that for all u, v ∈ S :
h(u) ≤T h(v) iff u ≤S v .
We say that 〈S ,≤S〉 and 〈T ,≤T 〉 are equivalente and that one
characterizes the other and vice-versa.

A weaker form is

Order preserving

Given two partially ordered sets 〈S ,≤S〉 and 〈T ,≤T 〉 an order
preserving maping is a total function h : S → T such that for all
u, v ∈ S :
h(u) ≤T h(v) if u ≤S v .
We say that 〈T ,≤T 〉 is consistent with 〈S ,≤S〉.

For instance, we will see that real time total ordering is consistent
with causality.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Relations among orders

Order isomorphism

Given two partially ordered sets 〈S ,≤S〉 and 〈T ,≤T 〉 an order
isomorphism is a surjective (onto) total function h : S → T such
that for all u, v ∈ S :
h(u) ≤T h(v) iff u ≤S v .
We say that 〈S ,≤S〉 and 〈T ,≤T 〉 are equivalente and that one
characterizes the other and vice-versa.

A weaker form is

Order preserving

Given two partially ordered sets 〈S ,≤S〉 and 〈T ,≤T 〉 an order
preserving maping is a total function h : S → T such that for all
u, v ∈ S :
h(u) ≤T h(v) if u ≤S v .

We say that 〈T ,≤T 〉 is consistent with 〈S ,≤S〉.

For instance, we will see that real time total ordering is consistent
with causality.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Relations among orders

Order isomorphism

Given two partially ordered sets 〈S ,≤S〉 and 〈T ,≤T 〉 an order
isomorphism is a surjective (onto) total function h : S → T such
that for all u, v ∈ S :
h(u) ≤T h(v) iff u ≤S v .
We say that 〈S ,≤S〉 and 〈T ,≤T 〉 are equivalente and that one
characterizes the other and vice-versa.

A weaker form is

Order preserving

Given two partially ordered sets 〈S ,≤S〉 and 〈T ,≤T 〉 an order
preserving maping is a total function h : S → T such that for all
u, v ∈ S :
h(u) ≤T h(v) if u ≤S v .
We say that 〈T ,≤T 〉 is consistent with 〈S ,≤S〉.

For instance, we will see that real time total ordering is consistent
with causality.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Order Relations
Relations among orders

Order isomorphism

Given two partially ordered sets 〈S ,≤S〉 and 〈T ,≤T 〉 an order
isomorphism is a surjective (onto) total function h : S → T such
that for all u, v ∈ S :
h(u) ≤T h(v) iff u ≤S v .
We say that 〈S ,≤S〉 and 〈T ,≤T 〉 are equivalente and that one
characterizes the other and vice-versa.

A weaker form is

Order preserving

Given two partially ordered sets 〈S ,≤S〉 and 〈T ,≤T 〉 an order
preserving maping is a total function h : S → T such that for all
u, v ∈ S :
h(u) ≤T h(v) if u ≤S v .
We say that 〈T ,≤T 〉 is consistent with 〈S ,≤S〉.

For instance, we will see that real time total ordering is consistent
with causality.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Model

An asynchronous system with a collection of totally ordered
processes p1, . . . , pn.

Reliable channels, not necessarely FIFO.

Sequential processes, performing internal events, send events
and corresponding receive events.

In each process pi during a computation a local history is formed by
the (potentially infinite) sequence of events: hi = 〈e1

i , e2
i , . . .〉. As

expected, time between events varies.
hk

i denotes an initial prefix of local history hi containing the first k
events.
The global history of the computation is the set H = h1 ∪ . . . ∪ hn.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Model

An asynchronous system with a collection of totally ordered
processes p1, . . . , pn.

Reliable channels, not necessarely FIFO.

Sequential processes, performing internal events, send events
and corresponding receive events.

In each process pi during a computation a local history is formed by
the (potentially infinite) sequence of events: hi = 〈e1

i , e2
i , . . .〉. As

expected, time between events varies.
hk

i denotes an initial prefix of local history hi containing the first k
events.
The global history of the computation is the set H = h1 ∪ . . . ∪ hn.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Model

An asynchronous system with a collection of totally ordered
processes p1, . . . , pn.

Reliable channels, not necessarely FIFO.

Sequential processes, performing internal events, send events
and corresponding receive events.

In each process pi during a computation a local history is formed by
the (potentially infinite) sequence of events: hi = 〈e1

i , e2
i , . . .〉. As

expected, time between events varies.
hk

i denotes an initial prefix of local history hi containing the first k
events.
The global history of the computation is the set H = h1 ∪ . . . ∪ hn.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Model

An asynchronous system with a collection of totally ordered
processes p1, . . . , pn.

Reliable channels, not necessarely FIFO.

Sequential processes, performing internal events, send events
and corresponding receive events.

In each process pi during a computation a local history is formed by
the (potentially infinite) sequence of events: hi = 〈e1

i , e2
i , . . .〉. As

expected, time between events varies.

hk
i denotes an initial prefix of local history hi containing the first k

events.
The global history of the computation is the set H = h1 ∪ . . . ∪ hn.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Model

An asynchronous system with a collection of totally ordered
processes p1, . . . , pn.

Reliable channels, not necessarely FIFO.

Sequential processes, performing internal events, send events
and corresponding receive events.

In each process pi during a computation a local history is formed by
the (potentially infinite) sequence of events: hi = 〈e1

i , e2
i , . . .〉. As

expected, time between events varies.
hk

i denotes an initial prefix of local history hi containing the first k
events.

The global history of the computation is the set H = h1 ∪ . . . ∪ hn.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Model

An asynchronous system with a collection of totally ordered
processes p1, . . . , pn.

Reliable channels, not necessarely FIFO.

Sequential processes, performing internal events, send events
and corresponding receive events.

In each process pi during a computation a local history is formed by
the (potentially infinite) sequence of events: hi = 〈e1

i , e2
i , . . .〉. As

expected, time between events varies.
hk

i denotes an initial prefix of local history hi containing the first k
events.
The global history of the computation is the set H = h1 ∪ . . . ∪ hn.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Causality

We can now define a causality relation in distributed systems.

Causality

Let 〈H,→〉 be a global history H ordered by the smalest transitive
binary relation → such that:

ea
i → eb

i if ea
i , eb

i ∈ H and a < b.

es
i → er

j if es
i is a send event and er

j the corresponding receive
event.

If a→ b then a may have influenced b. In general we have potential
causality.
On non trivial runs 〈H,→〉 forms a partial order, and some events
will be parallel a ‖ b when neither a→ b nor b → a.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Causality

We can now define a causality relation in distributed systems.

Causality

Let 〈H,→〉 be a global history H ordered by the smalest transitive
binary relation → such that:

ea
i → eb

i if ea
i , eb

i ∈ H and a < b.

es
i → er

j if es
i is a send event and er

j the corresponding receive
event.

If a→ b then a may have influenced b. In general we have potential
causality.
On non trivial runs 〈H,→〉 forms a partial order, and some events
will be parallel a ‖ b when neither a→ b nor b → a.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Causality

We can now define a causality relation in distributed systems.

Causality

Let 〈H,→〉 be a global history H ordered by the smalest transitive
binary relation → such that:

ea
i → eb

i if ea
i , eb

i ∈ H and a < b.

es
i → er

j if es
i is a send event and er

j the corresponding receive
event.

If a→ b then a may have influenced b. In general we have potential
causality.
On non trivial runs 〈H,→〉 forms a partial order, and some events
will be parallel a ‖ b when neither a→ b nor b → a.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Causality

We can now define a causality relation in distributed systems.

Causality

Let 〈H,→〉 be a global history H ordered by the smalest transitive
binary relation → such that:

ea
i → eb

i if ea
i , eb

i ∈ H and a < b.

es
i → er

j if es
i is a send event and er

j the corresponding receive
event.

If a→ b then a may have influenced b. In general we have potential
causality.

On non trivial runs 〈H,→〉 forms a partial order, and some events
will be parallel a ‖ b when neither a→ b nor b → a.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Causality

We can now define a causality relation in distributed systems.

Causality

Let 〈H,→〉 be a global history H ordered by the smalest transitive
binary relation → such that:

ea
i → eb

i if ea
i , eb

i ∈ H and a < b.

es
i → er

j if es
i is a send event and er

j the corresponding receive
event.

If a→ b then a may have influenced b. In general we have potential
causality.
On non trivial runs 〈H,→〉 forms a partial order, and some events
will be parallel a ‖ b when neither a→ b nor b → a.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Preserving causal order

If we had a global time clock function T : H → R that would assign a
real to each event. We would observe that the total order 〈T (H), <〉
is consistent with 〈H,→〉. Real time preserves the causal order.

Run

pa •
e1
a //

��.
............. •

e2
a

pb •
e1
b //

))TTTTTTTTTTTTTTTTTTTT •
e2
b

��>>>>>>>>

pc •
e1
c

// •
e2
c

// •
e3
c

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Preserving causal order

If we had a global time clock function T : H → R that would assign a
real to each event. We would observe that the total order 〈T (H), <〉
is consistent with 〈H,→〉. Real time preserves the causal order.

Run with real time tags

pa •10s //

��.
............. •17s

pb •12s //

))TTTTTTTTTTTTTTTTTTTT •17.1s

��>>>>>>>>

pc •
11.8s

// •
23s

// •
54.2s

Notice that while 11. 8s < 12s the corresponding events are parallel
e1
c ‖ e1

b in the causal order.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Preserving causal order

If we had a global time clock function T : H → R that would assign a
real to each event. We would observe that the total order 〈T (H), <〉
is consistent with 〈H,→〉. Real time preserves the causal order.

Run with real time tags

pa •10s //

��.
............. •17s

pb •12s //

))TTTTTTTTTTTTTTTTTTTT •17.1s

��>>>>>>>>

pc •
11.8s

// •
23s

// •
54.2s

Notice that while 11. 8s < 12s the corresponding events are parallel
e1
c ‖ e1

b in the causal order.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Clock condition

Being consistent with causality if often captured by a clock condition.

Clock Condition (Lamport 78)

A clock function C : H → T and a ordered set 〈T , <〉 satisfies clock
condition if:
For any events a, b ∈ H: if a→ b then C(a) < C(b).

Notice that the timestamping function is necessarely one-to-one
(injective) in order to satisfy the clock conditions and preserve the
causal order.
Appart from real time there are other timestamping functions that
satisfy this clock condition.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Clock condition

Being consistent with causality if often captured by a clock condition.

Clock Condition (Lamport 78)

A clock function C : H → T and a ordered set 〈T , <〉 satisfies clock
condition if:
For any events a, b ∈ H: if a→ b then C(a) < C(b).

Notice that the timestamping function is necessarely one-to-one
(injective) in order to satisfy the clock conditions and preserve the
causal order.
Appart from real time there are other timestamping functions that
satisfy this clock condition.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Clock condition

Being consistent with causality if often captured by a clock condition.

Clock Condition (Lamport 78)

A clock function C : H → T and a ordered set 〈T , <〉 satisfies clock
condition if:
For any events a, b ∈ H: if a→ b then C(a) < C(b).

Notice that the timestamping function is necessarely one-to-one
(injective) in order to satisfy the clock conditions and preserve the
causal order.

Appart from real time there are other timestamping functions that
satisfy this clock condition.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Clock condition

Being consistent with causality if often captured by a clock condition.

Clock Condition (Lamport 78)

A clock function C : H → T and a ordered set 〈T , <〉 satisfies clock
condition if:
For any events a, b ∈ H: if a→ b then C(a) < C(b).

Notice that the timestamping function is necessarely one-to-one
(injective) in order to satisfy the clock conditions and preserve the
causal order.
Appart from real time there are other timestamping functions that
satisfy this clock condition.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

Run

pa•
e1
a // •

e2
a //

��3
3333333333 •

e3
a // •

e4
a

pb•
e1
b // •

e2
b // •

e3
b //

++WWWWWWWWWWWWWWWWWWWW •
e4
b

""FFFFFFF

pc•
e1
c // •

e2
c

// •
e3
c

// •
e4
c

Run with timestamping consistent with causality

pa• 1 // • 2 //

��3
3333333333 • 3 // • 4

pb• 1 // • 2 // • 3 //

++WWWWWWWWWWWWWWWWWWWW • 4

""FFFFFFF

pc• 1 // •
3

// •
5

// •
6

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

Lamport Time L
We can assign integer valued timestamps by a function L : H → N
constructed as follows, with local knowledge:

Initially all processes pi set Li to 1.

On each internal event in pi do Li := Li + 1.

On a send event at pi do Li := Li + 1 and attach Li to the
message.

On a receive event at pi with Lx attached do
Li := max(Li ,Lx) + 1.

The value registred at Li right after each event ek
i is the one defining

L(ek
i). A positive integer could be used in place of 1.

Notice that while Lamport Time L and Real Time L are both
consistent with causality 〈H,→〉, the mutual relation between L and
T is not tipically consistent in non trivial runs.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

Lamport Time L
We can assign integer valued timestamps by a function L : H → N
constructed as follows, with local knowledge:

Initially all processes pi set Li to 1.

On each internal event in pi do Li := Li + 1.

On a send event at pi do Li := Li + 1 and attach Li to the
message.

On a receive event at pi with Lx attached do
Li := max(Li ,Lx) + 1.

The value registred at Li right after each event ek
i is the one defining

L(ek
i). A positive integer could be used in place of 1.

Notice that while Lamport Time L and Real Time L are both
consistent with causality 〈H,→〉, the mutual relation between L and
T is not tipically consistent in non trivial runs.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

Lamport Time L
We can assign integer valued timestamps by a function L : H → N
constructed as follows, with local knowledge:

Initially all processes pi set Li to 1.

On each internal event in pi do Li := Li + 1.

On a send event at pi do Li := Li + 1 and attach Li to the
message.

On a receive event at pi with Lx attached do
Li := max(Li ,Lx) + 1.

The value registred at Li right after each event ek
i is the one defining

L(ek
i). A positive integer could be used in place of 1.

Notice that while Lamport Time L and Real Time L are both
consistent with causality 〈H,→〉, the mutual relation between L and
T is not tipically consistent in non trivial runs.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

Lamport Time L
We can assign integer valued timestamps by a function L : H → N
constructed as follows, with local knowledge:

Initially all processes pi set Li to 1.

On each internal event in pi do Li := Li + 1.

On a send event at pi do Li := Li + 1 and attach Li to the
message.

On a receive event at pi with Lx attached do
Li := max(Li ,Lx) + 1.

The value registred at Li right after each event ek
i is the one defining

L(ek
i). A positive integer could be used in place of 1.

Notice that while Lamport Time L and Real Time L are both
consistent with causality 〈H,→〉, the mutual relation between L and
T is not tipically consistent in non trivial runs.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

Lamport Time L
We can assign integer valued timestamps by a function L : H → N
constructed as follows, with local knowledge:

Initially all processes pi set Li to 1.

On each internal event in pi do Li := Li + 1.

On a send event at pi do Li := Li + 1 and attach Li to the
message.

On a receive event at pi with Lx attached do
Li := max(Li ,Lx) + 1.

The value registred at Li right after each event ek
i is the one defining

L(ek
i). A positive integer could be used in place of 1.

Notice that while Lamport Time L and Real Time L are both
consistent with causality 〈H,→〉, the mutual relation between L and
T is not tipically consistent in non trivial runs.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

Lamport Time L
We can assign integer valued timestamps by a function L : H → N
constructed as follows, with local knowledge:

Initially all processes pi set Li to 1.

On each internal event in pi do Li := Li + 1.

On a send event at pi do Li := Li + 1 and attach Li to the
message.

On a receive event at pi with Lx attached do
Li := max(Li ,Lx) + 1.

The value registred at Li right after each event ek
i is the one defining

L(ek
i).

A positive integer could be used in place of 1.

Notice that while Lamport Time L and Real Time L are both
consistent with causality 〈H,→〉, the mutual relation between L and
T is not tipically consistent in non trivial runs.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

Lamport Time L
We can assign integer valued timestamps by a function L : H → N
constructed as follows, with local knowledge:

Initially all processes pi set Li to 1.

On each internal event in pi do Li := Li + 1.

On a send event at pi do Li := Li + 1 and attach Li to the
message.

On a receive event at pi with Lx attached do
Li := max(Li ,Lx) + 1.

The value registred at Li right after each event ek
i is the one defining

L(ek
i). A positive integer could be used in place of 1.

Notice that while Lamport Time L and Real Time L are both
consistent with causality 〈H,→〉, the mutual relation between L and
T is not tipically consistent in non trivial runs.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

Lamport Time L
We can assign integer valued timestamps by a function L : H → N
constructed as follows, with local knowledge:

Initially all processes pi set Li to 1.

On each internal event in pi do Li := Li + 1.

On a send event at pi do Li := Li + 1 and attach Li to the
message.

On a receive event at pi with Lx attached do
Li := max(Li ,Lx) + 1.

The value registred at Li right after each event ek
i is the one defining

L(ek
i). A positive integer could be used in place of 1.

Notice that while Lamport Time L and Real Time L are both
consistent with causality 〈H,→〉, the mutual relation between L and
T is not tipically consistent in non trivial runs.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

We can further refine Lamport Time in order to obtain an injective
function Lt that assigns a consistent total order to all events in H. It
suffices to consider the lexicographic order on the pair formed by the
Lamport Time and the process number.

Run with total order Lt

Here, since processes have letters we assume the alphabetic order.

pa•
1,a // •2,a //

��3
3333333333 •3,a // •4,a

pb•
1,b // •2,b // •3,b //

++WWWWWWWWWWWWWWWWWWWW •4,b

""FFFFFFF

pc•
1,c // •

3,c
// •

5,c
// •

6,c

(1, a)(1, b)(1, c)(2, a)(2, b)(3, a)(3, b)(3, c)(4, a)(4, b)(5, c)(6, c)

This total order is usefull in many distributed algorithms (e.g.
Lamport mutual exclusion algorithm), but it orders more events than
causality. For other algorithms we need to capture causality precisely.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

We can further refine Lamport Time in order to obtain an injective
function Lt that assigns a consistent total order to all events in H. It
suffices to consider the lexicographic order on the pair formed by the
Lamport Time and the process number.

Run with total order Lt

Here, since processes have letters we assume the alphabetic order.

pa•
1,a // •2,a //

��3
3333333333 •3,a // •4,a

pb•
1,b // •2,b // •3,b //

++WWWWWWWWWWWWWWWWWWWW •4,b

""FFFFFFF

pc•
1,c // •

3,c
// •

5,c
// •

6,c

(1, a)(1, b)(1, c)(2, a)(2, b)(3, a)(3, b)(3, c)(4, a)(4, b)(5, c)(6, c)

This total order is usefull in many distributed algorithms (e.g.
Lamport mutual exclusion algorithm), but it orders more events than
causality. For other algorithms we need to capture causality precisely.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Lamport Time

We can further refine Lamport Time in order to obtain an injective
function Lt that assigns a consistent total order to all events in H. It
suffices to consider the lexicographic order on the pair formed by the
Lamport Time and the process number.

Run with total order Lt

Here, since processes have letters we assume the alphabetic order.

pa•
1,a // •2,a //

��3
3333333333 •3,a // •4,a

pb•
1,b // •2,b // •3,b //

++WWWWWWWWWWWWWWWWWWWW •4,b

""FFFFFFF

pc•
1,c // •

3,c
// •

5,c
// •

6,c

(1, a)(1, b)(1, c)(2, a)(2, b)(3, a)(3, b)(3, c)(4, a)(4, b)(5, c)(6, c)

This total order is usefull in many distributed algorithms (e.g.
Lamport mutual exclusion algorithm), but it orders more events than
causality. For other algorithms we need to capture causality precisely.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Characterizing causality

A simple timestamping mechanism that can characterize causality is
to locally register the causal history C : H → P(H). This is done by
collecting in a set each distinct event identifier.

Notice that each
process has a unique number and can maintain a sequential counter
for its events.

Run tagged with causal histories

pa•
{a1} // •

{a1,a2} //

��3
3333333333 •
{a1,a2,a3} // •

{a1,a2,a3,a4}

pb•
{b1} // •

{b1,b2} // •
{b1,b2,b3} //

++WWWWWWWWWWWWWWWWWWWW •
{b1,b2,b3,b4}

""FFFFFFF

pc•
{c1} // •

{c1,a1,a2,c2}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3,c4}

e2
a → e2

c ⇔ C(e2
a) ⊆ C(e2

c)⇔ {a1, a2} ⊆ {c1, a1, a2, c2}
e3
a 6→ e3

b ⇔ C(e3
a) 6⊆ C(e3

b)⇔ {a1, a2, a3} 6⊆ {b1, b2, b3}
e3
b 6→ e3

a ⇔ C(e3
b) 6⊆ C(e3

a)⇔ {b1, b2, b3} 6⊆ {a1, a2, a3}

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Characterizing causality

A simple timestamping mechanism that can characterize causality is
to locally register the causal history C : H → P(H). This is done by
collecting in a set each distinct event identifier. Notice that each
process has a unique number and can maintain a sequential counter
for its events.

Run tagged with causal histories

pa•
{a1} // •

{a1,a2} //

��3
3333333333 •
{a1,a2,a3} // •

{a1,a2,a3,a4}

pb•
{b1} // •

{b1,b2} // •
{b1,b2,b3} //

++WWWWWWWWWWWWWWWWWWWW •
{b1,b2,b3,b4}

""FFFFFFF

pc•
{c1} // •

{c1,a1,a2,c2}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3,c4}

e2
a → e2

c ⇔ C(e2
a) ⊆ C(e2

c)⇔ {a1, a2} ⊆ {c1, a1, a2, c2}
e3
a 6→ e3

b ⇔ C(e3
a) 6⊆ C(e3

b)⇔ {a1, a2, a3} 6⊆ {b1, b2, b3}
e3
b 6→ e3

a ⇔ C(e3
b) 6⊆ C(e3

a)⇔ {b1, b2, b3} 6⊆ {a1, a2, a3}

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Characterizing causality

A simple timestamping mechanism that can characterize causality is
to locally register the causal history C : H → P(H). This is done by
collecting in a set each distinct event identifier. Notice that each
process has a unique number and can maintain a sequential counter
for its events.

Run tagged with causal histories

pa•
{a1} // •

{a1,a2} //

��3
3333333333 •
{a1,a2,a3} // •

{a1,a2,a3,a4}

pb•
{b1} // •

{b1,b2} // •
{b1,b2,b3} //

++WWWWWWWWWWWWWWWWWWWW •
{b1,b2,b3,b4}

""FFFFFFF

pc•
{c1} // •

{c1,a1,a2,c2}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3,c4}

e2
a → e2

c ⇔ C(e2
a) ⊆ C(e2

c)⇔ {a1, a2} ⊆ {c1, a1, a2, c2}

e3
a 6→ e3

b ⇔ C(e3
a) 6⊆ C(e3

b)⇔ {a1, a2, a3} 6⊆ {b1, b2, b3}
e3
b 6→ e3

a ⇔ C(e3
b) 6⊆ C(e3

a)⇔ {b1, b2, b3} 6⊆ {a1, a2, a3}

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Characterizing causality

A simple timestamping mechanism that can characterize causality is
to locally register the causal history C : H → P(H). This is done by
collecting in a set each distinct event identifier. Notice that each
process has a unique number and can maintain a sequential counter
for its events.

Run tagged with causal histories

pa•
{a1} // •

{a1,a2} //

��3
3333333333 •
{a1,a2,a3} // •

{a1,a2,a3,a4}

pb•
{b1} // •

{b1,b2} // •
{b1,b2,b3} //

++WWWWWWWWWWWWWWWWWWWW •
{b1,b2,b3,b4}

""FFFFFFF

pc•
{c1} // •

{c1,a1,a2,c2}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3,c4}

e2
a → e2

c ⇔ C(e2
a) ⊆ C(e2

c)⇔ {a1, a2} ⊆ {c1, a1, a2, c2}
e3
a 6→ e3

b ⇔ C(e3
a) 6⊆ C(e3

b)⇔ {a1, a2, a3} 6⊆ {b1, b2, b3}

e3
b 6→ e3

a ⇔ C(e3
b) 6⊆ C(e3

a)⇔ {b1, b2, b3} 6⊆ {a1, a2, a3}

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Characterizing causality

A simple timestamping mechanism that can characterize causality is
to locally register the causal history C : H → P(H). This is done by
collecting in a set each distinct event identifier. Notice that each
process has a unique number and can maintain a sequential counter
for its events.

Run tagged with causal histories

pa•
{a1} // •

{a1,a2} //

��3
3333333333 •
{a1,a2,a3} // •

{a1,a2,a3,a4}

pb•
{b1} // •

{b1,b2} // •
{b1,b2,b3} //

++WWWWWWWWWWWWWWWWWWWW •
{b1,b2,b3,b4}

""FFFFFFF

pc•
{c1} // •

{c1,a1,a2,c2}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3,c4}

e2
a → e2

c ⇔ C(e2
a) ⊆ C(e2

c)⇔ {a1, a2} ⊆ {c1, a1, a2, c2}
e3
a 6→ e3

b ⇔ C(e3
a) 6⊆ C(e3

b)⇔ {a1, a2, a3} 6⊆ {b1, b2, b3}
e3
b 6→ e3

a ⇔ C(e3
b) 6⊆ C(e3

a)⇔ {b1, b2, b3} 6⊆ {a1, a2, a3}

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Characterizing causality

Run tagged with causal histories

pa•
{a1} // •

{a1,a2} //

��3
3333333333 •
{a1,a2,a3} // •

{a1,a2,a3,a4}

pb•
{b1} // •

{b1,b2} // •
{b1,b2,b3} //

++WWWWWWWWWWWWWWWWWWWW •
{b1,b2,b3,b4}

""FFFFFFF

pc•
{c1} // •

{c1,a1,a2,c2}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3,c4}

The problem of causal histories is their space complexity that grows
linearly,O(E), with the number of events E.

This can be solved by noticing that for all k and i and a causal
history Cx : if ek

i ∈ Cx then {e1
i , . . . , ek−1

i } ⊆ Cx .
Consequently one only needs to register the index of the last event
from each process.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Characterizing causality

Run tagged with causal histories

pa•
{a1} // •

{a1,a2} //

��3
3333333333 •
{a1,a2,a3} // •

{a1,a2,a3,a4}

pb•
{b1} // •

{b1,b2} // •
{b1,b2,b3} //

++WWWWWWWWWWWWWWWWWWWW •
{b1,b2,b3,b4}

""FFFFFFF

pc•
{c1} // •

{c1,a1,a2,c2}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3,c4}

The problem of causal histories is their space complexity that grows
linearly,O(E), with the number of events E.
This can be solved by noticing that for all k and i and a causal
history Cx : if ek

i ∈ Cx then {e1
i , . . . , ek−1

i } ⊆ Cx .

Consequently one only needs to register the index of the last event
from each process.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Characterizing causality

Run tagged with causal histories

pa•
{a1} // •

{a1,a2} //

��3
3333333333 •
{a1,a2,a3} // •

{a1,a2,a3,a4}

pb•
{b1} // •

{b1,b2} // •
{b1,b2,b3} //

++WWWWWWWWWWWWWWWWWWWW •
{b1,b2,b3,b4}

""FFFFFFF

pc•
{c1} // •

{c1,a1,a2,c2}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3}
// •

{c1,a1,a2,c2,b1,b2,b3,b4,c3,c4}

The problem of causal histories is their space complexity that grows
linearly,O(E), with the number of events E.
This can be solved by noticing that for all k and i and a causal
history Cx : if ek

i ∈ Cx then {e1
i , . . . , ek−1

i } ⊆ Cx .
Consequently one only needs to register the index of the last event
from each process.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Vector Clocks

Vector clocks are compressed causal histories. V : H → Nn where n is
the number of processes. They can be represented in a vector or as
mappings from process names to integers.

Run tagged with vector clocks

pa•
{a 7→1} // •

{a 7→2} //

��3
3333333333 •
{a 7→3} // •

{a 7→4}

pb•
{b 7→1} // •

{b 7→2} // •
{b 7→3} //

++WWWWWWWWWWWWWWWWWWWW •
{b 7→4}

""FFFFFFF

pc•
{c 7→1} // •

{a 7→2,c 7→2}
// •

{a 7→2,b 7→4,c 7→3}
// •

{a 7→2,b 7→4,c 7→4}

Vector clocks are used in many distributed algorithms. E.g. causal
delivery of messages, an extension of FIFO delivery. They can be
used as long as processes have unique ids. A total order on ids is only
a convenience (trivially obtained from unique ids).

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Vector Clocks

Vector clocks are compressed causal histories. V : H → Nn where n is
the number of processes. They can be represented in a vector or as
mappings from process names to integers.

Run tagged with vector clocks

pa•
{a 7→1} // •

{a 7→2} //

��3
3333333333 •
{a 7→3} // •

{a 7→4}

pb•
{b 7→1} // •

{b 7→2} // •
{b 7→3} //

++WWWWWWWWWWWWWWWWWWWW •
{b 7→4}

""FFFFFFF

pc•
{c 7→1} // •

{a 7→2,c 7→2}
// •

{a 7→2,b 7→4,c 7→3}
// •

{a 7→2,b 7→4,c 7→4}

Vector clocks are used in many distributed algorithms. E.g. causal
delivery of messages, an extension of FIFO delivery. They can be
used as long as processes have unique ids. A total order on ids is only
a convenience (trivially obtained from unique ids).

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Vector Clocks

Vector clocks are compressed causal histories. V : H → Nn where n is
the number of processes. They can be represented in a vector or as
mappings from process names to integers.

Run tagged with vector clocks

pa•
{a 7→1} // •

{a 7→2} //

��3
3333333333 •
{a 7→3} // •

{a 7→4}

pb•
{b 7→1} // •

{b 7→2} // •
{b 7→3} //

++WWWWWWWWWWWWWWWWWWWW •
{b 7→4}

""FFFFFFF

pc•
{c 7→1} // •

{a 7→2,c 7→2}
// •

{a 7→2,b 7→4,c 7→3}
// •

{a 7→2,b 7→4,c 7→4}

Vector clocks are used in many distributed algorithms. E.g. causal
delivery of messages, an extension of FIFO delivery. They can be
used as long as processes have unique ids. A total order on ids is only
a convenience (trivially obtained from unique ids).

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Vector Clocks

Run tagged with vector clocks

pa•
[1,0,0] // •

[2,0,0] //

��3
3333333333 •

[3,0,0] // •
[4,0,0]

pb•
[0,1,0] // •

[0,2,0] // •
[0,3,0] //

++WWWWWWWWWWWWWWWWWWWW •
[0,4,0]

""FFFFFFF

pc•
[0,0,1] // •

[2,0,2]
// •
[2,4,3]

// •
[2,4,4]

The cordinatewise (pointwise) order on version vectors characterizes
causality. They define identical partial orders.
[2, 0, 0] < [2, 0, 2] but [0, 4, 0] ‖ [2, 0, 2]

Complexity is O(N log E) and V is known to be the most concise
timestamping mechanism for process causality tracking.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Vector Clocks

Run tagged with vector clocks

pa•
[1,0,0] // •

[2,0,0] //

��3
3333333333 •

[3,0,0] // •
[4,0,0]

pb•
[0,1,0] // •

[0,2,0] // •
[0,3,0] //

++WWWWWWWWWWWWWWWWWWWW •
[0,4,0]

""FFFFFFF

pc•
[0,0,1] // •

[2,0,2]
// •
[2,4,3]

// •
[2,4,4]

The cordinatewise (pointwise) order on version vectors characterizes
causality. They define identical partial orders.
[2, 0, 0] < [2, 0, 2] but [0, 4, 0] ‖ [2, 0, 2]
Complexity is O(N log E) and V is known to be the most concise
timestamping mechanism for process causality tracking.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Process Causality vs Data Causality

Causality is formed as relevant events are colected in a run.

In process causality the relevante events are internal, send and
receive events.

With causal histories a new event id is added in each case.

In data causality we are concerned with the ordering of replicas
subject to optimistic operation.

The relevant events are update events on the replica state.

If each update event is distinguished, two replicas that know the
same set of update events are equivalente.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Process Causality vs Data Causality

Causality is formed as relevant events are colected in a run.

In process causality the relevante events are internal, send and
receive events.

With causal histories a new event id is added in each case.

In data causality we are concerned with the ordering of replicas
subject to optimistic operation.

The relevant events are update events on the replica state.

If each update event is distinguished, two replicas that know the
same set of update events are equivalente.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Process Causality vs Data Causality

Causality is formed as relevant events are colected in a run.

In process causality the relevante events are internal, send and
receive events.

With causal histories a new event id is added in each case.

In data causality we are concerned with the ordering of replicas
subject to optimistic operation.

The relevant events are update events on the replica state.

If each update event is distinguished, two replicas that know the
same set of update events are equivalente.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Process Causality vs Data Causality

Causality is formed as relevant events are colected in a run.

In process causality the relevante events are internal, send and
receive events.

With causal histories a new event id is added in each case.

In data causality we are concerned with the ordering of replicas
subject to optimistic operation.

The relevant events are update events on the replica state.

If each update event is distinguished, two replicas that know the
same set of update events are equivalente.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Process Causality vs Data Causality

Causality is formed as relevant events are colected in a run.

In process causality the relevante events are internal, send and
receive events.

With causal histories a new event id is added in each case.

In data causality we are concerned with the ordering of replicas
subject to optimistic operation.

The relevant events are update events on the replica state.

If each update event is distinguished, two replicas that know the
same set of update events are equivalente.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Process Causality vs Data Causality

Causality is formed as relevant events are colected in a run.

In process causality the relevante events are internal, send and
receive events.

With causal histories a new event id is added in each case.

In data causality we are concerned with the ordering of replicas
subject to optimistic operation.

The relevant events are update events on the replica state.

If each update event is distinguished, two replicas that know the
same set of update events are equivalente.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality

Data causality is at the core of version control systems, replicated file
systems, partitioned operation and optimistic replication in general.

Run

ra•
u1

a // ◦ //

��44444444444 •
u2

a // •
u3

a

rb•
u1

b // •
u2

b // •
u3

b // ◦ //

##FFFFFFF ◦

rc•
u1

c // ◦ // ◦ //

;;xxxxxxx ◦ // •
u2

c

This run includes sending and receiving of messages but causality
tracking can ignore these events.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality

Data causality is at the core of version control systems, replicated file
systems, partitioned operation and optimistic replication in general.

Run

ra•
u1

a // ◦ //

��44444444444 •
u2

a // •
u3

a

rb•
u1

b // •
u2

b // •
u3

b // ◦ //

##FFFFFFF ◦

rc•
u1

c // ◦ // ◦ //

;;xxxxxxx ◦ // •
u2

c

This run includes sending and receiving of messages but causality
tracking can ignore these events.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality

Data causality is at the core of version control systems, replicated file
systems, partitioned operation and optimistic replication in general.

Run

ra•
u1

a // ◦ //

��44444444444 •
u2

a // •
u3

a

rb•
u1

b // •
u2

b // •
u3

b // ◦ //

##FFFFFFF ◦

rc•
u1

c // ◦ // ◦ //

;;xxxxxxx ◦ // •
u2

c

This run includes sending and receiving of messages but causality
tracking can ignore these events.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Causal histories

Run with causal histories

ra•
{a1} // ◦

{a1} //

��44444444444 •
{a1,a2} // •

{a1,a2,a3}

rb•
{b1} // •

{b1,b2}
// •
{b1,b2,b3} // ◦ //

##FFFFFFF ◦
{a1,b1,b2,b3,c1}

rc•
{c1} // ◦

{a1,c1}
// ◦ //

;;xxxxxxx ◦
{a1,b1,b2,b3,c1}

// •
{a1,b1,b2,b3,c1,c2}

Unlike process causality, where all events depict different causal
histories, here replicas can known the same set of events. In that
case we say that replicas are equivalent.
At the end of this run we have the following relations among replicas,
as observed by set inclusion:
ra ‖ rb and ra ‖ rc and rb < rc .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Causal histories

Run with causal histories

ra•
{a1} // ◦

{a1} //

��44444444444 •
{a1,a2} // •

{a1,a2,a3}

rb•
{b1} // •

{b1,b2}
// •
{b1,b2,b3} // ◦ //

##FFFFFFF ◦
{a1,b1,b2,b3,c1}

rc•
{c1} // ◦

{a1,c1}
// ◦ //

;;xxxxxxx ◦
{a1,b1,b2,b3,c1}

// •
{a1,b1,b2,b3,c1,c2}

Unlike process causality, where all events depict different causal
histories, here replicas can known the same set of events. In that
case we say that replicas are equivalent.

At the end of this run we have the following relations among replicas,
as observed by set inclusion:
ra ‖ rb and ra ‖ rc and rb < rc .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Causal histories

Run with causal histories

ra•
{a1} // ◦

{a1} //

��44444444444 •
{a1,a2} // •

{a1,a2,a3}

rb•
{b1} // •

{b1,b2}
// •
{b1,b2,b3} // ◦ //

##FFFFFFF ◦
{a1,b1,b2,b3,c1}

rc•
{c1} // ◦

{a1,c1}
// ◦ //

;;xxxxxxx ◦
{a1,b1,b2,b3,c1}

// •
{a1,b1,b2,b3,c1,c2}

Unlike process causality, where all events depict different causal
histories, here replicas can known the same set of events. In that
case we say that replicas are equivalent.
At the end of this run we have the following relations among replicas,
as observed by set inclusion:
ra ‖ rb and ra ‖ rc and rb < rc .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version vectors

Run with version vectors

ra•
[1,0,0] // ◦

[1,0,0] //

��44444444444 •
[2,0,0] // •

[3,0,0]

rb•
[0,1,0] // •

[0,2,0]
// •
[0,3,0] // ◦ //

##FFFFFFF ◦
[1,3,1]

rc•
[0,0,1] // ◦

[1,0,1]
// ◦ //

;;xxxxxxx ◦
[1,3,1]

// •
[1,3,2]

Both version vectors and causal histories characterize data causality.
Are version vectors the most concise representation of data causality?
In fact, no, altough it looks like.
Altough we have a unbounded number of update events in data
causality one is only concerned about the order among existing
replicas. Those forming the frontier of the run.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version vectors

Run with version vectors

ra•
[1,0,0] // ◦

[1,0,0] //

��44444444444 •
[2,0,0] // •

[3,0,0]

rb•
[0,1,0] // •

[0,2,0]
// •
[0,3,0] // ◦ //

##FFFFFFF ◦
[1,3,1]

rc•
[0,0,1] // ◦

[1,0,1]
// ◦ //

;;xxxxxxx ◦
[1,3,1]

// •
[1,3,2]

Both version vectors and causal histories characterize data causality.
Are version vectors the most concise representation of data causality?

In fact, no, altough it looks like.
Altough we have a unbounded number of update events in data
causality one is only concerned about the order among existing
replicas. Those forming the frontier of the run.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version vectors

Run with version vectors

ra•
[1,0,0] // ◦

[1,0,0] //

��44444444444 •
[2,0,0] // •

[3,0,0]

rb•
[0,1,0] // •

[0,2,0]
// •
[0,3,0] // ◦ //

##FFFFFFF ◦
[1,3,1]

rc•
[0,0,1] // ◦

[1,0,1]
// ◦ //

;;xxxxxxx ◦
[1,3,1]

// •
[1,3,2]

Both version vectors and causal histories characterize data causality.
Are version vectors the most concise representation of data causality?
In fact, no, altough it looks like.

Altough we have a unbounded number of update events in data
causality one is only concerned about the order among existing
replicas. Those forming the frontier of the run.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version vectors

Run with version vectors

ra•
[1,0,0] // ◦

[1,0,0] //

��44444444444 •
[2,0,0] // •

[3,0,0]

rb•
[0,1,0] // •

[0,2,0]
// •
[0,3,0] // ◦ //

##FFFFFFF ◦
[1,3,1]

rc•
[0,0,1] // ◦

[1,0,1]
// ◦ //

;;xxxxxxx ◦
[1,3,1]

// •
[1,3,2]

Both version vectors and causal histories characterize data causality.
Are version vectors the most concise representation of data causality?
In fact, no, altough it looks like.
Altough we have a unbounded number of update events in data
causality one is only concerned about the order among existing
replicas. Those forming the frontier of the run.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Frontier configurations

With two replicas the following cases are possible:

ra = rb

ra < rb

ra > rb

ra ‖ rb

With three replicas we have more cases, altough a finite number of
them.
From ”On the computer enumeration of finite topologies” they are
found to be
{1 7→ 1, 2 7→ 4, 3 7→ 29, 4 7→ 355, 5 7→ 6942, 6 7→ 209527, 7 7→ 9535241}
Is there a local distributed algorithm that can characterize this partial
order (possibly pre-order) with a bounded state?
This is possible with bounded version vectors.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Frontier configurations

With two replicas the following cases are possible:

ra = rb

ra < rb

ra > rb

ra ‖ rb

With three replicas we have more cases, altough a finite number of
them.

From ”On the computer enumeration of finite topologies” they are
found to be
{1 7→ 1, 2 7→ 4, 3 7→ 29, 4 7→ 355, 5 7→ 6942, 6 7→ 209527, 7 7→ 9535241}
Is there a local distributed algorithm that can characterize this partial
order (possibly pre-order) with a bounded state?
This is possible with bounded version vectors.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Frontier configurations

With two replicas the following cases are possible:

ra = rb

ra < rb

ra > rb

ra ‖ rb

With three replicas we have more cases, altough a finite number of
them.
From ”On the computer enumeration of finite topologies” they are
found to be
{1 7→ 1, 2 7→ 4, 3 7→ 29, 4 7→ 355, 5 7→ 6942, 6 7→ 209527, 7 7→ 9535241}

Is there a local distributed algorithm that can characterize this partial
order (possibly pre-order) with a bounded state?
This is possible with bounded version vectors.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Frontier configurations

With two replicas the following cases are possible:

ra = rb

ra < rb

ra > rb

ra ‖ rb

With three replicas we have more cases, altough a finite number of
them.
From ”On the computer enumeration of finite topologies” they are
found to be
{1 7→ 1, 2 7→ 4, 3 7→ 29, 4 7→ 355, 5 7→ 6942, 6 7→ 209527, 7 7→ 9535241}
Is there a local distributed algorithm that can characterize this partial
order (possibly pre-order) with a bounded state?

This is possible with bounded version vectors.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Frontier configurations

With two replicas the following cases are possible:

ra = rb

ra < rb

ra > rb

ra ‖ rb

With three replicas we have more cases, altough a finite number of
them.
From ”On the computer enumeration of finite topologies” they are
found to be
{1 7→ 1, 2 7→ 4, 3 7→ 29, 4 7→ 355, 5 7→ 6942, 6 7→ 209527, 7 7→ 9535241}
Is there a local distributed algorithm that can characterize this partial
order (possibly pre-order) with a bounded state?
This is possible with bounded version vectors.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Pointwise order

r0

ˆ
0 000

˜
•

ˆ
1 000

˜
◦OO

��

ˆ
1 100

˜
•

ˆ
2 100

˜
◦OO

��

ˆ
2 100

˜
r1

ˆ
0 000

˜
•

ˆ
0 100

˜
◦

ˆ
1 100

˜
◦OO

��

ˆ
2 100

˜
•

ˆ
2 200

˜
r2

ˆ
0 000

˜
◦OO

��

ˆ
2 100

˜
r3

ˆ
0 000

˜
◦

ˆ
2 100

˜
◦

ˆ
2 100

˜
◦

ˆ
2 100

˜
Since version vectors are define with pointwise order it is enough do
find a bounded replacement for each component that defines a total
order in all frontiers.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Bounded version vectors

r0

a
a
a
a

•
b a
a
a
a

◦OO

��

b a
b a
a
a

•
c b a
b a
a
a

◦OO

��

c b a
b a
a
c b a

◦OO

��

c
c a
c
c

•
b c
c a
c
c

r1

a
a
a
a

◦
b a
b a
a
a

◦OO

��

c b a
c a
a
c a

r2

a
a
a
a

◦OO

��

c b a
c a
c
c

r3

a
a
a
a

◦
c b a
b a
a
c b a

◦
c b a
c a
a
c a

◦
c b a
c a
c
c

◦
c
c a
c
c

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Bounded version vectors

Bounded version vectors can characterize data causality with a state
that is independent on the number of updates. The required state is
polynomial with respect to the number of replicas.
Let U be the number of updates, and N the number of replicas.

Traditional version vectors have scale O(N log2(U))

Bounded version vectors have scale O(N3 log2(N))

Consequently, the bounded approach can only be efficient for very
small numbers of replicas or extremely high update rates.
In addition, synchronizations must be bidirectional.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Bounded version vectors

Bounded version vectors can characterize data causality with a state
that is independent on the number of updates. The required state is
polynomial with respect to the number of replicas.
Let U be the number of updates, and N the number of replicas.

Traditional version vectors have scale O(N log2(U))

Bounded version vectors have scale O(N3 log2(N))

Consequently, the bounded approach can only be efficient for very
small numbers of replicas or extremely high update rates.

In addition, synchronizations must be bidirectional.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Bounded version vectors

Bounded version vectors can characterize data causality with a state
that is independent on the number of updates. The required state is
polynomial with respect to the number of replicas.
Let U be the number of updates, and N the number of replicas.

Traditional version vectors have scale O(N log2(U))

Bounded version vectors have scale O(N3 log2(N))

Consequently, the bounded approach can only be efficient for very
small numbers of replicas or extremely high update rates.
In addition, synchronizations must be bidirectional.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Dynamic Number of Replicas

The previous mechanisms assumed a known number of replicas of
global naming. This might not be possible in partitioned settings,
just where optimistic replication is more needed.

Setting

Replica forking, update and synchronization.

Variable number of replicas: variable-width frontier.

Example: ad-hoc file copying and updating.

d1
// g1

b1

;;xxxx

##FFFF

a1
◦ // a2

<<xxxx

##GGGG e1 // f1

EE��������

c1
◦ // c2

◦ // c3

;;xxxx

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Dynamic Number of Replicas

The previous mechanisms assumed a known number of replicas of
global naming. This might not be possible in partitioned settings,
just where optimistic replication is more needed.

Setting

Replica forking, update and synchronization.

Variable number of replicas: variable-width frontier.

Example: ad-hoc file copying and updating.

d1
// g1

b1

;;xxxx

##FFFF

a1
◦ // a2

<<xxxx

##GGGG e1 // f1

EE��������

c1
◦ // c2

◦ // c3

;;xxxx

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Dynamic Number of Replicas

The previous mechanisms assumed a known number of replicas of
global naming. This might not be possible in partitioned settings,
just where optimistic replication is more needed.

Setting

Replica forking, update and synchronization.

Variable number of replicas: variable-width frontier.

Example: ad-hoc file copying and updating.

d1
// g1

b1

;;xxxx

##FFFF

a1
◦ // a2

<<xxxx

##GGGG e1 // f1

EE��������

c1
◦ // c2

◦ // c3

;;xxxx

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Dynamic Number of Replicas

The previous mechanisms assumed a known number of replicas of
global naming. This might not be possible in partitioned settings,
just where optimistic replication is more needed.

Setting

Replica forking, update and synchronization.

Variable number of replicas: variable-width frontier.

Example: ad-hoc file copying and updating.

d1
// g1

b1

;;xxxx

##FFFF

a1
◦ // a2

<<xxxx

##GGGG e1 // f1

EE��������

c1
◦ // c2

◦ // c3

;;xxxx

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Dynamic Number of Replicas

The previous mechanisms assumed a known number of replicas of
global naming. This might not be possible in partitioned settings,
just where optimistic replication is more needed.

Setting

Replica forking, update and synchronization.

Variable number of replicas: variable-width frontier.

Example: ad-hoc file copying and updating.

d1
// g1

b1

;;xxxx

##FFFF

a1
◦ // a2

<<xxxx

##GGGG e1 // f1

EE��������

c1
◦ // c2

◦ // c3

;;xxxx

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps

Identity component

Local management of the namespace.

Distinguishes a replica from all coexisting ones.

Available namespace from which other replicas can be generated.

Update component

Records when changes were applied.

Identity-like value collected from ancestors.

Global comparison of replicas.

Other features

Both components are a set of binary strings.

No map from identifiers to counters is kept.

No counters are used at all.

Structure can grow and shrink.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps

Identity component

Local management of the namespace.

Distinguishes a replica from all coexisting ones.

Available namespace from which other replicas can be generated.

Update component

Records when changes were applied.

Identity-like value collected from ancestors.

Global comparison of replicas.

Other features

Both components are a set of binary strings.

No map from identifiers to counters is kept.

No counters are used at all.

Structure can grow and shrink.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps

Identity component

Local management of the namespace.

Distinguishes a replica from all coexisting ones.

Available namespace from which other replicas can be generated.

Update component

Records when changes were applied.

Identity-like value collected from ancestors.

Global comparison of replicas.

Other features

Both components are a set of binary strings.

No map from identifiers to counters is kept.

No counters are used at all.

Structure can grow and shrink.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps

Identity component

[00] // [00+01+1]

��
[0]

<<yyyy

""EEEE [0+1]

��
[]
◦ // []

>>~~~~

 @@@@ [01] // [01+1]

=={{{{{{{{{{{
[]

[1]
◦ // [1]

◦ // [1]

99ttttt

An update causes no change on the id.

Forks append either 0 or 1 to each string in the id.

A join merges the sets of string.

A possible simplification is attempted upon a join.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps

Identity component

[00] // [00+01+1]

��
[0]

<<yyyy

""EEEE [0+1]

��
[]
◦ // []

>>~~~~

 @@@@ [01] // [01+1]

=={{{{{{{{{{{
[]

[1]
◦ // [1]

◦ // [1]

99ttttt

An update causes no change on the id.

Forks append either 0 or 1 to each string in the id.

A join merges the sets of string.

A possible simplification is attempted upon a join.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps

Identity component

[00] // [00+01+1]

��
[0]

<<yyyy

""EEEE [0+1]

��
[]
◦ // []

>>~~~~

 @@@@ [01] // [01+1]

=={{{{{{{{{{{
[]

[1]
◦ // [1]

◦ // [1]

99ttttt

An update causes no change on the id.

Forks append either 0 or 1 to each string in the id.

A join merges the sets of string.

A possible simplification is attempted upon a join.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps

Identity component

[00] // [00+01+1]

��
[0]

<<yyyy

""EEEE [0+1]

��
[]
◦ // []

>>~~~~

 @@@@ [01] // [01+1]

=={{{{{{{{{{{
[]

[1]
◦ // [1]

◦ // [1]

99ttttt

An update causes no change on the id.

Forks append either 0 or 1 to each string in the id.

A join merges the sets of string.

A possible simplification is attempted upon a join.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps

Update component

[| 00] // [1 | 00+01+1]

��
[| 0]

99tttt

%%JJJJ [1 | 0+1]

��
[|] ◦ // [|]

<<yyyy

""EEEE [| 01] // [1 | 01+1]

::vvvvvvvvvvvv
[|]

[| 1]
◦ // [1 | 1]

◦ // [1 | 1]

77nnnnn

Updates copy id into update.

A fork causes no change in the update component.

A join merges the update components.

A simplification upon join also reflects in update.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps

Update component

[| 00] // [1 | 00+01+1]

��
[| 0]

99tttt

%%JJJJ [1 | 0+1]

��
[|] ◦ // [|]

<<yyyy

""EEEE [| 01] // [1 | 01+1]

::vvvvvvvvvvvv
[|]

[| 1]
◦ // [1 | 1]

◦ // [1 | 1]

77nnnnn

Updates copy id into update.

A fork causes no change in the update component.

A join merges the update components.

A simplification upon join also reflects in update.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps

Update component

[| 00] // [1 | 00+01+1]

��
[| 0]

99tttt

%%JJJJ [1 | 0+1]

��
[|] ◦ // [|]

<<yyyy

""EEEE [| 01] // [1 | 01+1]

::vvvvvvvvvvvv
[|]

[| 1]
◦ // [1 | 1]

◦ // [1 | 1]

77nnnnn

Updates copy id into update.

A fork causes no change in the update component.

A join merges the update components.

A simplification upon join also reflects in update.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps

Update component

[| 00] // [1 | 00+01+1]

��
[| 0]

99tttt

%%JJJJ [1 | 0+1]

��
[|] ◦ // [|]

<<yyyy

""EEEE [| 01] // [1 | 01+1]

::vvvvvvvvvvvv
[|]

[| 1]
◦ // [1 | 1]

◦ // [1 | 1]

77nnnnn

Updates copy id into update.

A fork causes no change in the update component.

A join merges the update components.

A simplification upon join also reflects in update.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Data Causality
Version Stamps: Pollution of the Namespace

Patologic run

0

''OOOOOO 00 + 100EE����

��3
333 10 // 0 + 10

88rrrr

&&LLLL 010 + 1010 + 110

1

BB���

��999 01 + 101 // 01 + 101 + 11

44jjjjjjj

**TTTTTTT

11

22eeeeeeeeeeeeeeee 011 + 1011 + 111

Pattern: join and fork again with alternating replicas.

Leads to an overly refined namespace that cannot be simplified.

This pattern can often occur in a real usage scenario.

Copy of the identity to the update component aggravates the
problem.

Although correct practical application is severely compromised.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Function Graphs

Pointwise Order

[2, 5, 1] ≤ [3, 6, 4]

[2, 5, 1] 6≤ [3, 2, 5] and [3, 2, 5] 6≤ [2, 5, 1] means [2, 5, 1] ‖ [3, 2, 5]

Vector Clocks as Function Graphs

[2, 5, 1] ≤ [3, 6, 4] ≡ ≤

[2, 5, 1] ‖ [3, 2, 5] ≡ ‖

Function graph containment characterizes causality. Vectors of
integers can be re-interpreted as a way to encode the function.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Function Graphs

Pointwise Order

[2, 5, 1] ≤ [3, 6, 4]

[2, 5, 1] 6≤ [3, 2, 5] and [3, 2, 5] 6≤ [2, 5, 1] means [2, 5, 1] ‖ [3, 2, 5]

Vector Clocks as Function Graphs

[2, 5, 1] ≤ [3, 6, 4] ≡ ≤

[2, 5, 1] ‖ [3, 2, 5] ≡ ‖

Function graph containment characterizes causality. Vectors of
integers can be re-interpreted as a way to encode the function.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Stamps

In order to register new events (advance logical time) each
active entity must know which position to update (vector index
for that entity).

Stamps (logical clocks) are a pair (i , e), formed by an id and an
event component that encodes causally known events.

Vector Clock Stamp

Process Pb can hold a stamp (2, [1, 2, 3]) giving it access to the 2nd

index, and register an update deriving (2, [1, 3, 3]).

Function Stamp

Stamp can be updated to .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Stamps

In order to register new events (advance logical time) each
active entity must know which position to update (vector index
for that entity).

Stamps (logical clocks) are a pair (i , e), formed by an id and an
event component that encodes causally known events.

Vector Clock Stamp

Process Pb can hold a stamp (2, [1, 2, 3]) giving it access to the 2nd

index, and register an update deriving (2, [1, 3, 3]).

Function Stamp

Stamp can be updated to .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Stamps

In order to register new events (advance logical time) each
active entity must know which position to update (vector index
for that entity).

Stamps (logical clocks) are a pair (i , e), formed by an id and an
event component that encodes causally known events.

Vector Clock Stamp

Process Pb can hold a stamp (2, [1, 2, 3]) giving it access to the 2nd

index, and register an update deriving (2, [1, 3, 3]).

Function Stamp

Stamp can be updated to .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Stamps

In order to register new events (advance logical time) each
active entity must know which position to update (vector index
for that entity).

Stamps (logical clocks) are a pair (i , e), formed by an id and an
event component that encodes causally known events.

Vector Clock Stamp

Process Pb can hold a stamp (2, [1, 2, 3]) giving it access to the 2nd

index, and register an update deriving (2, [1, 3, 3]).

Function Stamp

Stamp can be updated to .

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Global Invariants on IDs

Causality characterization condition

Each entity has a portion of its identity that is exclusive to it. This
means each entity having an identity which maps to 1 some element
which is mapped to 0 in all other entities.

∀i . (i ·
⊔
i ′ 6=i

i ′) 6= i .

Entity events must use at least a part of the exclusive portion.

Disjoint condition

A less general but more practical condition is that all identities are
kept disjoint. i.e. non-overlapping graphs for any pair of id functions.

∀i1 6= i2. i1 · i2 = 0.

Any portion of the id can be used to register events.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Global Invariants on IDs

Causality characterization condition

Each entity has a portion of its identity that is exclusive to it. This
means each entity having an identity which maps to 1 some element
which is mapped to 0 in all other entities.

∀i . (i ·
⊔
i ′ 6=i

i ′) 6= i .

Entity events must use at least a part of the exclusive portion.

Disjoint condition

A less general but more practical condition is that all identities are
kept disjoint. i.e. non-overlapping graphs for any pair of id functions.

∀i1 6= i2. i1 · i2 = 0.

Any portion of the id can be used to register events.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Logical Time and Causality
Plausible Clocks and Lamport Clocks

Plausible clocks [Torres-Rojas 99] and Lamport clocks [Lamport 78]
do not meet the causality characterization condition. They are only
consistent with causality.

Plausible Clocks

Entities can share ids and update on the same position.

, , ,

Lamport Clocks

A single id position is used across all entities.

, , ,

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Fork-Event-Join Model

Causality tracking mechanisms (both static and dynamic) can be
modeled by a set of core operations: fork ; event and join, that act on
stamps.

FEJ kernel

(i,e) ?>=<89:;F

(i1,e)

�������

(i2,e)

???????
(i,e) ?>=<89:;E

(i,e′)

(i1,e1)

???????

?>=<89:;J
(i3,e3)

(i2,e2)

�������

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Function space based Clock Mechanisms
under the Disjoint Condition

Core operations:

fork fork((i , e))
.

= ((i1, e), (i2, e))
subject to i1 + i2 = i and i1 · i2 = 0.

event event((i , e))
.

= (i , e + f · i)
for any f such that f · i > 0.

join t((i1, e1), (i2, e2))
.

= (i1 + i2, e1 t e2).

Peek, a special kind of fork is usefull to create imutable entities
(messages or replicas):

peek peek((i , e))
.

= ((0, e), (i , e)).

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Function space based Clock Mechanisms
under the Disjoint Condition

Core operations:

fork fork((i , e))
.

= ((i1, e), (i2, e))
subject to i1 + i2 = i and i1 · i2 = 0.

event event((i , e))
.

= (i , e + f · i)
for any f such that f · i > 0.

join t((i1, e1), (i2, e2))
.

= (i1 + i2, e1 t e2).

Peek, a special kind of fork is usefull to create imutable entities
(messages or replicas):

peek peek((i , e))
.

= ((0, e), (i , e)).

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Function space based Clock Mechanisms
under the Disjoint Condition

Core operations:

fork fork((i , e))
.

= ((i1, e), (i2, e))
subject to i1 + i2 = i and i1 · i2 = 0.

event event((i , e))
.

= (i , e + f · i)
for any f such that f · i > 0.

join t((i1, e1), (i2, e2))
.

= (i1 + i2, e1 t e2).

Peek, a special kind of fork is usefull to create imutable entities
(messages or replicas):

peek peek((i , e))
.

= ((0, e), (i , e)).

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Function space based Clock Mechanisms
under the Disjoint Condition

Core operations:

fork fork((i , e))
.

= ((i1, e), (i2, e))
subject to i1 + i2 = i and i1 · i2 = 0.

event event((i , e))
.

= (i , e + f · i)
for any f such that f · i > 0.

join t((i1, e1), (i2, e2))
.

= (i1 + i2, e1 t e2).

Peek, a special kind of fork is usefull to create imutable entities
(messages or replicas):

peek peek((i , e))
.

= ((0, e), (i , e)).

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

FEJ
Send

Send: This operation is the atomic composition of event followed by
peek. E.g. in vector clock systems, message sending is modeled by
incrementing the local counter and then creating a new message.

(i ,e) GFED@ABCE
(i ,e′) GFED@ABCP

(i ,e′)

(0,e′)

???????

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

FEJ
Receive

Receive: A receive is the atomic composition of join followed by
event. E.g. in vector clocks taking the pointwise maximum is
followed by an increment of the local counter.

(0,e1)

>>>>>>>

(i1,e2) ?>=<89:;J
(i1,e3) GFED@ABCE

(i1,e4)

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Apendix
Sync

Sync: A sync is the atomic composition of join followed by fork .
E.g. In version vector systems and in bounded version vectors it
models the atomic synchronization of two replicas.

(i1,e1) >>>>>>>

?>=<89:;J
(i3,e3) GFED@ABCF

(i4,e3)

�������

(i5,e3)

???????
(i2,e2) �������

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
A Function space based Clock Mechanism

ITC is a concrete mechanism that meets the FEJ specification.

Allows decentralized creation and retirement of entities.

The representation adapts automatically to the number of
existing entities, growing or shrinking appropriately.

ITC is based on functions over a continuous infinite domain (R)
with emphasis on the interval [0, 1)

Functions are encoded as trees.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
Id Component

The id component is an id tree with the recursive form:

i
.

= 0 | 1 | (i1, i2).

(1, (0, 1)) ∼
((0, (1, 0)), (1, 0)) ∼

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
Event Component

The event component is a binary event tree with non-negative
integers in nodes:

e
.

= n | (n, e1, e2).

(1, 2, (0, (1, 0, 2), 0)) ∼

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
ITC Stamps

A stamp in ITC is a pair (i , e).

(((0, (1, 0)), (1, 0)), (1, 2, (0, (1, 0, 2), 0))) ∼

ITC makes use what we call the seed stamp, (1, 0), from which we
can fork as desired to obtain an initial configuration.

(1, 0) ∼

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
ITC Stamps

A stamp in ITC is a pair (i , e).

(((0, (1, 0)), (1, 0)), (1, 2, (0, (1, 0, 2), 0))) ∼

ITC makes use what we call the seed stamp, (1, 0), from which we
can fork as desired to obtain an initial configuration.

(1, 0) ∼

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
A run

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
Normal form

The event component can be normalized, preserving its interpretation
as a function.

(2, 1, 1) ∼ ≡ ∼ 3,

(2, (2, 1, 0), 3) ∼ ≡ ∼ (4, (0, 1, 0), 1).

Normalization helps to keep a compact encoding.

Counters flow from leaves to root, further helping encoding.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
Normal form

The event component can be normalized, preserving its interpretation
as a function.

(2, 1, 1) ∼ ≡ ∼ 3,

(2, (2, 1, 0), 3) ∼ ≡ ∼ (4, (0, 1, 0), 1).

Normalization helps to keep a compact encoding.

Counters flow from leaves to root, further helping encoding.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
Normal form

The event component can be normalized, preserving its interpretation
as a function.

(2, 1, 1) ∼ ≡ ∼ 3,

(2, (2, 1, 0), 3) ∼ ≡ ∼ (4, (0, 1, 0), 1).

Normalization helps to keep a compact encoding.

Counters flow from leaves to root, further helping encoding.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
Event operation

Fill

Fills can fill several areas and induce large simplifications.

Grow

Fills are prefered to Grows, and alternative Grows are selected by
evaluating its impact on encoding size.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
Event operation

Fill

Fills can fill several areas and induce large simplifications.

Grow

Fills are prefered to Grows, and alternative Grows are selected by
evaluating its impact on encoding size.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
Event operation

Fill

Fills can fill several areas and induce large simplifications.

Grow

Fills are prefered to Grows, and alternative Grows are selected by
evaluating its impact on encoding size.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
Event operation

Fill

Fills can fill several areas and induce large simplifications.

Grow

Fills are prefered to Grows, and alternative Grows are selected by
evaluating its impact on encoding size.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
Fixed set of processes exchanging messages

 1

 10

 100

 1000

 1 10 100 1000 10000

S
iz

e
in

 b
yt

es

Iterations

Process Causality in a Static Setting

128 processes
64 processes
32 processes
16 processes

8 processes
4 processes

For process causality in a static scenario, we operate on a fixed set of
processes doing message exchanges (via peek and join) and recording
internal events; here ids remain unchanged, since messages are
anonymous.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Interval Tree Clocks
Data replicas under churn

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

S
iz

e
in

 b
yt

es

Iterations

Data Causality in a Dynamic Setting

128 replicas
64 replicas
32 replicas
16 replicas

8 replicas
4 replicas

Each iteration consists of forking, recording an event and joining two
replicas, each performed on random replicas, leading to constantly
evolving ids. This pattern maintains the number of existing replicas
while exercising id management under churn.

Time, Logical
Time and
Causality

Carlos Baquero
Distributed

Systems Group
Universidade do

Minho

Bibliography

Consistent Global States of Distributed Systems: Fundamental
Concepts and Mechanisms. Özalp Babaoğlu, Keith Marzullo.
1993.

Version Stamps: Decentralized Version vectors. Paulo Almeida,
Carlos Baquero, Victor Fonte. ICDCS 2002.

Bounded Version Vectors. Bacelar Almeida, Paulo Almeida,
Carlos Baquero. DISC 2004.

Interval Tree Clocks: A Logical Clock for Dynamic Systems.
OPODIS 2008

