Leader Election in a Synchronous Ring

Paulo Sérgio Almeida

Distributed Systems Group
Departamento de Informática
Universidade do Minho

2007/2008
Motivation: token ring networks

- In a local area ring network a token circulates around;
- Sometimes the token gets lost;
- A procedure is needed to regenerate the token;
- This amounts to electing a leader;
The problem

- **Network graph:**
 - n nodes, 1 to n clockwise;
 - symmetry and local knowledge:
 - nodes do not know their or neighbor numbers;
 - distinguish clockwise and anti-clockwise neighbors.
 - notation: operations $\mod n$ to facilitate;

- **Requirement:**
 - eventually, exactly one process outputs the decision *leader*,
The other non-leader processes must also output *non-leader*;
The ring can be:
- unidirectional;
- bidirectional;
Number of processes n can be:
- known;
- unknown;
Processes can be:
- identical;
- have totally ordered *unique identifiers* (UID);
Impossibility for identical processes

Theorem

Let A be a system of $n > 1$ processes in a bidirectional ring. If all n processes are identical, then A does not solve the leader-election.

Proof.

Assume WLOG that we have one starting state. (A solution admitting several starting states would have to work for any of those). We have, therefore, a unique execution. By a trivial induction on r, the rounds executed, we can see that all processes have identical state after any number of rounds. Therefore, if any process outputs \emph{leader}, so must the others, contradicting the uniqueness requirement.

- If all processes are identical, the problem cannot be solved!
- Intuition: by symmetry, what one does, so do the others;
Breaking symmetry

- Impossibility follows from symmetry;
- Must break symmetry; e.g. with unique UIDs;
- Symmetry breaking is an important part of many problems in distributed systems;
A basic algorithm – LCR

- LCR algorithm (Le Lann, Chang, Roberts);
- Uses comparisons on UIDs;
- Assumes only unidirectional ring;
- Does not rely on knowing the size of the ring;
- Only the leader performs output;
LCR informally

- Each process sends its UID to next;
- If a received UID is greater than self UID, it is relayed on;
- If it is smaller, it is discarded;
- If it is equal, the process outputs \textit{leader};
Algorithm parameterized on process index \((i)\) and UID \((u)\);
Message alphabet \(M = \mathbb{U}\), the set of UIDs;
Process state, \(state_i\):
- \(send \in M \cup \text{null}\), initially \(u\);
- \(status \in \{\text{unknown, leader}\}\), output variable, initially \text{unknown};
Message-generating function:
\[
msg_{i,u}((send, status), i+1) = send;
\]
State-transition function:
\[
trans_{i,u}((send, status), msg) = \begin{cases}
(null, status) & \text{if } msg = \text{null} \\
(null, status) & \text{if } msg < u \\
(msg, status) & \text{if } msg > u \\
(null, leader) & \text{if } msg = u
\end{cases}
\]
Proof of correctness

- Let m be the index of process with maximum UID u_m;
- Show two lemmas.

Lemma

Process m outputs leader in round n.

Lemma

Processes $i \neq m$ never output leader.

Theorem

LCR solves leader election.
Leader election in a synchronous ring

Proof of correctness - first lemma

Lemma

Process m outputs leader in round n.

Proof.

- For $i \neq m$, if after round r, $send_{i-1} = u_m$, then in round $r + 1$, $send_i = u_m$;
- For $0 \leq r \leq n - 1$, after r rounds, $send_{m+r} = u_m$;
- Node before m in ring in $m + n - 1$;
- After round $n - 1$, $send_{m+n-1} = u_m$;
- In round r, m receives u_m and outputs leader;
Proof of correctness - second lemma

Lemma

Processes $i \neq m$ never output leader.

Proof.

- A process i can only output leader if it receives $msg = u_i$;
- A non-null message can only be some u_j, from process j;
- As UIDs are unique, msg would have to originate in i and travel around the ring, including m;
- But as $u_i < u_m$, m does not relay msg, sending null instead;
- Therefore, msg cannot arrive at i, and i cannot output leader;
Halting and non-leader outputs

- LCR as presented does not halt;
- Processes other than leader stay in unknown status;
- Can be modified to halt and make others output other;
- When leader outputs, sends halt message and halts;
- When a process receives halt, passes it on and then halts;
- Processes that receive halt can output other;
- This transformation to halting and output in all processes is quite general, and can be applied in many scenarios;
other processes can output other as soon as they receive a UID greater than own;

but they cannot halt immediately; they must keep on relaying;

Arriving at output can be sometimes much sooner than halting;

- but they are independent things;
- sometimes a premature halt, forgetting to keep on reacting, can deadlock the rest of the system;
Halting and non-leader outputs formally

- Message alphabet: as before or \{halt\};
- Process states: as before or halted;
- Halting states: halted;
- \(status \in \{unknown, leader, other\}\);
- Message-generating function as before;
- State-transition function:

\[
\text{trans}_{i,u}((send, status), msg) = \begin{cases}
\text{halted} & \text{if } send = \text{halt} \\
(halt, status) & \text{if } msg = \text{halt} \\
(null, status) & \text{if } msg = \text{null} \\
(null, status) & \text{if } msg < u \\
(msg, other) & \text{if } msg > u \\
(halt, leader) & \text{if } msg = u
\end{cases}
\]
Time complexity:
- n rounds until leader elected;
- $2n$ rounds until last process halts;
- And if processes know the size of the ring?

Communication complexity:
- $O(n^2)$ messages in the worst case for both versions;
- $O(n \log n)$ messages in average;
- Which configuration results in less messages? How many?
- Which configuration results in more messages? How many?
HS algorithm (Hirshberg, Sinclair);
- Uses comparisons on UIDs;
- Assumes bidirectional ring;
- Does not rely on knowing the size of the ring;
- Only the leader performs output (can be overcome with transformation);
Processes operate in phases $l = 0, 1, 2, \ldots$;
In each phase, processes send token with UID in both directions;
Tokens in phase l intend to travel 2^l and turn back to sender;
If a received UID is greater than self UID, it is relayed on;
If it is smaller, it is discarded;
If it is equal, the process outputs leader;
 HS formally

- **Message alphabet:** \(M = \{\text{out}\} \times U \times \mathbb{N} \cup \{\text{in}\} \times U; \)

- **Process state, state\(_i\):**
 - \(s- \in M \cup \text{null} \), initially \((\text{out}, u, 1)\);
 - \(s+ \in M \cup \text{null} \), initially \((\text{out}, u, 1)\);
 - \(o \in \{\text{unknown, leader}\} \), output variable, initially unknown;
 - \(l: \) phase, initially 0;

- **Message-generating function:**
 \[
 \text{msg}_{i,u}(s-, s+, o, l, j) = \begin{cases}
 s- & \text{if } j = i - 1 \\
 s+ & \text{if } j = i + 1
 \end{cases}
 \]
Leader election in a synchronous ring

An algorithm with $O(n \log n)$ communication complexity

HS – state-transition function in imperative pseudo-code

```
s+ := null
s- := null
if message from i-1 is (out, v, h):
    case
        v > u and h > 1: s+ := (out, v, h-1)
        v > u and h = 1: s- := (in, v)
        v = u: o := leader
if message from i+1 is (out, v, h):
    case
        v > u and h > 1: s- := (out, v, h-1)
        v > u and h = 1: s+ := (in, v)
        v = u: o := leader
if message from i-1 is (in, v) and v != u:
    s+ := (in, v)
if message from i+1 is (in, v) and v != u:
    s- := (in, v)
if messages from i-1 and i+1 are both (in, u):
    l := l+1
    s+ := (out, u, 2^l)
    s- := (out, u, 2^l)
```
Problems with imperative description

- Imperative style makes it unclear functional dependence and difficult reason;
- Different places assign to the same variable;
- Are those cases mutually exclusive?
- Examples:
 - what if messages \((\text{out}, v, 3)\) and \((\text{out}, w, 1)\) arrived at a node?
 - what if messages \((\text{out}, v, 1)\) and \((\text{in}, w)\) arrived at a node?
 - in both cases, one would have to proceed, the other turn around;
 - two different specifications for same outgoing message;
 - in imperative description, the last assignment wins;
 - should not happen; but won’t it? should be proven;
- Algorithm depends on some combinations of incoming messages never occurring;
Alternative: functional description

As we need to describe functions . . .
 . . . why not adopt a functional style?

Pseudo-code with functional flavour;

Functions defined by cases, using pattern matching;

Functions can be partial:
 not all cases are covered;
 can make functions simpler;
 a separate proof shows those cases never happen;
 proof would have to exist anyway, if correctness depends on it;
Leader election in a synchronous ring

An algorithm with $O(n \log n)$ communication complexity

HS formally – state-transition function

\[
\text{trans}_{i,u}((s-, s+, o, l), ((out, u, h), (out, u, h))) = (null, null, leader, l)
\]
\[
\text{trans}_{i,u}((s-, s+, o, l), ((in, u), (in, u))) = (out, u, 2^{l+1}, out, u, 2^{l+1}, o, l + 1)
\]
\[
\text{trans}_{i,u}((s-, s+, o, l), (m-, m+)) \text{ when } \text{lasthop}(m-, m+) = (filter_u(m-), filter_u(m+), o, l)
\]
\[
\text{trans}_{i,u}((s-, s+, o, l), (m-, m+)) = (filter_u(m+), filter_u(m-), o, l)
\]

\[
\text{lasthop}((out, _, 1), _) = \text{true}
\]
\[
\text{lasthop}(_, (out, _, 1)) = \text{true}
\]
\[
\text{lasthop}(_, _) = \text{false}
\]

\[
\text{filter}_u((out, v, h)) \text{ when } v < u = \text{null}
\]
\[
\text{filter}_u((out, v, 1)) = (in, v)
\]
\[
\text{filter}_u((out, v, h)) = (out, v, h - 1)
\]
\[
\text{filter}_u(m) = m
\]
Several steps in the proof;

Safety:
- At most one process decides to become leader;

Termination:
- Some process will decide to become leader;
Lemma

A process with UID u outputs leader when a message started at u travels the whole ring and arrives back at u.

Proof.

- A process with UID u only decides leader when receiving a message $m = (out, u, -)$;
- as all UIDs are different, the message started at u;
- as the message is outgoing, it has not turned back and travelled always in the same direction;
- therefore, the message travelled the whole ring.
Lemma

At most one process can become leader: the one with the maximum UID.

Proof.

- from the previous lemma, for a process with UID v to become leader, it must receive a message $(\text{out, } v, _)$ that travelled the whole ring;
- such message must have been subject to the filter_u function for every other process;
- the only way for the message to arrive non-null is v to be greater than all other UIDs.
HS – correctness

Lemma

Process \(p \) with maximum UID \(u \) decides leader in round \(n + 2 \times \sum_{l=0}^{m} 2^l \), with \(m \) the greatest integer such that \(2^m < n \).

Proof.

- messages \((\text{out, } u, _)\) started at \(p \) are always relayed; never discarded;
- for phases \(0 \leq l \leq m \), such messages are outbound \(2^l \) rounds, turn around, and take another \(2^l \) rounds until reaching \(p \), when a new phase starts;
- in the end of round \(n \) of phase \(m + 1 \), the outbound messages, which started with \(2^{m+1} \geq n \) possible hops, reach \(p \) before turning back and \(p \) decides leader.
Deriving a variant of HS with smaller messages

- Can we send less information in messages?
- Algorithm operates in lockstep;
- Can we move some state that controls algorithm from messages to processes?
 - Example: number of hops in messages;
 - can we control turn around of messages with process state?
- Insight:
 - everything happens in lockstep;
 - all messages travel with the same hops left;
- Is it so? Must prove;
Deriving a variant of HS with smaller messages

Lemma

In each round, all non-null messages are either outgoing with same remaining hops left, or incoming.

Proof.

- induction on the number of rounds;
- base case: all messages $(\text{out}, _ , 1)$;
- inductive step: messages generated are either null, the result of $\text{filter}_u()$, which preserves hypothesis, or $(\text{out}, _ , 2^{l+1})$;
- induction hypothesis not enough...
Deriving a variant of HS with smaller messages

Proof.

(continued)
need to strengthen lemma and prove also that:

Lemma

All processes that start a new phase, do it in the same round.

Proof.

- proof both lemmas together: use both lemmas in the inductive step;
- not enough: why do processes start phase in same round? . . .
Deriving a variant of HS with smaller messages

Proof.
(Continued)
Need to strengthen lemma and prove also that:

Lemma

All surviving messages turn around in the same round.

Proof.

Use the three lemmas together in the inductive step.
In proving insight we learned much about algorithm;

Looks possible to control message relaying or turning back:
- without having hops in messages;
- without having direction in messages;

Sketch:
- processes count rounds in each phase;
- half-way through a phase, invert direction of messages;
- at end of phase check if both messages received have self UID, to decide whether sending new messages;
- processes keep counting phases and rounds, even after stopping sending new messages;
- improvement: non-leader output can be decided earlier;
HS variant

- Message alphabet: $M = \mathbb{U}$;
- Process state, $state_i$:
 - $s- \in M \cup \text{null}$, initially u;
 - $s+ \in M \cup \text{null}$, initially u;
 - $o \in \{\text{unknown, nonleader, leader}\}$, output variable, initially unknown;
 - l: phase, initially 0;
 - r: round in phase, initially 1;
- Message-generating function:
 $$msg_i, u((s-, s+, o, l), j) = \begin{cases}
 s- & \text{if } j = i - 1 \\
 s+ & \text{if } j = i + 1
 \end{cases}$$
HS variant – state-transition function

\[\text{trans}_{i,u}(\langle s-, s+, o, l, r \rangle, \langle m-, m+ \rangle) \text{ when } (r = 2^l) = \]
\[(\text{filter}_u(m-), \text{filter}_u(m+), o, l, r + 1) \]
\[\text{trans}_{i,u}(\langle s-, s+, o, l, r \rangle, \langle u, u \rangle) \text{ when } (r = 2 \times 2^l) = \]
\[(u, u, o, l + 1, 1) \]
\[\text{trans}_{i,u}(\langle s-, s+, o, l, r \rangle, \langle m-, m+ \rangle) \text{ when } (r = 2 \times 2^l) = \]
\[(\text{null}, \text{null}, \text{nonleader}, l + 1, 1) \]
\[\text{trans}_{i,u}(\langle s-, s+, o, l, r \rangle, \langle u, u \rangle) = \]
\[(\text{null}, \text{null}, \text{leader}, l, r + 1) \]
\[\text{trans}_{i,u}(\langle s-, s+, o, l, r \rangle, \langle m-, m+ \rangle) = \]
\[(\text{filter}_u(m+), \text{filter}_u(m-), o, l, r) \]

\[\text{filter}_u(v) \text{ when } v < u = \text{null} \]
\[\text{filter}_u(m) = m \]
HS – complexity

- **Time complexity:**
 - leader in round \(n + 2 \times \sum_{l=0}^{m} 2^l \), with \(m = \lceil \log_2 n \rceil - 1 \);
 - \(O(n) \), at most \(5n \);

- **Communication complexity:**
 - a process sends new messages in phase \(l \) if receives both messages from phase \(l - 1 \);
 - messages must have survived \(2^{l-1} \) filterings;
 - within any group of \(2^{l-1} + 1 \) consecutive processes, at most one sends new messages in phase \(l \);
 - total number of messages during phase \(l \) bounded by:
 \[
 4 \left(2^l \cdot \left\lfloor \frac{n}{2^{l-1} + 1} \right\rfloor \right) \leq 8n
 \]
 - total number of messages at most \(8n(1 + \lceil \log_2 n \rceil) \);
 - communication complexity: \(O(n \log n) \)