
ULE: A Modern Scheduler For FreeBSD

Jeff Roberson

The FreeBSD Project
jeff@FreeBSD.org

Abstract

The existing thread scheduler in FreeBSD was well suited towards the computing environment that it was
developed in. As the priorities and hardware targets of the project have changed, new features and scheduling
properties were required. This paper presents ULE, a scheduler that is designed with modern hardware and
requirements in mind. Prior to discussing ULE, the designs of several other schedulers are presented to provide
some context for comparison. A simple scheduler profiling tool is also discussed, the results of which provide a
basis for making simple comparisons between important aspects of several schedulers.

1 Motivation

The FreeBSD project began a considerable shift in
kernel architecture for the 5.0 release. The new
architecture is geared towards SMP (Symmetric Multi-
Processing) scalability along with low interrupt latency
and a real-time-like preemptable kernel. This new
architecture presents opportunities and challenges for
intelligent management of processor resources in both
SMP and UP (Uni-Processor) systems.

The current FreeBSD scheduler has its roots in the
4.3BSD scheduler. It has excellent interactive
performance and efficient algorithms with small loads.
It does not, however, take full advantage of multiple
CPUs. It has no support for processor affinity or
binding. It also has no mechanism for distinguishing
between CPUs of varying capability, which is
important for SMT (Symmetric Multi-Threading).

The core scheduling algorithms are also O(n) with the
number of processes in the system. This is undesirable
in environments with very large numbers of processes
or where deterministic run time is important.

These factors were sufficient motivation to rewrite the
core scheduling algorithms. While the new features
are important, the basic interactive and 'nice' behavior
of the old scheduler were required to be met as closely
as possible. In conjunction with this project, the
scheduler was abstracted and placed behind a
contained API so that compile time selection was
feasible.

2 Prior Work

There have been several other notable efforts to make
schedulers more scalable and efficient for SMP and

UP. These efforts were examined while ULE was
under development and many of them had some
influence in its design. ULE was intended to be a
production quality modern scheduler from the start. As
such evolution was preferred over revolution.

Several schedulers are discussed below. The 4BSD
scheduler provided refinements over the traditional
UNIX scheduler. It was the basis for FreeBSD's
current scheduler which ULE used as a target to match
for its interactive and nice behavior. UNIX System V
release 4 solved the O(n) problem by using a table
driven scheduler. This approach was later refined in
Solaris[4] and other SVR4 derived operating systems.
Linux has also recently received a totally rewritten
event driven scheduler from which ULE's queuing
system was derived.

2.1 4.3 BSD

The 4.3BSD scheduler is an adaptation of the
traditional UNIX scheduler[1]. It provides excellent
interactive response on general purpose time sharing
systems. It does not, however, support multiple
scheduling classes or SMP. This scheduler is
discussed in greater detail in [2].

The scheduler derives priorities from a simple
estimation of recent CPU usage and the nice setting of
the process. The CPU usage estimation, estcpu, is
calculated as the sum of the number of ticks that have
occurred while the process has been running. This
value is decayed once a second by a factor that is
determined by the current load average of the system.
The value is also decayed when processes sleep and
wakeup. This decay improves the priority of a process
and may allow it to run.

The decay function is the primary reason that the
scheduler performs poorly with large numbers of
processes. In order for the scheduler to operate on
processes which may have been sleeping, it must
iterate over every process in the system to decay their
estcpu. Without this regular decay, processes would
not trigger any events that would affect their priority
and so they would be indefinitely starved.

Contrary to many newer designs, there are no fixed
time slices other than a round robin interval. Every
100ms the scheduler switches between threads of equal
priority. This ensures some fairness among these
threads.

Nice values have a fixed impact on the priority of a
process. Processes with a high negative nice value can
prohibit other processes from running at all because the
effect of estcpu is not great enough to elevate their
priority above that of the un-nice process.

Since this scheduler was developed before
multiprocessors were common, it has no special
support for multiple CPUs. BSD implementations that
still use this scheduler simply use a global run queue
for all CPUs. This does not provide any CPU affinity
for threads. The lack of CPU affinity can actually
cause some workloads to complete slower on SMP
than they would on UP!

2.2 FreeBSD
FreeBSD inherited the traditional BSD scheduler when
it branched off from 4.3BSD. FreeBSD extended the
scheduler's functionality, adding scheduling classes
and basic SMP support.

Two new classes, real-time and idle, were added early
on in FreeBSD. Idle priority threads are only run when
there are no time sharing or real-time threads to run.
Real-time threads are allowed to run until they block or
until a higher priority real-time thread becomes
available.

When the SMP project was introduced, an interrupt
class was added as well. Interrupt class threads have
the same properties as real-time except that their
priorities are lower, where lower priorities are given
preference in BSD. The classes are simply
implemented as subdivisions of the available priority
space. The time sharing class is the only subdivision
which adjusts priorities based on CPU usage.

Much effort went into tuning the various parameters of
the 4BSD scheduler to achieve good interactive
performance under heavy load as was required by
BSD's primary user base. It was very important that

systems remain responsive while being used as a
server.

In addition to this, the nice concept was further refined.
To facilitate the use of programs that wish to only
consume idle CPU slices, processes with a nice setting
more than 20 higher than the least nice currently
running process will not be permitted to run at all.
This allows distributed programs such as SETI or the
rc4 cracking project to run without impacting the
normal workload of a machine.

2.3 System V Release 4

The SVR4 scheduler provided many improvements
over the traditional UNIX scheduler[3]. It added
several scheduling classes which include time sharing,
real-time, idle and fixed priorities. Each class is
supported by a run time selectable module. The entire
scheduler was also made order one by a table driven
priority system.

The individual classes map their own internal priorities
to a global priority. A non-class-specific portion of the
scheduler always picks the highest priority thread to
run.

Fairness was implemented by penalizing threads for
consuming their full time slice without sleeping and
applying some priority boost for sleeping without using
a full time slice. The current priority of the thread is
used as an index into a table that has one entry for each
event that will affect the priority of a thread. The entry
in the table determines the boost or penalty that will be
applied to the priority.

In addition to this the table provides the slice size that a
thread will be granted. Higher priorities are granted
smaller slices since they are typically reserved for
interactive threads. Lower priority threads are likely to
be CPU bound and so their efficiency is increased by
granting them a larger slice.

2.4 Linux

In January 2002 Linux received a totally rewritten
scheduler that was designed with many of the same
goals as ULE[5]. It features O(1) algorithms, CPU
affinity, per CPU run queues and locks and interactive
performance that is said to be on par with their earlier
scheduler.

This scheduler uses two priority array queues to
achieve fairness. After a task exhausts its slice it is
placed on an expired queue. There is an active queue
for tasks with slices. The scheduler removes tasks from
this queue in priority order. The scheduler switches

between the two queues as they are emptied. This
prevents high priority threads from starving lower
priority threads by forcing them onto the secondary
queue after they have run. This mechanism is covered
in more detail in the ULE section.

The priority is determined from a simple estcpu like
counter that is incremented when a task sleeps and
decremented when it runs. Slice sizes are dynamic
with larger slices given to tasks with higher
priorities(numerically lower). This is contrary to many
scheduler designs which give smaller slices to higher
priority tasks as they are likely to be interactive.
Lower priority threads are given larger slices so that
negative nice values will positively affect the CPU
time given to a thread.

3 The ULE Scheduler
The ULE scheduler was designed to address the
growing needs of FreeBSD on SMP/SMT platforms
and under heavy workloads. It supports CPU affinity
and has constant execution time regardless of the
number of threads. In addition to these primary
performance related goals, it also is careful to identify
interactive tasks and give them the lowest latency
response possible.

The core scheduling components include several
queues, two CPU load-balancing algorithms, an
interactivity scorer, a CPU usage estimator, a slice
calculator, and a priority calculator. These components
each are discussed in detail in the following sections.

3.1 Queue Mechanisms
Each CPU has a kseq (kse queue) structure, which is
named after a component in FreeBSD's new threading
architecture. Each kseq contains three arrays of run
queues that are indexed by bucketed priorities. Two
run queues are used to implement the interrupt, real-
time, and time sharing scheduling classes. The last is
for the idle class. In addition to these queues the kseq
also keeps track of load statistics and the current nice
window, which will be discussed in the section on nice
calculation.

Since ULE is an event driven scheduler there is no
periodic timer that adjusts thread priority to prevent
starvation. Fairness is implemented by keeping two
queues; current and next. Each thread that is granted a
slice is assigned to either the current queue or the next
queue. Threads are picked from the current queue in
priority order until the current queue is empty. At this
time the next and current queues are switched. This
guarantees that each thread will be given use of its slice
once every two queue switches regardless of priority.

A thread is assigned to a queue until it sleeps, or for the
duration of a slice. The base priority, slice size, and
interactivity score are recalculated each time a slice
expires. The thread is assigned to the current queue if
it is interactive or to the next queue otherwise.
Inserting interactive tasks onto the current queue and
giving them a higher priority results in a very low
latency response.

Interrupt and real-time threads are also always inserted
onto the current queue, as are threads which have had
their priorities raised to interrupt or real-time levels via
priority propagation. Without this, a non-interactive
thread on the next queue that is holding some
important resource, such as the giant lock, could
prevent a high priority thread from running.

The idle class has its own separate queue. This queue
is checked only when there are no other runnable tasks.
Idle tasks are always inserted onto this queue unless
they have had their priority raised via priority
propagation.

Traditionally in BSD a running thread is not on any run
queue. ULE partially preserves this behavior. The
running thread is not linked into a run queue, but its
load and nice settings are accounted for in the kseq.
Accounting for the load is important for kseq load-
balancing. It is desirable to distinguish between a kseq
that is busy running one thread and one that has no
load at all when picking the least loaded kseq in the
system.

3.2 Interactivity Scoring

The interactivity scoring mechanism has a substantial
affect on the responsiveness of the system. As a result
of this, it has the most impact on user experience. In
ULE the interactivity of a thread is determined using
its voluntary sleep time and run time. Interactive
threads typically have high sleep times as they wait for
user input. These sleeps are followed by short bursts
of CPU activity as they process the user's request.

Voluntary sleep time is used so that the scheduler may
more accurately model the intended behavior of the
application. If involuntary sleep time was taken into
consideration, a non-interactive task could achieve an
interactive score simply because it was not permitted to
run for a long time due to system load.

The voluntary sleep time is recorded by counting the
number of ticks that have passed between a sleep() and
wakeup() or while sleeping on a condition variable.
The run time is simply the number of ticks while the
thread is running.

An interactivity score is computed from the
relationship between the sleep time and run time. If
the sleep time exceeds the run time, the interactivity
score is the ratio of sleep to run time scaled to half the
interactive score range. If the run time exceeds the
sleep time, the ratio of run time to sleep time is scaled
to half of the range and then added to half the range.
This equation is illustrated in Figure 1 below.

Figure 1: Interactivity scoring algorithm

This produces scores in the lower half of the range for
threads whose sleep time exceeds their run time.
Scores in the upper half of the range are produced for
threads whose run time exceeds their sleep time.

These two numbers are not allowed to grow
unbounded. When the sum of the two reaches a
configurable limit, they are both reduced to a fraction
of their values. This preserves their relative sizes while
remembering only a fraction of the thread's past
behavior. This is important so that a thread which
changes from interactive to non-interactive will quickly
be discovered. This is actually quite a common case
since many processes are forked from shells that have
interactive scores.

Keeping too large or small of a history yields poor
interactive performance. Many interactive applications
exhibit bursty CPU usage. Some applications may
perform expensive actions as a result of user input. For
example, rendering an image or a web page. If the
application's history of waiting for user input was not
retained for long enough, it would immediately be
marked as non-interactive when it did some expensive
processing. If the time spent sleeping was remembered
for too long, a previously interactive process would be
allowed to abuse the system.

The scheduler uses the interactivity score to determine
whether or not a thread should be assigned to the
current queue when it becomes runnable. A threshold
on the interactivity score is set and threads which score
below this threshold are marked as interactive.

This threshold and the amount of history kept are two

of the most important factors in keeping the system
interactive under load. If the threshold is set too low,
expensive interactive applications such as graphical
editors, web browsers, and office suites would not be
marked as interactive. If it is set too high, compilers,
scientific applications, periodic tasks etc. would be
marked interactive.

3.3 Priority Calculator
The priority is used in ULE to indicate the order in
which threads on the run queue should be selected. It
is not used to implement fairness as it is in some other
schedulers. Only time sharing threads have calculated
priorities; the rest are assigned statically.

A fixed part of the priority range in FreeBSD is used
for time sharing threads. ULE uses the interactivity
score to derive the priority. After this the nice value is
added to the priority, which may actually lower the
priority in the case of negative nice values.

This generally gives interactive tasks a chance to run
sooner than non-interactive tasks when they are placed
on the same queue. It may, however, allow for non-
interactive negative nice processes to receive a better
priority than an interactive, yet still expensive, process.
This is desirable so that nice may have a positive effect
on response time as well as the distribution of CPU
time.

3.4 Nice Impact / Slice Calculator

One of the more difficult decisions in ULE was how to
properly deal with nice. This was difficult because, as
was previously discussed, ULE runs every thread at
least once per two queue switches and, given certain
conditions, some threads should not run at all. The
final implementation of nice involves a moving
window of nice values that are allowed slices.

ULE keeps track of the number of threads in the kseq
with each nice value. It also keeps the current
minimum nice value, that is, the least nice process. To
be compatible with the 4BSD scheduler ULE only
allows threads that have nice values within 20 of the
least nice thread to obtain slices. The remaining
threads receive a zero slice and are still inserted onto
the run queue. When they are selected to be run their
slice is reevaluated and then they are placed directly
onto the next queue.

The threads that are within the nice window are given a
slice value that is inversely proportional to the
difference between their nice value and the least nice
value currently recorded in the kseq. This gives nicer
threads smaller slices which very granularly and

m �
Maximum Interactive Score

2

i f sleep � run score �
m

sleep

run

else score �
m

run

sleep

�
m

deterministically defines the amount of CPU time
given to competing processes of varying nice values.

On x86, FreeBSD has a default HZ of 100. This leaves
us with a minimum slice value of 10ms. ULE chooses
140ms as the maximum slice value. Larger values are
impractical since they would unacceptably increase the
latency for non-interactive tasks. This means that the
least nice thread will receive 14 times the CPU of the
most nice thread that is still granted a slice. Since there
are 40 nice values, differences of less than three do not
impact the slice size although they do have a minimal
affect on priority.

Interactive tasks receive the minimum slice value.
This allows us to more quickly discover that an
interactive task is no longer interactive. The slice
value is meaningless for non-time-sharing threads.
Real-time and interrupt threads are allowed to run so
long as they are not preempted by a higher priority
real-time or interrupt thread. Idle threads are allowed
to run as long as there are no other runnable threads in
the system.

3.5 CPU Usage Estimator

The CPU usage estimator is used only for ps(1), top(1),
and similar tools. It is intended to show roughly how
much CPU a thread is currently using. Often summing
all of the CPU usage percentages in a system can yield
numbers over 100%. This is because the numbers are
smoothed over a short period of time.

ULE keeps track of the number of statistics clock ticks
that occurred within a sliding window of the thread's
execution time. The window grows up to one second
past a threshold and then is scaled back down again.
This process keeps the ratio of run time to sleep time
the same after scaling while making the actual
preserved count smaller. This is so that new ticks or
sleeps will have a greater impact than old behavior
since old behavior accounts for a smaller percent of the
total available history.

Keeping ULE O(1) required implementing a CPU
usage estimator that operated on an event driven basis.
Since a thread may go to sleep for a long time it will
have no regular event to keep its CPU usage up to date.
To account for this, a hook was added to the scheduler
API that is used whenever the CPU usage is read. This
hook adjusts the current tick window and tick counts to
keep the statistics sane.

There is a rate limiter on this hook to prevent rounding
errors from eroding away some of the CPU usage.
Before this limit was implemented, top(1) caused the
CPU usage to reach zero if it was constantly refreshed.

3.6 SMP

The primary goal of ULE on SMP is to prevent
unnecessary CPU migration while making good use of
available CPU resources. The notion of trying to
schedule threads onto the last CPU that they were run
on is commonly called CPU affinity. It is important to
balance the cost of migrating a CPU with the cost of
leaving a CPU idle.

Modern processors have various large caches that have
significant impacts on the performance of threads and
processes. CPU affinity is important because a thread
may still have data in the caches of the CPU that it last
ran on. When a thread migrates to a new CPU, not
only does it have to load this data into the cache of the
CPU that it is running on but cache lines on the
previous processor must be invalidated.

ULE supports two mechanisms for CPU load-
balancing. The first is a pull method, where an idle
CPU steals a thread from a non-idle CPU. The second
is a push method where a periodic task evaluates the
current load situation and evens it out. These two
mechanisms work in tandem to keep the CPUs evenly
balanced with a variety of workloads.

The other situation that ULE takes into consideration is
SMT (Symmetric Multi-Threading), or Hyper-
Threading as it is called on Intel Pentium4 CPUs. ULE
treats SMT as a specific case of NUMA (Non-Uniform
Memory Architecture). Based on information provided
by the machine dependent code, ULE is able to make
scheduling decisions where migrating between
different sets of CPUs have different costs and all
CPUs are not equal.

3.6.1 Pull CPU Migration
Pull CPU migration is designed to prevent any CPU
from idling. It is mostly useful in scenarios where you
have light or sporadic load, or in situations where
processes are starting and exiting very frequently.

With small numbers of processors it is less expensive
to lock the run queue of another processor and check it
for runnable threads than it is to idle. Because of this,
ULE simply implements CPU migration by checking
the queues of other CPUs for runnable threads when a
CPU idles.

All of the available kseqs are compared and the highest
priority thread is selected from the most loaded kseq.
Some alternate algorithms were considered, such as
selecting the thread that ran the least recently. Some
attempt at balancing the interactive and non-interactive

load was also made. Neither of these two approaches
showed any measurable gain in any test workloads.

This pull method ends up being effective for short
running, high turnover tasks such as batch compiles. It
is not quite as good at evenly distributing load for very
short lived threads as having a single run queue. The
other advantages of the scheduler should outweigh this
minor disadvantage.

3.6.2 Push CPU Migration
The pull model for CPU migration is not effective if all
CPUs have some work to do but they have an uneven
distribution of work. Without push migration, a system
with several long running compute-bound tasks could
end up with a severe imbalance. For example, it takes
just one thread using 100% of the CPU to prevent the
pull method from working even if the other processors
have many runnable threads.

To prevent this scenario ULE has a timeout that runs
twice a second. Each time it runs it picks the two most
unbalanced kseqs and migrates some threads to the
kseq with the lowest load. If the kseqs are imbalanced
by only one thread one thread is still moved from one
kseq to the next. This is useful to ensure total fairness
among processes.

Consider a two processor system with three compute-
bound processes. One thread has an affinity for the
first processor while the remaining two threads have an
affinity for the second. If we did not periodically move
one thread, the thread on the first processor would
complete twice as quickly as the threads on the second!

This timeout does not attempt to completely balance all
CPUs in the system. There are two advantages to this.
The first is that FreeBSD is likely to see more dual
processor systems than any other SMP configuration.
So the algorithm is simple and perfectly effective for
the common case.

On systems with more than two processors it will only
take slightly longer to balance the CPUs. This is
advantageous because CPU load is very rarely regular.
Attempts at over aggressive balancing are likely to ruin
caches and not resolve real load imbalances.

3.6.3 SMT Support
Symmetric Multi-Threading presents the scheduler
with a slight variation on SMP. Since the logical CPUs
in a SMT system share some resources they are not as
powerful as another physical CPU. To take full
advantage of SMT, the scheduler must be aware of
this.

ULE effectively takes advantage of the lack of penalty
for migrating threads to a CPU on the same core as
well as treating the logical CPUs as less capable than
true physical cores. ULE accomplishes this by
mapping multiple logical CPUs to the same kseq. This
ensures that in a system with multiple SMT capable
cores the load-balancing algorithms will prefer to
distribute load evenly across groups of CPUs. Since
logical CPUs on the same core typically share cache
and TLB resources a thread may have run on either
without paying any penalty for migration.

A more naive implementation would treat all of the
cores as equal. This could lead to many logical cores
on the same CPU being used while other physical
processors with more resources go unused.

SMT introduces a concept of non-uniform processors
into ULE which could be extended to support NUMA.
The concept of expressing the penalty for migration
through the use of separate queues could be further
developed to include a local and global load-balancing
policy. At the time of this writing, however, FreeBSD
does not support any true NUMA capable machines
and so this is left until such time that it does.

4 Late: A Workload Simulation Tool

Late was developed as a means for creating synthetic
CPU intensive workloads for use in analyzing
scheduler behavior. It collects a variety of metrics that
are useful when comparing scheduler implementations.

Late works by running and sleeping over a
configurable period. CPU intensive work is simulated
by using memcpy to transfer data between two fixed
buffers. There is a calibration loop that is run on an
idle system prior to any test that determines the number
of loops required to occupy the processor for a number
of microseconds. The sleep is simply implemented via
nanosleep(3).

The time required to execute each work period is
averaged out over the course of a run. The maximum
time is also kept. The difference between the requested
wakeup time from nanosleep(3) and the actual wakeup
time is also averaged. These statistics may optionally
be reported once a second along with the current
priority of the late process. At the end of each run,
CPU time, real time, sleep time, and %CPU are
displayed. The number of voluntary and involuntary
context switches are also displayed when they are
provided by the operating system.

Late has the ability to wait for a SIGUSR1 before
performing its configured task. This makes setting up

and coordinating several late processes easy to do from
a shell script. Once the late process is permitted to run
it may also set its nice value for nice related tests.
Setting the nice value from within the late process is a
good way to guarantee that all processes were given a
chance to proceed up to that point, which they may not
have if their priority was too low from the start.

Using these simple facilities late processes can be
combined to illustrate various scheduler behaviors by
simulating different workloads. While this tool proved
to be indispensable during development and for
producing benchmarks, it is no substitute for real user
experience.

5 Benchmarks

The benchmarks were all created using late to generate
synthetic workloads. Combinations of processes
simulating compute-bound tasks, batch compiles, vi
editors and web browsing were used. A mix of sleep
and run time for each simulated application was
determined through observing typical runs of these
processes on the test system. The benchmarks are
intended to give an indication of how a scheduler
might perform under load. Due to their artificial nature

they are not an absolute representation of real user
experience.

The system running the tests was a dual Athlon MP
1900+ with 512mb of memory. Three operating
systems were installed; FreeBSD 5.1-CURRENT with
the 4BSD and ULE schedulers, Mandrake Linux 9.1
with the 2.5.73 kernel, and Solaris/x86 9.1. The
second processor was disabled during each test.

To measure interactivity, all tests, except where noted,
ran 4 simulated vi sessions and 2 simulated Mozilla
sessions. This mix was chosen to emulate typical use
of a server or workstation machine with an
administrator or user present in a graphical
environment. This should be fairly representative
because shells and vi sessions exhibit similar CPU
usage characteristics and a graphical administration
tool, word processor, or image editor would be
represented by the Mozilla simulation. It is important
to have expensive interactive applications as well as
cheap ones to mimic the use of systems as
workstations.

Late keeps track of the time it took for the process to
wake up after a timer fired and the time taken to

Figure 2: This graph depicts the fluctuations in priority for a process with a constant run-time. The priorities
assigned relative to the other schedulers are meaningless. The function of priority and mechanisms of its
assignment, however, become evident when it is shown over time.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400

P
rio

rit
y

Seconds

Computed priority for a processes with 44% run-time

4BSD
ULE

Linux
Solaris

execute the workload. These two are summed together
to indicate the response time for user input in the
various interactive tasks.

For the interactivity graphs, the sum of the latency for
all simulated interactive processes is graphed. This is
not significantly different from the graph of any
individual process in most cases. It does, however,
widen the gap between the different schedulers in some
tests which leads to more easily interpreted results.

5.1 Priority Calculations
In this test a single late process was used. This process
runs for 40ms and then sleeps for 50, and thus
simulates 44% CPU utilization. Various methods were
used to collect the priority of this late process once a
second over a 6 minute run. It is important to note that
the relative priorities between schedulers are
meaningless. We are only concerned with the priority
of the process relative to the others in the system and
how it is adjusted with CPU usage. This is useful to
understand when analyzing the behavior of subsequent
tests. The results of this test are shown in figure 2
above.

The periodic decay loop is evident in the cyclic priority
assignments of the 4BSD scheduler. This is ensures
that even high priority processes will eventually get
CPU time by decaying them to a lower priority.
Solaris mimics this behavior even without a periodic
decay algorithm. It is likely that once the priority
reaches a certain value it is reduced significantly to
ensure that the process gets some time to execute and
thus mimicking the behavior of the 4BSD scheduler.

ULE and Linux do not base their fairness on priority
and so they tend to find a stable state. ULE starts at an
interactive priority as it inherited it from the shell and
then moves up to the priority determined by the CPU
utilization of the process. The priority in ULE
oscillates around a small range as the process runs and
sleeps but it averages out to a level line.

Linux steadily decays the priority until it hits the
minimum value. This means that this process, which is
using 44% of the CPU, reaches the best user priority
possible without a negative nice setting, after
approximately 60 seconds. Due to the simple way that
Linux tracks CPU utilization, given enough time the

Figure 3: This graph depicts the distribution of CPU granted vs. nice assignment. Two important things are
visible here. Firstly, the Solaris and 4BSD schedulers, which always run the highest priority task, give an non-
proportional amount of CPU time to nice -20 processes. Secondly, Linux has no cut-off after which processes
receive no CPU time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

-20 -15 -10 -5 0 5 10 15 20

P
er

ce
nt

 C
P

U

Nice value

Distribution of CPU among niced processes with 100% run-time

4BSD
ULE

Linux
Solaris

priority of a process with a very regular run-time will
reach the minimum priority if it runs less than it sleeps
and the maximum priority otherwise. This leads to
some pathological scenarios which are demonstrated
later.

5.2 Effects of Nice

The test in Figure 3 shows the distribution of CPU time
among several nice processes running simultaneously.
Nice values from 20 to -20 in steps of 5 were chosen to
illustrate a wide range of activity on the machine. The
results of these tests only illustrate differences in
behavior. There is no correct or well defined way to
handle nice values.

The processes in this test were never yielding the CPU.
This illustrates an important feature of all the
schedulers other than Linux. Processes that exceed
some nice threshold are not allowed to run at all when
there is other load on the system. This was most useful
before idle classes were introduced although it is still a
common practice to nice a process so that it will take
only idle cycles. Curiously, Linux does not have an
idle scheduling class either and so this class of

applications will always consume CPU time on a Linux
machine regardless of load.

Here both of the older schedulers show a clearer bias
for -20 processes than the newer two. This is probably
more of an artifact of how difficult it is for processes to
travel 20 priority points from their CPU usage than it is
any design goal. Deriving nice based CPU distribution
from the slice size yields a much more even slope in
both ULE and Linux.

This data looks somewhat irregular for ULE. The
processes that were past the cutoff point were still
given slightly less than 1% of the CPU. This is due to
an interaction between the simulated workload and
ULE's queuing mechanism. The nice late processes
were allowed to run for one slice after the un-nice
processes exited.

5.3 Interactivity Tests

Figures 4 and 5 illustrate the sum of the response time
for several interactive applications. These tests are
designed to illustrate how responsive the system
remains under several workloads. The synthetic
benchmarks do a reasonable job of pointing out what

Figure 4: This graph shows the sum of the response time for several interactive applications while the
system is running 2 batches of 30 parallel compilers. All of the schedulers do fairly well once the test has
been running for some time although they vary significantly in how long they take to stabilize.

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70

In
te

ra
ct

iv
e

re
sp

on
se

Time

Two rounds of 30 parallel simulated compilers

4BSD
ULE

Linux
Solaris

areas may be problematic. Subjective tests have
shown, however, that minor problems exposed by the
synthetic tests typically result in much worse
interactive behavior than is suggested.

The data for figure 4 was gathered during a test that
simulated two sets of 30 parallel compiles. The second
set was gated by the completion of all tests in the first
set as you would see with a typical build dependency.
This illustrates a more realistic workload than the
simulations involving nice processes. We can see that
all of the schedulers do fairly well once the compilers
have been running for a short while. This is due to the
time it takes the schedulers to learn the behavior of the
compiler processes.

The 4BSD scheduler has the worst spikes due to the
high priority inherited from the shell and the time it
takes to overcome that. ULE is hardly visible on this
graph because it has no spikes in interactive response
time and very regularly exhibits almost no latency
whatsoever. Solaris has only a few small bursts of
latency throughout the test. Linux has a few
significant peaks in the beginning and then settles out
and performs quite well. Only 4BSD and Solaris show
signs of the second batch of compilers starting near 45

seconds. Linux and ULE both distribute more of the
learned behavior from child processes to parents when
they exit.

Figure 5 was generated from data gathered during the
nice related test illustrated above. The nice processes
began running 3 seconds after the interactive tasks. In
this graph ULE is as responsive as it is under no load.
4BSD is generally responsive after the test is underway
but it suffers from several extreme spikes in latency at
the begining.

Solaris is the next most responsive after 4BSD.
Although an average response time of 2.5 seconds is
not acceptable for editor use, it would be enough to use
a shell to kill the offending processes. Linux has the
worst average latency in this test. This is probably due
to the effect of nice on the priority of the process and
the time slice granted. The negative nice processes
regularly exceed the priority of the interactive
processes and starve them for CPU. Even cheap,
extremely interactive processes, such as vi and shells,
suffer as a result.

All of the schedulers other than ULE exhibit such
extreme latency in responding to the interactive tasks

Figure 5: The nice test from Figure 3 was run while measuring interactive latency. All schedulers other than
ULE allow a few negative nice processes to have an impact on interactive response.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35

In
te

ra
ct

iv
e

re
sp

on
se

Time

Mixed nice load at 100% run-time per process

4BSD
ULE

Linux
Solaris

that they were not able to complete their runs within
the time constraints provided. This is why Linux and
Solaris seem to have lost several seconds from their
graph. ULE stands out as having clearly lower
response time and higher regularity than any other
scheduler in this test.

Figure 6 illustrates a pathological case for the Linux
scheduler which early versions of ULE fell victim to.
The setup is 5 nice -5 processes each attempting to use
25% of the CPU. This over-commits the CPU by 25%,
which should not be a problem. However, since Linux
gradually reduces the priority until it hits the minimum,
the nice value is enough to prevent even normal
interactive tasks from running with reasonable latency.
This was solved in ULE by using the interactivity
scoring algorithm presented above.

5.4 Performance

Development of ULE thus far has primarily focused on
the interactivity and 'nice' behavior of the scheduler.
Now that these algorithms are stabilizing, the focus is
shifting to performance tuning. An in-depth analysis
of ULE's performance is not within the scope of this
paper. However, some initial numbers can be obtained

from running the tests performed above with SMP
enabled kernels.

The parallel compile test completed four times faster
on ULE than it did on 4BSD. This is entirely due to
the effects of CPU affinity. This data will not be
representative of the results seen with real compilers
for several reasons. The synthetic load is entirely
memory bound and heavily impacted by the CPU
cache. Also, the amount of memory transferred is
small and so it is likely that many, if not all, of the late
processes can be held in the cache of the two CPUs
simultaneously. Late also rarely enters the kernel to do
more than a nanosleep(2). Real compilers often
contend on kernel resources which reduce the possible
parallelization and cause more frequent context
switches.

While late demonstrates what is probably close to the
best case for CPU affinity gains, early tests with
apache may give more realistic results. ULE bests
4BSD by 30% on apache throughput benchmarks on a
dual processor Xeon system. This is likely to be more
representative of the gains that can be expected from
CPU affinity in real applications.

Figure 6: A pathological case in the Linux scheduler is exposed. Priorities for nice -5 processes using 25%
of the CPU severely exceed the priority of a simulated vi session.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140

In
te

ra
ct

iv
e

re
sp

on
se

Time

Five nice -5 processes at 25% run-time per process

4BSD
ULE

Linux
Solaris

6 Conclusions

While the design of ULE primarily had performance-
related goals, it quickly became clear that the
architecture provided advantages in other areas as well.
Other attempts in the past, such as SVR4/Solaris, have
sacrificed interactive behavior for order one execution
time. ULE achieves both by borrowing a novel
approach from the 2.5 Linux scheduler and the
development of new algorithms surrounding that
mechanism.

The advantages in interactivity come from several key
differences over earlier schedulers. Firstly,
interactivity, priority, and slice size are separate
concepts in ULE. Other schedulers closely tie these
three parameters and are left with many side effects. In
ULE each one can be adjusted mostly independently
from the rest so that desirable behaviors may be
achieved. As a result of this, another one of the key
advantages of ULE is possible. Nice is viewed only as
a hint by the administrator for non-interactive jobs. As
such, the system remains completely responsive
despite the nice load. Livelock under nice load has
been a constant problem for UNIX schedulers which
ULE now avoids entirely.

While the benchmark results are encouraging, a
significant amount of time must be spent with ULE in
real environments before it will be accepted as the
default scheduler by the FreeBSD community.

7 Future Work

ULE was written over a weekend and refined over the
course of a year. The 4BSD scheduler, by
comparison, has seen a decade of refinement in the
FreeBSD project alone. Hopefully, much of that
refinement was captured in the new design. Despite
the differences in algorithms, ULE should represent
another step in the evolution of the UNIX scheduler.
Aside from further tuning for a wider variety of
workloads, ULE has some areas that are still in need of
more analysis and development.

The SMP load-balancing algorithms need to be studied
in at least as much detail as the interactivity algorithms
have been. They are currently quite primitive,
although they may stay that way. Attempts at making
them more intelligent have only led to minor
improvements in some areas to the extreme detriment
of others. This topic is worthy of a paper on its own.

Non-uniform CPU architectures are starting to become
popular. Effective support for this in ULE will provide
many users with a more compelling reason to switch.
At this time enabling Hyper-Threading logical cores

leads to worse performance than having them disabled.
Recent changes to ULE close that gap but more work is
required.

Finally, late has been a very useful tool for scheduler
development. However, there are several behaviors of
real applications that it fails to capture. As a result of
this, its effectiveness in comparing schedulers is
reduced. Adding support for variable and bursty
workloads as would be seen by real users seems to be
the next logical step. After this, giving it multi-
threading capabilities would allow us to analyze
methods of scheduling multiple threads within the
same process.

Acknowledgments

Thank you Dave Anderson, Jagdeep Johal, Mike
Karels, Jonathan Mini, Donn Seeley, and Donya
Shirzad for providing feedback on this paper. Thanks
to Matthew Dillon for his review of the early code and
Steve Kargl and FreeBSD-current for their constant
testing. Also, thank you Donya for putting up with my
long nights writing this paper and hacking on
FreeBSD.

Availability
ULE is available via the FreeBSD source repository in
any branch after 5.0. Please refer to
http://www.FreeBSD.org to obtain the source or an
installable FreeBSD image.

Late is available via the FreeBSD source repository in
any branch after 5.1. The test scripts are available
along with late.

References

[1] M. J. Bach, “The Design of the UNIX Operating
System”, Bell Telephone Laboratories, Inc. (1986)

[2] M. McKusick, K. Bostic, M. Karels, & J.
Quarterman, “The Design and Implementation of
the 4.4BSD Operating System”, Addison Wesley
Publishing Company (1996)

[3] U. Vahalia, “UNIX Internals The New frontiers”,
Prentice Hall (1996)

[4] J. Mauro, R. McDougall, “Solaris Internals Core
Kernel Architecture”, Sun Microsystems, Inc.
(2001)

[5]I. Molnar, Linux O(1) Scheduler design document,
http://lxr.linux.no/source/Documentation/sched-
design.txt?v=2.5.56

