Experimental Performability Evaluation of Middleware
for Large-Scale Distributed Systems*

Luis Soares
University of Minho
Informatics Department
Campus de Gualtar, 4710 Braga, Portugal
losoares@di.uminho.pt

Abstract

We present a tool for experimental evaluation of dis-
tributed software that enables performability tests to
be incorporated in the agile development of complex
middleware systems. The proposed approach combines
simulation with the profiling of key components and is
achieved by an extension to a standard simulation ker-
nel and reflection, thus leveraging existing simulation
models and easing the integration of existing compo-
nents. The evaluation of database replication middle-
ware in large-scale systems is used to illustrate the ap-
proach.

1. Introduction

Middleware plays an increasingly important role in
current information systems as an ever increasing share
of the complexity of large clusters and grid comput-
ing systems is encapsulated in a diversity of standard
middleware components. Recently, agile development
methodologies [8] have been attracting software engi-
neers to focus on modelling and automated testing
of compliance. Unit testing means that development
starts by producing auxiliary test components directly
from the model which are used, as the software product
evolves, to ensure that it matches initial modelling.

This methodology is however hard to apply to mid-
dleware, where initial modelling focus is on performa-
bility of the system and not on independent correctness
of each component. Experimental evaluation of such
systems for comparison with analytical model is thus
confined to testing with the real systems. However,
real tests are costly to setup and run and often depend
on the availability of the complete target system and
realistic workloads and fault-loads. This is especially
difficult when the middleware targets large clusters or
grid systems, and precludes incremental development

*Partially funded by FCT,
(POSI/CHS/41285/2001).

project StrongRep

José Pereira
University of Minho
Informatics Department
Campus de Gualtar, 4710 Braga, Portugal
jop@di.uminho.pt

and early testing of individual components. Although
often used, toy applications and micro-benchmarks are
unable to disclose the subtle interactions of the mid-
dleware with application semantics and dynamics (e.g.
flow control issues and hot-spots) and with the envi-
ronment (e.g. fault scenarios) as well as introduce sig-
nificant probe effect.

In this paper we propose that the agile development
of complex middleware with performability concerns
can be achieved by running selected components with
simulation models of realistic environments, workloads,
and fault-loads by means of a centralized simulation
kernel [4]. This approach is enabled by a small exten-
sion to the Scalable Simulation Framework (SSF) spec-
ification that greatly simplifies interfacing real imple-
mentations within simulation models while accurately
reproducing the timing behavior of real systems. The
evaluation of database replication middleware in large-
scale systems is used to illustrate the approach.

2. Simulation Framework

In this section, we present the design and implemen-
tation of an event-driven simulation framework that al-
lows combining real implementations with simulation
models. In an event-driven simulation, time is incre-
mented only by scheduling events with non-zero de-
lays. The challenge when mixing real and simulated
components is to ensure that the time actually spent
executing real code is accurately reflected in simula-
tion time. Thus this approach goes beyond the simple
reuse of real code for simulation models and is able to
reproduce timing properties of real systems [4].

In detail, this implies starting a profiling timer
whenever real code is entered to account for native
execution time. When execution re-enters simulation
code, the profiling timer is stopped and the elapsed
time used as an offset for all events scheduled. Doing
this in an ad hoc fashion is however a tedious and error
prone task, as it must be performed for every inter-
action between real and simulation code thus forcing

changes to existing simulation models.

In this paper we propose a simulation kernel that
eases mixing simulated and real components by au-
tomating the accounting of real time. Our proposal ex-
tends the Scalable Simulation Framework (SSF) spec-
ification for event-driven simulation [6]. In the SSF in-
terface, entities encapsulate passive state. Actions on
state are encapsulated by processes. Actions on dif-
ferent entities are synchronized by exchanging events,
routed by binding outgoing channels to incoming chan-
nels. Delays are imposed on individual events, but also
on channels and channel bindings, allowing the system
to partition the simulation and take advantage of par-
allel processing. Multiple implementations of the SSF
interface are available in C++ [1] and Java [3].

The fundamental extension of the SSF interface in
our implementation (MinhaSSF) is very simple and
consists in being able to designate selected entities
as real-time entities by overriding the isRealTime ()
method. A process associated with such entity becomes
a real-time process and behaves as follows: The profil-
ing clock is started when the process reads an event
from an incoming channel and stopped whenever the
process writes an event to an outgoing channel. Code
executed between writing an event and reading another
event is therefore not accounted for. After stopping the
profiling clock, the real-time process is not rescheduled
until simulation time has advanced by as much as the
previous elapsed real delay. The event is actually writ-
ten to the channel only after simulation time has catch-
up.

The second extension to the SSF interface is a pair
dynamic proxy classes using Java reflection. These can
be used to completely separate implementation from
simulation models and APIs. The first can be used to
transform an invocation made by real code to a pair
of event write and read operations, that transparently
interface with simulation code. The second does the re-
verse operation, listening for events, invoking real code
and replying using a second channel.

The role of dynamic proxies is better understood
with an example. Consider a real component Client
that expects a service implementing a given interface
Server. One wants to run the Client implementation
using a simulation model of Server, named ServerSim.

Figure 1 shows how this is achieved. During the ini-
tialization of a Driver component, a Proxy instance is
created for the desired interface Server. The proxy ob-
ject provides channel end-points that can be connected
to the ServerSim to convey invocations and replies. A
reference to the proxy object is then provided to the
Client instance. This completes the setup phase.

Accounting of real time starts and action of the
Driver component is to run the Client instance. This
will eventually call into the Proxy object which sus-
pends accounting of real time, as it writes an Event to
a channel. It then blocks waiting for the reply. When

| <<create> >

-~ 1: Proxy(Serer.class) Prox
< Z<createss T T
2: cliemioroz) o [T Clem :
|
O et |
U | |
T 3. runf) » r

2.1 method(y

suspended during proxy
invocation.

[Accounting of real time j

I
I
I
I
I
I
I
I
|
T
I
I
I
1.1.1: RephEwent() J
I
I
I
I
I

Figure 1. Real code (dark grey) calls a simu-
lated service (white) using a proxy (light grey).
Horizontal dotted line marks end of initializa-
tion.

it arrives, accounting of time is resumed and control is
returned to the Client implementation.

Finally, extensions required for running real time
components can be implemented in existing SSF im-
plementations as this boils down to taking into con-
sideration real time processes whenever entering the
simulation runtime and minor changes to the sched-
uler. A key issue is the profiling clock used to measure
real-time. It is important that the method used allows
a fine-grained measurement of time by one operating
system thread even if other concurrent threads are run-
ning and can thus preempt the desired thread. This
was achieved in the Linux operating system using the
perfctr patch.

3. Case Study

In this section we describe the application of the
proposed approach to the development of a repli-
cated database system. The replication protocol im-
plemented [10] uses optimistic concurrency control and
a group communication protocol for distributed certifi-
cation. Transactions that are found to conflict or trans-
actions that are executing in replicas that get excluded
from the group are aborted to ensure 1-copy serializ-
ability. We adopt as performability criterion the proba-
bility that a transaction is committed in the distributed
environment within a fixed delay of the corresponding
centralized multi-processor system. We consider only
transient network outages.

The system architecture used for experimenting is
depicted in Figure 2. The MinhaSSF runtime under-
lies all components, which also make use of logging
facilities. These are aware of the simulation and when
appropriate suspend accounting of real time. On the
top of the stack lies a OLTP workload generator based

Logging

Load

——| Replication | ——

c
l' 'u: ll

Group
‘ommunication

o

SSFNet

MinhaSSF

Figure 2. Real code (dark gray) and simulation
code (white) interaction in the replication pro-
tocol stack.

on the the industry standard TPC-C[15] benchmark.
The generator is comprised of a set of histograms and
distribution functions, which models the database, and
a SQL parser. The parser analyses the statements and
translates them into result sets following to the his-
tograms and distributions. Near the top of the stack
lies the database engine model. It recreates a database
behavior by modelling the execution of transactions,
which consist of a sequence of reads, writes and pro-
cessing operations, and compete for CPU, storage and
locks.

Events in the database are intercepted by the repli-
cation protocol for propagation. The replication pro-
tocol used [10], relies on an atomic multicast primi-
tive which guarantees ordered delivery of messages to
ensure that all replicas accept the same sequence of
transactions. This component has already been imple-
mented in real code and is being tested. This is also the
case with the group communication toolkit which pro-
vides a view synchronous and totally ordered multicast
primitive. The network used to connect the entities
is simulated and makes use of the SSFNet toolkit [7],
which is a previously available and validated network
simulation that scales to very large models. This is also
the component where faults are injected by simulating
either random or bursty packet loss.

There are two points of interaction between simu-
lation and real execution runtimes. The first one lies
at the network level. Therefore, whenever the group
communication protocol propagates messages, they are
sent into the simulated network. Whenever a message
arrives from the network, it is enqueued in the list of
events to be processed by the group communication
layer. The second interaction happens at the database
layer. Whenever the replication protocol instructs the
database to apply the changes it performs a call to the
simulation runtime.

The usefulness of the resulting setup for experimen-
tal evaluation of performability, early and often as im-
plementations of replication and group communication
protocols evolve, is tightly related to the ratio of time
required to run the simulation in a single host to the

10
|

Real vs Sim
4 6
1 1
D\
\
N

0 1000 2000 3000 4000

Clients

Figure 3. Ratio of time required to run the dis-
tributed database simulation vs. simulated
time interval (9 servers/increasing number of
clients).

simulated time interval. Figure 3 shows that a cluster
of 9 servers and sufficient client resources to open 4000
client sessions generating up to 12000 tpm (i.e. an ad-
ditional cluster) can be simulated in less than 8x the
simulated time interval. When simulating 3 clusters
of 3 servers interconnected by a WAN, which would be
substantially harder and more costly to setup in reality,
only a small additional delay is incurred.

The experimental evaluation also allowed an analy-
sis of the system when facing packet losses. One was
able to assess the processing overhead introduced by
retransmission of the lost packets, as well as to dis-
cover which transactions were less tolerant to latency
variability. These transactions exhibited a higher prob-
ability of ending up as aborted.

Portions of and previous versions of the proposed
setup have been used to gather results on a variety of
components. Namely, on consensus protocols for large
clusters [11], optimistic total order protocols[13] and
replication protocols [14].

4. Related Work

There is a plethora of tools and methodologies for
experimental assessment of dependable distributed sys-
tems. In this section we compare them to our approach
by considering the aspects relevant for agile develop-
ment of middleware components with performability
concerns.

The centralized simulation approach used in Min-
haSSF was first used in the CESIUM framework [4],
in which implementations of communication protocols
are tested for real-time properties. By running mul-
tiple instances of the implementation in a single ad-
dress space within a discrete-event simulation model of
the environment, centralized observation and manipu-
lation of state is allowed with reduced interference. By
implementing centralized simulation within a standard
simulation interface, MinhaSSF enables that existing
simulation models such as SSFNet are leveraged. The
automation of management of real and simulated time-
lines, makes it easy to incrementally replace simulated

components with their implementations as these be-
come available.

The second approach is provided by tools to setup
and control distributed tests and benchmarks such as
DART [9]. Distributed testing can be performed di-
rectly in real testbeds for wide area networks such as
PlanetLab [2]. Tools such as Facilita Forecast add to
a distributed testing scenario the generation of repre-
sentative loads, enabling load and stress testing. A
large share of the complexity of tools is directly re-
lated with the distributed nature of the system under
study, namely, in performing consistent global obser-
vation of system state and properties while minimiz-
ing interference. This is even more involved when one
wants to observe internal variables which are relevant
for performability, such as the message stability time
in a group communication protocol.

Finally, fine grained simulation of computer systems
can also be used to create highly realistic although
small scale testbeds. Namely, SimOS [12] simulates
in detail computer systems allowing the execution of
COTS binary-only operating systems and application
software with unparallelled observability and lack of in-
terference. On the other hand, the detail means that
substantial computing resources are required to run re-
alistic loads and that full implementations are required
for testing. This can be improved by directly running
operating system and application code in the host pro-
cessor. This is the approach of FAUMachine [5], which
additionally allows for fault injection for dependability
evaluation. Nevertheless, full implementations are still
required for testing.

5. Discussion

Testing tools and techniques have recently been
the subject of renewed attention in the context of
agile software development methodologies that advo-
cate testing early and often. Namely, these advocate
that the design process should include an executable
model and experimental evaluation. Implementation
proceeds by incrementally replacing components of the
model with implementations, that can be immediately
tested within the model. Test harnesses built early in
the development process are then to be used during the
entire product development life-cycle.

Experimental tools and methodologies must there-
fore allow the evaluation of the aspects of the model
and the implementation that are most relevant for suc-
cess and incremental transition from modelling to im-
plementation and automation of both tests and anal-
ysis. This is normally achieved by using unit testing
to evaluate correctness regarding an abstract specifica-
tion.

This approach is however of limited applicability
when performance and dependability are key aspects of
the model, as happens with middleware for large scale

distributed systems such as large cluster and grid com-
puting infrastructure. A popular approach to evaluate
designs, and specifically in the study of performabil-
ity of very large and complex systems, is the develop-
ment of simulation models. Namely, the development
of the network infrastructure, protocols, and their ap-
plications is based on tools such as ns-2 and SSFNet.
In this paper we advocate leveraging such simula-
tion models and tools to enable testing early and often
and thus an agile methodology for the development of
middleware components. Such components play an in-
creasing important role in the performability aspects
of current distributed computing systems. Results ob-
tained show that this is a cost effective approach for a
realistic evaluating of very large distributed systems.

References

[1] iSSF homepage. 2003.
http://www.crhc.uiuc.edu/ “jasonliu/projects/issf/.

[2] Planetlab. http://www.planet-lab.org.

3] SSF research network.
http://www.ssfnet.org/homePage.html.

[4] G. Alvarez and F. Cristian. Applying simulation to the
design and performance evaluation of fault-tolerant
systems. In 16th Symp. on Reliable Distributed Sys-
tems (SRDS’97), 1997.

[5] K. Buchacker and V. Sieh. Framework for testing the
fault-tolerance of systems including os and network as-
pects. In In Proc. High-Assurance System Engineering
Symp. (HASE’01), 2001.

[6] J. Cowie. Scalable Simulation Framework API Refer-
ence Manual, 1999.

[7] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski.
Towards realistic million-node internet simulation. In
Intl. Conf. Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’99), 1999.

[8] B. et. al. Manif. for agile s/w development, 2001.

[9] F. L.-S. Network. Dart: Distributed automated re-
gression testing.

[10] F. Pedone. The Database State Machine and Group
Communication Issues. PhD thesis, 1999.

[11] J. Pereira and R. Oliveira. The mutable consensus pro-
tocol. In Symp. Reliable Distributed Systems (SRDS),
2004.

[12] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Her-
rod. Using the simos machine simulator to study com-
plex computer systems. Modeling and Computer Sim-
ulation, 1997.

[13] A. Sousa, J. Pereira, F. Moura, and R.Oliveira. Op-
timistic total order in wide area networks. In Symp.
Reliable Distributed Systems (SRDS), 2002.

[14] A. Sousa, J. Pereira, L. Soares, A. C. Jr., L. Rocha,
R. Oliveira, and F. Moura. Testing the dependabil-
ity and performance of group communication based
database replication protocols. In Intl. Conf. Depend-
able Systems and Networks (DSN), 2005.

[15] T. P. P. C. (TPC). TPC Benchmark™ C standard
specification revision 5.0, Feb. 2001.

