Bounded Version Vectors

Jos Bacelar Almeid&, Paulo ®rgio Almeida, and Carlos Baquero

Departamento de Inforatica, Universidade do Minho
{jba,psa,cbm }@di.uminho.pt

Abstract. Version vectors play a central role in update tracking under optimistic
distributed systems, allowing the detection of obsolete or inconsistent versions
of replicated data. Version vectors do not have a bounded representation; they
are based on integer counters that grow indefinitely as updates occur. Existing
approaches to this problem are scarce; the mechanisms proposed are either un-
bounded or operate only under specific settings. This paper examines version vec-
tors as a mechanism for data causality tracking and clarifies their role with respect
to vector clocks. Then, it introduces bounded stamps and proves them to be a cor-
rect alternative to integer counters in version vectors. The resulting mechanism,
bounded version vectors, represents the first bounded solution to data causality
tracking between replicas subject to local updates and pairwise symmetrical syn-
chronization.

Keywords: Replication, causality, version vectors, update tracking, bounded
state.

1 Introduction

Optimistic replication is a critical technology in distributed systems, in particular when
improving availability of database systems and adding support to mobility and parti-
tioned operation [18]. Under optimistic replication, data replicas can evolve autonomously
by incorporation new updates into their state. Thus, when contact can be established
between two or more replicas, mutual consistency must be evaluated and potential di-
vergence detected.

The classic mechanism for assessing divergence between mutable replicas is pro-
vided byversion vectorsvhich, since their introduction by Parker et al. [14], have been
one of the cornerstones of optimistic data management. Version vectors associate to
each replica a vector of integer counters that keeps track of the last update that is known
to have been originated in every other replica and in the replica itself. The mechanism
is simple and intuitive but requires a state of unbounded size, since each counter in the
vector can grow indefinitely.

The potential existence of a bounded substitute to version vectors has been over-
looked by the community. A possible cause is a frequent confusion of the roles played
by version vectorandvector clockge.g. [17, 18]), that have the same representation

* Partially supported by FCT project POSI/ICHS/44304/2002.

[14,5, 13], together with the existence of a minimality result by Charron-Bost [4], stat-
ing that vector clocks are the most concise characterization of causality among process
events.

In this article we show that a bounded solution is possible for the problem addressed
by version vectors: the detection of mutual inconsistency between replicas subject to
local updates and pairwise symmetrical synchronization. We present a mechanism,
bounded stampshat can be used to replace integer counters in version vectors, stress-
ing that the minimality result that precludes bounded vector clocks does not apply to
version vectors.

1.1 On version vectors and vector clocks

Asynchronous distributed systems track causality and logical time among communicat-
ing processes by means of several mechanisms [12, 19], in particular vector clocks [5,
13].

While being structurally equivalent to version vectors, vector clocks serve a very
distinct purpose. Vector clocks track causality by establishing a strict partial order on the
events of processes that communicate by message passing, and are known to be the most
concise solution to this problem. Vector clocks, being a vector of integer counters, are
unbounded in size, but so is the number of events that must be ordered and timestamped
by them. In shortyector clocks order an unlimited number of events occurring in a
given number of processes

If we consider the role of version vectors, data causality, there is always a limit to
the number of possible relations that can be established on the set of replicas. This limit
is independent on the number of update events that are considered on any given run. For
example, in a two replica systefn,, r,} only four cases can occuf, = ry, rq < T,

Ty, > 1, andr, || 7. If the two replicas are already divergent the inclusiomeiv
update events on any of the replicas does not change their mutual divergence and the
corresponding relation between them. In shegtsion vectors order a given number of
replicas, according to an unlimited number of update events

The existence of a limited number of relations is a necessary but not sufficient con-
dition for the existence of a bounded characterization mechanism. A relation, which is a
global abstraction, must be encoded and computed through local operations on replica
pairs without the need for a global view. This is one of the important properties of
version vectors.

2 Data causality and version vectors

Data causality on a set of replicas can be assessed via set inclusion of the sets of update
events known to each replica. Data causality is the pre-order defined by:

Ta Srb iff UagUb

beingU, andU, the sets of update events (globally unique events), known to replicas
rq andry.

To

T1

T2

T3

Operationinit():

(Vi) =o.
OperationUpd(a):
ks VE41 ifi=k=ua;
V; otherwise.

OperationSync(a, b):
(V&) = (Vi) = VauVs.

Fig. 1. Semantics of version vector operations.

When tracking data causality with version vectors infameplica system, one as-
sociates to each repliea € {ro,...,rn_1} @ stampV; which is a vector ofV integer
counters. The order on version vectors is the standard pointwise (coordinatewise) order:

Vo, <vV, iff Yk VE< VP

whereV¥ denotes compone#tof vectorV,.
The operations on version vectors, formally presented in Fig. 1, are as follows:

Initialization (Init()) establishes the initial system state. All vectors are initialized
with zeroes.

Update (Upd(a)) an update event in replieg increments/¢.
Synchronization (Sync(a, b)) synchronization of, andr, is achieved by taking the
pointwise join (greatest element) &f, andV,,.

This classic mechanism encodes data causality because comparing version vectors
gives the same result as comparing sets of known update events. For all runs and replicas
T, andry:

Ta S Ty iff Ua g Ub iff Va SV Vb.

[[0000] o [M000]o [M100] e [@100] 9 [2100]

[@000] o [[@100] i [M100]- : 5 [2100] e [2200]
[@000]- : : : : 0 [2100]
[@000]- : : : : [Z100]-&[2100] i [2100]

Fig. 2. Version Vectors: example run, depicting sliceounters by a boxed digit.

Figure 2 shows a run with version vectors in a four replica system. Updates are

depicted by aé” and synchronization by twos” connected by a line.

Operationinit():

(S;) =0.
OperationUpd(0):
(S:) = S, +1 ifi= O.;
S; otherwise.

OperationSync(a, b):
(Sa) = (Sb)" = Sa LUSs.

Fig. 3. VVS semantics for slice 0.

2.1 \ersion vector slices

All operations over version vectors exhibit a pointwise nature: a given vector position
is only compared or updated to the same position in other vectors, resulting from all
information about updates originated in repligabeing stored in componehtof each
version vector. This allows a decomposition of the replicated systemNn&lices
where each slice represents the updates that were originated in a given replica. Slice
for a N replica system is made up of t#8 component of each version vector:

(Vi V).

This means that data causalityMreplicas can be encoded by the concatenation of
the representation for each of theslices. It also means that it is enough to concentrate
on a subproblem: encoding the distributed knowledge about a single source of updates,
and the corresponding version vector slice (VVS). The source of updates increments
its counter and all other replicas keep potentially outdated copies of that counter; this
subproblem amounts to storing a distributed representation of a total order.

For the remainder of the paper we will concentrate, for notational convenience and
without loss of generality, on finding a bounded representation for slice 0. Figure 3
presents the semantics of version vectors restricted to slice 0; in the run presented in
Fig. 2 this slice is shown using boxed counters.

3 Informal presentation

We now give an informal presentation of the mechanism and give some intuition of
how it works and how it accomplishes its purpose. Having shown that it is enough to
concentrate on a subproblem (a single source of updates) and the corresponding slice of
version vectors, we now present the stamp that will replace, in each replica, the integer
counter of the corresponding version vector.

For problem sizeV, i.e. assumingV replicas, withry the “primary” where up-
dates take place and,...,ry_1 the “secondary” replicas, we represent a stamp by
something like

cbha
ca
a
ca

To

T2

T3

a b a ba cba cba [bc bc
a a ba ba ba ca ca bc
o] o O O L] O
a a a a a c c c
a a a a cha c c c
[a] ba cha bc
a ba ca bc

a a 1 la ' B c
a a ca ca
a cha

a .. |ca

a c

a c

a cha cha cha c

a ¥ ba y [ca ca y|ca

a a a c Cc

a cha ca © c

Fig. 4. Bounded stamps: example run.

It has a representation of bounded size, as it consisté aiws, each with at mosy
symbols (letters here), taken from a finite gg¢. An example run consisting of four
replicas is presented in Fig. 4.

A stamp is, in abstract, a vector of totally ordered sets. Each aitltemponents
(rows in our notation) represents a total order, with the greatest element on the left (the
first row above means> b > a). In a stamp for replica;, rowi (i € {0,... N —1})
is what we call thearincipal order (displayed with a gray background), while the other
rows are thecached orders(Thus, the stamp above would belong to repligg The
cached order in row represents the principal order of replicat some point in time,
propagated to replica(either directly or indirectly through several synchronizations).

The greatest element of the principal order (on the left, depicted in bold over gray) is
what we call theprincipal elementlt represents the most recent update (in the primary)
known by the replica. In a representation using an infinite total ordered set instead of
L nothing more would be needed. This element can be thought of as “corresponding”
to the value of the integer counter in version vectors.

The left column in a stamp (depicted in bold) is what we callghacipal vector
it is made up of the greatest element of each order (row). It represents the most recent
local knowledge about the principal element of each replica (including itself).

In a stamp, there is a relationship between the principal order and the principal
vector: the elements in the principal vector are the same ones as in the principal order.
In other words, the set of elements in the principal vector is ordered according to the
principal order.

3.1 Comparison and synchronization as well defined local operations

As we will show below, the mechanism is able to compare two stamps by a local oper-
ation on the respective principal orders. No global knowledge is used: not even a global
order on the set of symbol8y is assumed. For comparison purpoggs is simply

an unordered set, with elements that are ordered differently in different stamps. As an
example, the comparison of

bc cbha

ca . ca
To =|¢ with =g

c ca

involves looking atb ¢ andc a, and givesg > r;.

When synchronizing two stamps, in the positions of the two principal elements, the
resulting value will be the maximum of the two principal elements; the rest of the result-
ing principal vector will be the pointwise maximum of the respective values. The com-
parisons are performed according to the principal orders of the two stamps involved.

It is important to notice that, in general, it is not possible to take two arbitrary
total orders and merge them into a new total order. As such, it could be thought that
computing the maximum as mentioned above is ill defined. As we will show, several
properties of the model can be exploited that make these operations indeed possible and
well defined. We will also show that it is possible to totally order the elements in the
resulting principal vector, i.e. to obtain a new principal order.

3.2 Garbage collection for symbol reuse

The boundedness of the mechanism is only possible through symbol reuse. When an
update operation is performed, instead of incrementing an integer counter, some symbol
is chosen to become the new principal element. By using a finite set of syrikols

an update will eventually reuse a symbol that was already used in the past to represent
some previous update that has been synchronized with other replicas.

However, by reusing symbols, an obvious problem arises that needs to be addressed:
the symbol reuse cannot compromise the well-definedness of the comparison operations
described above. As an example, it would not be acceptable that, due to reuse, the
principal orders of two stamps end up beiady ¢ andc a, as it would not be possible
to overcome the ambiguity between> b > ¢ andc > a and to infer which one is the
greatest stamp.

To address the problem, the mechanism implements a distributed “garbage collec-
tion” of symbols. This is accomplished through the extra information in the cached
orders. As we will show, any element in the principal order/vector of any replica is
also present in the primary replica (in some principal or cached order). This is the key
property towards symbol reuse: when an update is performed, any symbol which is not
present in the primary replica is considered “garbage” and can be (re)used for the new
principal element.

As an example, in Fig. 4, when the final update occurs, sytbah be used for the
new principal element because it is not present in the primary replica:

Notice that the scheme only assures thdes not occur in the principal orders/vectors.
In this examplé occurs in some cached orders of replicas

cbha cha

ca ca
L= and T2 = ¢

ca c

but this is not a problem because those elements will not be used in comparisons; the
“old” b will not be confused with the “news.

3.3 Synopsis of formal presentation

The formal presentation and proof of correctness will make use of an unbounded mech-
anism which we call theounter mode principal vecto(€MPV). This auxiliary mech-
anism represents what the evolution of the principal vector would be if we could afford
to use integer counters. The mechanism makes use of the total order on natural numbers
and does not encode orders locally. In Fig. 5 we present part of the run in Fig. 4 using
the counter mode mechanism.

The bulk of the proof consists in establishing several properties of the CMPV model
that allow the relevant comparison operations to be computed in a well-defined way
using only local information. The key idea is that, exploiting these properties, bounded
stamps can be seen as an encoding of CMPV using a finitgsewhere the principal
orders are used to encode the relevant order information.

4 Counter Mode Principal Vectors

Version Vector Slices (VVS) rely on an unbounded totally ordered set — the natural
numbers. Their unbounded nature is actually a consequence of adopting a predeter-
mined order relation (and hence globally known) to capture data causality among repli-
cas. To overcome this, we enrich VVS in a way that order judgments become, in a sense,
local to each replica. In this way, it will be possible to dynamically encode the causality
order and open the perspective of bounding the “counters” domain.

For a replica index:, its stamp in the CMPV model is denoted 6y and defined
as the tupl€a, a) wherea is a vector of integers with siz&¥ — theprincipal vectorfor
C, (see Fig. 5). The value in positignof vectora is denoted by* and represents the
knowledge of stamii, concerning the most recent update known by st&imppThe
element® plays a central role since it holds,’s view about the more recent update —
this is essentially the information contained in VVS counters and we call iriheipal
elemenfor stampC,.

(o] T[12] [12] [2 2
7'00001.101

1o 0 0 0 0

0 0 0 0 2

(0] (1] 2
|0 1 |2
o 0 0

0 0 2

(0] (2]
|0 .12
o 2

0 2

(0] 2 2 (2]

0 1 2 2
"0 1ol 0 2

0 2 2 2

Fig. 5. Counter mode principal vectors.

Figure 6 defines the semantics of the operations in the CMPV model. Symbol
denotes the join operation under integer ordering (i.e. taking the maximum element).
Notice that the order information is only required to perform the synchronization op-
eration. Moreover, comparisons are always between principal elements or pointwise
(between the same position in two principal vectors). Occasionally, it will be conve-
nient to writea U b for the result of the synchronization on stanfpsandC, (i.e. the
principal vector of one of these stamps after synchronization).

A trace consists of a sequence of operations starting \ith() and followed by
an arbitrary number of updates and synchronizations. In the remainder, when stating
properties in the CMPV, we will leave implicit that they only refer to reachable states,
i.e. states that result from some trace of operations. Induction over the traces is the
fundamental tool to prove invariance properties, as the following simple facts about
CMPV.

Proposition 1. For every replicaC,, C, and indexk,
1. ab < bb,
2. 3% <09,
3. ak < a%,

Proof. Simple induction on the length of traces.

Given stamp<£, andC, we define theidata causality order under CMPYK¢) as
the comparison of their principal elements:

Co<c(C iff a%< b.

Operationinit():

(¥ =o.
OperationUpd(0):
(a*) = a:+1 ifa:l?:(l;
a otherwise.

OperationSync(a, b):

o . a®Ub® if k € {a,b};
a = b =
(a7 = (%) {akl_lbk otherwise.

Fig. 6. Semantics of operations in CMPV.

By Fig. 6 it can be seen that the computation of principal elements only depends
upon principal elements. Moreover, if we restrict the impact of the operations to the
principal element we recover the VVS semantics (Figure 3). This observation leads
immediately to the correctness of CMPV as a data causality encoding for slice O:

Co<c G iff VO<yVy.

This result is not surprising since CMPV was defined as a semantics preserving exten-
sion of VVS.

Next we will show that the additional information contained in the CMPV model
makes it possible to avoid relying on the integer order, and to replace it with a locally
encoded order. For this, we will use a non-trivial invariant on the global state given by
the following lemma.

Lemma 1. For every stam, andC, and indexk,
a% < b’ and b* < a* implies a* € b.
Proof. See [1].

Recall that the order information is only required to perform the synchronization
operation. Moreover, comparisons are always between principal elements or pointwise
(between the same position in two principal vectors). In the following we will show that
these comparisons can be performed without relying on integer order as long as we can
order the elements in the principal vector of each stamp individually.

Comparison between principal elements reduces to a membership testing.

Proposition 2. For every stamit,, Cy,
a® < b’ iff a®eh.

Proof. = If a® < b® then, by Proposition 1(1) we have thst < a® and so, by
Lemma 1a% € b.
< If a® € b then, by Proposition 1(3) we have thgit < b®.

For a stamp,, let us denote by? the restriction of the intrinsic integer order to
the values contained in the principal vector

r<*y iff z<yandzecaandycea.

Using these orderings, we define new ones that are appropriate to perform the required
comparisons. For stami@s, andC,, let their combined orde«?® be defined as:

<y iff (b®caand(zca=z<y)) or
(a® € b and (z € b=z <P y)).

For convenience, we also define the corresponding join openali)t'mm
a

y ifz <Py,
rUy = .
ab z otherwise.

The following proposition establishes the claimed properties for this ordering.
Proposition 3. For every stamy_, and C, and indexk,

S bb |ff aa Sab bb’
F< bk iff ak <P bk

Proof. (1) Follows directly from Propositions 1 and 2.

(2) = Leta* < b*. Whenb® < a® Proposition 2 guarantees thgtt € a and, by
Lemma 1, we have* € a and them* <2 b*, which establishes” <2 b*. The case
a® < bt is trivial since, eithem® < b (in which casea® <P b*), ora* ¢ b and so
ak < bk — Leta® &£ b (thatis,b* < a*). The proof proceeds as in the previous
implication.

Restricted orders can be explicitly encoded (e.g. by a sequence) and can be easily
manipulated. We now show that when a synchronization is performed, all the elements
in the resulting principal vector were already present in the more up-to-date stamp.
This means that the restricted order that results is a restriction of the one from the more
up-to-date stamp.

Proposition 4. LetC, andC, be stamps an@, = C, LI C,. If a® < b then, for all,

xF € b.
Proof. For the pointwise joinx* = a* L b*: if a¥ < b* thenx* = b* € b; if b* < a*
then, by Lemma 13* € b. Otherwise, note that the resulting principal elemanj {s
already inb.

These observations together with the fact that the global state can only retain a
bounded amount of integer values (an obvious limi¥i%) opens the way for a change
in the domain from the integers in the CMPV model to a finite set.

5 Bounded Stamps

A migration from the domain of integer counters in CMPV to a finite 8gtis faced
with the following difficulty: the update operation should be able to choose a value, that
is not present in any principal vector, for the new principal element in the primary.
Adopting a setC y sufficiently large (e.g. withV2 elements) guarantees that such
a choice exists under a global view. The problem lies in making that choice using only
the information in the state of the primary. To overcome this problem we make a new
extension of the model that allows the primary to keep track of all the values in use in
the principal vectors of all stamps.
We will present this new model parameterized by asgt(the symbol domain),
a distinguished elemet € Ly (the initial element), and an oracle for new symbols
new (—) (satisfying an axiom described below). For each replica indéts local state
in the bounded stamps model is denotedBhyand defined aga, a, [@) where:

— ais the replica index;

— alis avector of values fromf v with size N — the principal vector;

— [alis a vector ofN total orders, encoded as sequences, representing the full bounded
stamp.

This last component contains all the information in the principal vector, the princi-
pal order and the cached orders. Although the principle veci®redundant (as each
component” is also present in the first position of eagli), it is kept in the model for
notational convenience in describing the operations and in establishing the correspon-
dence between the models.

The intuitive idea is that the state for each stamp keeps an explicit representation of
the restricted orders. More precisely, for staB)yp the sequencg” contains precisely
the elements of ordered downward (first elementd$). From that sequence one easily
defines the restricted order for stafdp, what we callprincipal orderto emphasize its
explicit nature.

x<g’y iff z=y or(yz) =@,

wherel,,, denotes the sequenbeestricted to the elementsin, i.e.(z |z € [and z €
m). The combined ordex? and associated join are defined precisely as in counter
mode, that is

r<®y iff (b"can(zeca=z<g’y)) or
(a®€bA(z€b=x<g®y)).

The other sequences [@ keep information about (potentially outdated) principal
orders of other stamps — these are calledddiehed orders
Figure 7 gives the semantics for the operations in this model. The oracle for new
symbolsnew(—) is a function that gives an element 6fy satisfying the following
axiom:
For every stam,,, new ([0]) & a.

The argumen in the oraclenew(—) intends to emphasize that the choice of the new
symbol should be made based on the primary local state.

Operationinit():

@) =o,
@) = (0).
OperationUpd(0):

(0%)" = new([0]),
(@) = new((0)) - [y
OperationSync(a, b):

o X a®Ub’ if k€ {a,b},
@) =®") =4 ;* -
- - a I_tl)p otherwise,
if & e {a,b}:
. . @, ifa*eb,
@) =@y =4 " -
@/, otherwise,

if K # aandk # b:
B if (2%) #a",
k\/
@) { otherwise,
@y = {k if () # b,

B otherwise.

Fig. 7. Semantics of operations on BS model.

Data causality ordering under the Bounded Stamps model is defined by
B, <g B, iff a®eb.

The correctness of the proposed model follows from the observation that, apart from
the cached orders used for the symbol reuse mechanism, it is actually an encoding of
the CMPV model. To formalize the correspondence between both models, we introduce
an encoding functiofi—] - that maps each integer in the CMPV model into the corre-
sponding symbol (irC 5) in the state resulting from a given trace. This map is defined
recursively on the traces.

[mit() =0,

_Jnew([0l,) ifn= ’alUpd(O)} +1,
[Pla-vpao) = {Ma otherwise,
[7]a-sync(ey) = [Pl

Where|a‘Upd(0)| is the number of update eventsdn(0l, is the bounded stamp for the
primary after tracev, andnew([0],) gives a canonical choice for the new principal ele-
ment on the primary after the update. When we discard the cached orders, the semantics
of operations given in Fig. 7 are precisely the ones in CMPV (Figure 6) affected by the
encoding map. Moreover, the principal orders are encodings for the restricted orders
presented in the previous section.

Lemma 2. For an arbitrary tracec, replicas indexa andb:

1. ék = Hak]]om

2. [a']a = [27]o implies a’=al,

3.z Sa Y iff Hxﬂa SBa [[y]]ow

Proof. This results from a simple induction on the length of traces. When the last oper-
ation waslnit() it is trivial. When it wasUpd(0), the result follows from the induction
hypothesis and the axiom for the oradlew(—). When it wasSync(x, y) the result
follows from induction hypothesis, the fact that definitions on both models coincide
since<® computes the required joins (Proposition 3), and the correctness of the new
restricted orders (Proposition 4).

As a simple consequence of the previous result, we can state the following correct-
ness result.

Proposition 5. For any arbitrary tracea and replica indexea andb we have
B, <g By iff C, <c G.
Proof. Immediate from Lemma 2 and the definitions<of and<c.

It remains to instantiate the parameters of the model. A trivial but unbounded in-
stantiation would be: set y as the integerg) as valud) andnew ([0]) = 0% + 1. In this
setting, principal orders would be an explicit representation of counter mode restricted
orders. Obviously, we are interested in bounded instantiatiofg,;offo show that such
instantiations exists, we introduce the following lemma that puts in evidence the role of
cached orders.

Lemma 3. For every stamB,, there exists an such that
@ C0'.
Proof. See [1].

We are now able to present a bounded instantiation for the modelC \:ebe a
totally ordered set witliv2 elements (the total order is here only to avoid making non-
deterministic choices). We define:

0=nNZLy,
new(@) ={z |z € Ly and z ¢ [@}.

Lemma 3 guarantees that¢w([0]) satisfies the axiom. It follows then that it acts as an
encoding of counter mode model (Proposition 5). Thus we have constructed a bounded
model for the data causality problem in a slice, which generalizes, by concatenating
slices, to the full data causality problem addressed by version vectors.

6 Related Work

On what concerns bounded replacements for version vectors there is, up to our knowl-
edge, no previous solution to the problem. The possible existence of a bounded sub-
stitute to version vectors was referred in [2] while introducing the version stamps con-
cept. Version stamps allow the characterization of data causality in settings where ver-
sion vectors cannot operate, namely when replicas can be created and terminated au-
tonomously.

There have been several approaches to version vector compression. Update coalesc-
ing [15] takes advantage of the fact that several consecutive updates issued in isolation
in a single replica can be made equivalent to a single large update. Update coalescing
is intrinsic in bounded stamps since sequence restriction in the update operation dis-
cards non-propagated symbols. Dynamic compression [15] can effectively reduce the
size of version vectors by removing a common minimum from all entries (along each
slice). However, this technique requires distributed consensus on all replicas and there-
fore cannot progress if one or more replicas are unreachable. Unilateral version vector
pruning [17] avoids distributed consensus by allowing unilateral deletion of inactive
version vectors entries, but relies on some timing assumptions on the physical-clock’s
skew.

Lightweight version vectors [9] develop an integer encoding technique that allows a
gradual increase of integer storage as counters increase. This technique is used in con-
junction with update coalescing to provide a dynamic size representation. Hash histories
[10] track data causality by collecting hash fingerprints of contents. This representation
is independent of the number of replicas but grows in proportion to the number of up-
dates.

The minimality of vectors clocks as a characterization of Lamport causality [12],
presented by Charron-Bost [4] and recently re-addressed in [7], indicates particular runs
where the full expressiveness of vectors clocks is required. However there are cases
in which smaller representations can operate: Plausible Clocks [20] offer a bounded
substitute to vectors clocks that are accurate in a large percentage of situations and
may be used in settings were deviations only impacts performance and not correctness;
Resettable Vector Clocks [3] allow a bounded implementation of vector clocks under a
specific communication pattern between processes.

The collection of cached copies of the knowledge in other replicas has been explored
before in [6, 21] and used for optimization of message passing strategies. This conceptis
sometimes referred to as matrix clocks [16]. These clocks are based on integer counters
and are similar to our intermediate “counter mode principal vector” representation.

7 Conclusions

Version vectors are the key mechanism in the detection of inconsistency and obsoles-
cence among optimistically replicated data. This mechanism has been used extensively
in the design of distributed file systems [11, 8], in particular for data causality tracking
among file copies. It is well known that version vectors are unbounded due to their use
of counters; some approaches in the literature have tried to address this problem.

We have brought the attention to the fact that causally ordering a limited number of
replicas does not require the full expressive power of version vectors. Due to the limited
number of configurations among replicas, data causality tracking does not necessarily
imply the use of unbounded mechanisms. As a consequence, Charron-Bost’s minimality
of vector clocks cannot be transposed to version vectors.

We have noted that to find a bounded alternative to version vectors, it was enough
to concentrate on a sub-problem: keeping distributed knowledge about a total order
generated by a single entity.

The key to bounded stamps was defining an intermediate unbounded mechanism
and showing that it was possible to perform comparisons without requiring a global total
order; this was the bulk of the proof correctness; bounded stamps were then derived as
an encoding into a finite set of symbols. This required the definition of a non-trivial
symbol reuse mechanism that is able to progress even if an arbitrary number of replicas
ceases to participate in the exchanges. This mechanism may have a broader applicability
beyond its current use (e.g. log dissemination and pruning) and become a building block
in other mechanisms for distributed systems.

The construction of the mechanism was supported by a simtjatbich was used
in the proof of correctness so as to probe (and discard) tentative hypotheses. The simu-
lator was also turned into a model checker which proved the correctnessNup-td,
giving some confidence before the full proof of correctness was attempted.

Bounded version vectors are obtained by substituting integer counters on version
vectors by bounded stamps. It represents the first bounded mechanism for detection of
obsolescence and mutual inconsistency in distributed systems.

References

1. Jos Bacelar Almeida, Paulog®gio Almeida, and Carlos Baquero. Bounded version vectors.
Technical Report UMDITR2004.01, Departamento de Infatica, Universidade do Minho,

July 2004.

2. Paulo %rgio Almeida, Carlos Baquero, and Victor Fonte. Version stamps — decentralized
version vectors. IfProceedings of the 22nd International Conference on Distributed Com-
puting Systems (ICDC3)ages 544-551. IEEE Computer Society, 2002.

3. A. Arora, S. S .Kulkarni, and M. Demirbas. Resettable vector clock49th Symposium on
Principles of Distributed Computing (PODC’2000), Portland, 208M, 2000.

4. Bernadette Charron-Bost. Concerning the size of logical clocks in distributed sydtems.
formation Processing Letter89:11-16, 1991.

5. Colin Fidge. Timestamps in message-passing systems that preserve the partial ordering. In
11th Australian Computer Science Conferermges 55-66, 1989.

6. Michael J. Fischer and A. Michael. Sacrificing serializability to attain high availability of
data. InProceedings of the ACM Symposium on Principles of Database Systages
70-75. ACM, 1982.

7. V. K. Garg and C. Skawratananond. String realizers of posets with applications to distributed
computing. InProceedings of the ACM Symposium on Principles of Distributed Computing
(PODC'01), pages 72—-80. ACM, 2001.

! http://gsd.di.uminho.pt/bvv/bvv-simulator/py

http://gsd.di.uminho.pt/bvv/bvv-simulator.py�

8. Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page, Gerald J. Popek, and
Dieter Rothmeier. Implementation of the ficus replicated file systerdSENIX Conference
Proceedingspages 63-71. USENIX, June 1990.

9. Yun-Wu Huang and Philip Yu. Lightweight version vectors for pervasive computing devices.
In Proceedings of the 2000 International Workshops on Parallel Procespames 43-48.
IEEE Computer Society, 2000.

10. Brent ByungHoon Kang, Robert Wilensky, and John Kubiatowicz. The hash history ap-
proach for reconciling mutual inconsistency. Rroceedings of the 23nd International Con-
ference on Distributed Computing Systems (ICD@8yes 670-677. IEEE Computer Soci-
ety, 2003.

11. James Kistler and M. Satyanarayanan. Disconnected operation in the coda file #yGtdm.
Transaction on Computer Systeri®(1):3-25, February 1992.

12. Leslie Lamport. Time, clocks and the ordering of events in a distributed sysitemmuni-
cations of the ACM21(7):558-565, July 1978.

13. Friedemann Mattern. Virtual time and global clocks in distributed systemid/oitkshop on
Parallel and Distributed Algorithmspages 215-226, 1989.

14. D. Stott Parker, Gerald Popek, Gerard Rudisin, Allen Stoughton, Bruce Walker, Evelyn Wal-
ton, Johanna Chow, David Edwards, Stephen Kiser, and Charles Kline. Detection of mutual
inconsistency in distributed systemBEansactions on Software Engineerjrii3):240-246,
1983.

15. David Howard Ratner.Roam: A Scalable Replication System for Mobile and Distributed
Computing PhD thesis, 1998. UCLA-CSD-970044.

16. Fréderic Ruget. Cheaper matrix clocks. Rroceedings of the 8th International Workshop
on Distributed Algorithmspages 355-369. Springer Verlag, LNCS, 1994.

17. Yasushi Saito. Unilateral version vector pruning using loosely synchronized clocks. Techni-
cal Report HPL-2002-51, HP Labs, 2002.

18. Yasushi Saito and Marc Shapiro. Optimistic replication. Technical Report MSR-TR-2003-
60, Microsoft Research, 2003.

19. R. Schwarz and F. Mattern. Detecting causal relationships in distributed computations: In
search of the holy graiDistributed Computing3(7):149-174, 1994.

20. F. J. Torres-Rojas and M. Ahamad. Plausible clocks: constant size logical clocks for dis-
tributed systemsDistributed Computing12(4):179-196, 1999.

21. G. T. J. Wuu and A. J. Bernstein. Efficient solutions to the replicated log and dictionary
problems. InProceedings of the ACM Symposium on Principles of Distributed Computing
(PODC'84), pages 232-242. ACM, 1984.

A Proof of Lemma 1

The hypothesis of Lemma 1 concern two stamps ésaydb) in which we can identify
some sort of conflict between each stamp knowledge: Stahgs a better knowledge
concerning the primary stata?(< b®) but has an outdated vision concerning some
other stamp (say), i.e. b* < a*. Lemma 1 states that when this happens stamp
already attributes the value af to some other stamp (say— that is,b’ = a*). In order

to prove this result, it will be necessary to reinforce this statement: nottdnly a*

but it is possible to identify a flow of information between starapdk. Moreover, this

flow of information (a sequence of synchronization operations starting fftork) can

be traced in stamp’s local state as a sequence of indexes enjoying some properties.
These sequence of indexes are catlethy pathsand are defined as follows.

Definition 1 (Delay Path).A delay patrbetweera” andb is a non-empty sequence of
indexes(ig, . . . , i,,) such that, for any stamg

1. ig = k,

2. bin = ak,

3. bi» < a” forall 0 < p < n,
4, ok <jlr forall 0 < p <n,
5. ak < ¢ir = ak < -1 forall 0 < p < n.

Some simple facts concerning delay paths.

Proposition 6. Let (ig, . . ., i,) be a delay path betweerf andb. The following facts
hold:

o' forall 0 < p < n,
€<i0,...,in>:>n:0.

Proof. The first three facts are immediate consequences from the definition and Propo-
sition 1. Regarding the last fact tifoccurred in a positiod,, beingn > 0, by condition

(4) of delay paths we hawe® < b'»—1; but this contradicts condition (3). Thuspnly
occurs in a singleton delay path.

Some of the conditions on delay paths impose global constrains on them that will
allow to reason about global state changes and their impact on the local states. The
following Lemma exposes the use of such global constrains.

Lemma 4 (Pointwise-join Lemma). Let (i, . ..,%,) be a non-empty sequence of in-
dexes. If for some,

1. bin =g,
2. forall 0 < p < n,br <z,
3. forall 0 < p < n and any stamp, if z < ¢’ thenx < c%»-1.

Then, for any stamg for whichd? < z, there exist® < ¢ < n such thabi Lidis = z
and, for all0 < p < ¢, b*» Ud% < x.

Proof. By induction on the length of the sequengg, . . ., i,,). For the base case (sin-
gular sequence) we have thslt = z. Sinced < x we haveb® Lid® = z and

the remaining condition is vacuous. For the induction step, we consider the following
cases: Ifd’c = 2 then we sety = 0 sinceb’ Lid = z. Otherwise, we know that

bio LUdi < x and, by (4), thati’* < z. So we apply the induction hypothesis to the
sequencéiy, .. ., i,) and sey to the resulting index plus 1.

We now show that the conditions in Lemma 1 are sufficient to establish the existence
of delay paths.

Lemma 5. If a andb are two stamps anél a position such that
a® < b’ and b* < a*,
then there exists a delay path betweérandb.

Proof. We prove by induction on the length of the trace. If the last operatiorluiad
we use the singleton sequen@e for the delay path and the conditions hold trivially.
If the last operation waBpd(0) consider the following cases:

a = b = 0: we pick the sequencg) that satisfies trivially all conditions;

a =0 # b: after the update® £ b®, which contradicts the hypothesis;

b=0+#a: if k= 0thenb® £ a*, which contradicts the hypothesis.if£ 0 we use
the same delay path that comes from the induction hypothesis, which is still valid
after the update because it does not contain poditisimceb = 0 # k (Proposition
6).

0 & {a,b}: we use the same delay path from the induction hypothesis, which is still
valid: (1,2,3) because andb are not affected by the update; (4) because 6fly
changes; (5) because even if for sopvee havei, = 0, if a¥ < 09, thena® < 0%
due to (4).

If the last operation waSync(z, y) (and lets assume, without loss of generality, that
is the more up-to-date stamp, ix€. < y¥) we need to distinguish the following cases:

{z,y} N {a,b} = 0: we use the same delay path from the induction hypothesis, which
is still valid: (1,2,3) because andb are not affected; (4) becaui;,éf”*1 can only
increase; (5) because for every= x Ly, if a* < c’», then either’» is computed
pointwise anc* < ci»-1 follows from the induction hypothesis, @ is eitherx
ory and (by 4)a* < i,’»-t < cle-t,

{z,y} = {a,b}: stampsa andb become equal after the synchronization and we pick
the sequencék) for the delay path;

{z,y} N{a,b} = {a} # {b}: inthis case the stampresults from the synchronization
of x andy and we have® < y¥ = a® < b, Consider the following two cases:
Whenk = 2 andx® < y¥ = a*. First, given thay? < b® andb¥ < y¥, we can
apply the induction hypothesis toandb on indexy and establish the existence
of a delay pathip = y,...,i,) for y¥ in b. Then we prefix it byk, obtaining
(k,y,...,i,), Which is a suitable delay path betweeh andb, given that: (1)
holds by construction, (2) from the induction hypothesis, (3) from the induction
hypothesis and* < a* (sinceb® < x* < y¥ = aF); (4) from the induction
hypothesis and* = y¥ = y* = y*: (5) from the induction hypothesis and because
for every stamp, ¢V < y¥ = a% = a*.

Otherwise, then eithes® = x* or a* = y*; applying the induction hypothesis
to eitherx® or y* andb in positionk gives us a valid delay path for the resulting
configuration (all conditions hold, including (5) as shown for the casg/} N
{av b} = 0).

{z,y} N {a,b} = {b} # {a}: inthis case the starmpresults from the synchronization
of x andy.

Whenk is eitherz or y, we haveb® = b® = y¥; but this means (as* < b® and
b* < a¥) thata® = b¥; therefore(k) is a delay path.

Otherwise,b? = x¥ LUy*; this means thay* < b¥ < a*¥ and by the induction
hypothesis there exists a delay p&ibetweers” andy. Given that alsx* < a*,
Lemma 4 establishes the existence of a sequéhee (i, ..., i) (prefix of P)
that is a delay path betweefi andb for the following reasons. Positionsandy
do not appear id) — =,y # i, because we are assumihg~ x,y, andz,y # i,
for p > 0, otherwise we would have® < xi»-1,yi»-1 (condition (4) of delay paths
of which Q is a prefix) and then® < xi»-1 Ly’»~1, which contradicts Lemma 4.
Thus, all element®’, with j € @Q are computed pointwise (i = x/ Ly/),
making conditions (2,3 and 5) immediate consequences of Lemma 4. Condition
(1) is trivially observed @ is a prefix of P); and condition (4) from the induction
hypothesis and because upon a join values can only increase.

We can finally state Lemma 1.
Lemma (1). For every stamif, andC,, and every index,
a® < b’ and b* < a* implies a* e b.

Proof. Direct from Lemma 5.

B Proof of Lemma 3

Lemma 3 says that each principal order is already contained in some cached order on
the primary. Note that Lemma 1 already states that every principal eleshéeiongs

to the primary principal vector, and delay paths were used to show where it can be
found. Now, we will show that it is precisely in the primary cached order located in
the position pointed out by the delay path betweérand0 that we can find all the
elements imz®. To prove this we need to reason about cached orders along delay paths.
This suggests an extension of these to what wepraltipal delay paths

Definition 2. A principal delay pattior stampB, is a delay path(io, . . ., i,) between
a® and 0 that additionally satisfies the following condition: for ever< p < n and
any stam®B,,
a® =c’» implies @* C[@» or
(p>0 and a® < clr-1).

We now prove the existence of principal delay paths by extending the proof of exis-
tence in Lemma 5. Here we only go through the cases that are relevant for the additional
condition.

Lemma 6. For every stamB, there exists a principal delay path.

Proof. (Sketch)
Consider the following additional arguments to the proof of Lemma 5. If the last
operation wasSync(z,y) (assume® < y¥):

{z,y} N{a,0} =0: letc = xUy. If 4, is eitherz or y, we know thatp > 0 (since
a ¢ {x,y}). Letc» = x*UyY = y¥. Whena® = c’», by condition (4), we have
a® < x*»-1 gra® < y*»-* which determines that® < c*»-*. Whenc’» is computed
pointwise, the new condition follows by the induction hypothesis.

{z,y} Nn{a,0} = {a} # {0}: whena = z andx® < y¥, let (iy = vy, ...,i,) be the
principal delay path foy. The new condition if verified fofta, y, . . ., i) since, the
casec # y is trivial (because® = ¢ < x* < y¥ = a%). Forc = y, the new
condition is satisfied singag® C [y¥ (Proposition 4).

{z,y} N {a,0} = {0} # {a} inthis case the primary results from the synchronization
of x andy (i.e.y is the primary before synchronization). Since# a, then0? is
computed pointwise. By induction hypothesis we get a principal delay path
which we apply Lemma 4 to get a new seque@ce&herex andy never occur (c.f.
proof of Lemma 5). The new condition follows by the induction hypothesis.

Lemma (3). For every stamB,, there exists a positiohsuch that
@ C[0.

Proof. Let (i, ..., i,) be the principal delay path far(given by Lemma 6). Instanti-
ating the new condition fad oni,, we get that

@ CO.

