
Bounded Version Vectors

Jośe Bacelar Almeida?, Paulo Śergio Almeida, and Carlos Baquero

Departamento de Inforḿatica, Universidade do Minho
{jba,psa,cbm }@di.uminho.pt

Abstract. Version vectors play a central role in update tracking under optimistic
distributed systems, allowing the detection of obsolete or inconsistent versions
of replicated data. Version vectors do not have a bounded representation; they
are based on integer counters that grow indefinitely as updates occur. Existing
approaches to this problem are scarce; the mechanisms proposed are either un-
bounded or operate only under specific settings. This paper examines version vec-
tors as a mechanism for data causality tracking and clarifies their role with respect
to vector clocks. Then, it introduces bounded stamps and proves them to be a cor-
rect alternative to integer counters in version vectors. The resulting mechanism,
bounded version vectors, represents the first bounded solution to data causality
tracking between replicas subject to local updates and pairwise symmetrical syn-
chronization.

Keywords: Replication, causality, version vectors, update tracking, bounded
state.

1 Introduction

Optimistic replication is a critical technology in distributed systems, in particular when
improving availability of database systems and adding support to mobility and parti-
tioned operation [18]. Under optimistic replication, data replicas can evolve autonomously
by incorporation new updates into their state. Thus, when contact can be established
between two or more replicas, mutual consistency must be evaluated and potential di-
vergence detected.

The classic mechanism for assessing divergence between mutable replicas is pro-
vided byversion vectorswhich, since their introduction by Parker et al. [14], have been
one of the cornerstones of optimistic data management. Version vectors associate to
each replica a vector of integer counters that keeps track of the last update that is known
to have been originated in every other replica and in the replica itself. The mechanism
is simple and intuitive but requires a state of unbounded size, since each counter in the
vector can grow indefinitely.

The potential existence of a bounded substitute to version vectors has been over-
looked by the community. A possible cause is a frequent confusion of the roles played
by version vectorsandvector clocks(e.g. [17, 18]), that have the same representation

? Partially supported by FCT project POSI/ICHS/44304/2002.

[14, 5, 13], together with the existence of a minimality result by Charron-Bost [4], stat-
ing that vector clocks are the most concise characterization of causality among process
events.

In this article we show that a bounded solution is possible for the problem addressed
by version vectors: the detection of mutual inconsistency between replicas subject to
local updates and pairwise symmetrical synchronization. We present a mechanism,
bounded stamps, that can be used to replace integer counters in version vectors, stress-
ing that the minimality result that precludes bounded vector clocks does not apply to
version vectors.

1.1 On version vectors and vector clocks

Asynchronous distributed systems track causality and logical time among communicat-
ing processes by means of several mechanisms [12, 19], in particular vector clocks [5,
13].

While being structurally equivalent to version vectors, vector clocks serve a very
distinct purpose. Vector clocks track causality by establishing a strict partial order on the
events of processes that communicate by message passing, and are known to be the most
concise solution to this problem. Vector clocks, being a vector of integer counters, are
unbounded in size, but so is the number of events that must be ordered and timestamped
by them. In short,vector clocks order an unlimited number of events occurring in a
given number of processes.

If we consider the role of version vectors, data causality, there is always a limit to
the number of possible relations that can be established on the set of replicas. This limit
is independent on the number of update events that are considered on any given run. For
example, in a two replica system{ra, rb} only four cases can occur:ra = rb, ra < rb,
rb > ra andra ‖ rb. If the two replicas are already divergent the inclusion ofnew
update events on any of the replicas does not change their mutual divergence and the
corresponding relation between them. In short,version vectors order a given number of
replicas, according to an unlimited number of update events.

The existence of a limited number of relations is a necessary but not sufficient con-
dition for the existence of a bounded characterization mechanism. A relation, which is a
global abstraction, must be encoded and computed through local operations on replica
pairs without the need for a global view. This is one of the important properties of
version vectors.

2 Data causality and version vectors

Data causality on a set of replicas can be assessed via set inclusion of the sets of update
events known to each replica. Data causality is the pre-order defined by:

ra ≤ rb iff Ua ⊆ Ub

beingUa andUb the sets of update events (globally unique events), known to replicas
ra andrb.

OperationInit():

(Vk
i)′ = 0.

OperationUpd(a):

(Vk
i)′ =

(
Vk

i + 1 if i = k = a;

Vk
i otherwise.

OperationSync(a, b):

(Vk
a)′ = (Vk

b)′ = Vk
a tVk

b .

Fig. 1. Semantics of version vector operations.

When tracking data causality with version vectors in anN replica system, one as-
sociates to each replicari ∈ {r0, . . . , rN−1} a stampVi which is a vector ofN integer
counters. The order on version vectors is the standard pointwise (coordinatewise) order:

Va ≤V Vb iff ∀k. Vk
a ≤ Vk

b

whereVk
i denotes componentk of vectorVi.

The operations on version vectors, formally presented in Fig. 1, are as follows:

Initialization (Init()) establishes the initial system state. All vectors are initialized
with zeroes.

Update (Upd(a)) an update event in replicara incrementsVa
a.

Synchronization (Sync(a, b)) synchronization ofra andrb is achieved by taking the
pointwise join (greatest element) ofVa andVb.

This classic mechanism encodes data causality because comparing version vectors
gives the same result as comparing sets of known update events. For all runs and replicas
ra andrb:

ra ≤ rb iff Ua ⊆ Ub iff Va ≤V Vb.

r0
�

0 0 0 0
� • � 1 0 0 0

� ◦OO
²²

�
1 1 0 0

� • � 2 1 0 0
� ◦OO

²²

�
2 1 0 0

�
r1
�

0 0 0 0
� • � 0 1 0 0

� ◦ � 1 1 0 0
� ◦OO

²²

�
2 1 0 0

� • � 2 2 0 0
�

r2
�

0 0 0 0
� ◦OO

²²

�
2 1 0 0

�
r3
�

0 0 0 0
� ◦ � 2 1 0 0

� ◦ � 2 1 0 0
� ◦ � 2 1 0 0

�
Fig. 2. Version Vectors: example run, depicting slice0 counters by a boxed digit.

Figure 2 shows a run with version vectors in a four replica system. Updates are
depicted by a “•” and synchronization by two “◦” connected by a line.

OperationInit():

(Si)
′ = 0.

OperationUpd(0):

(Si)
′ =

(
Si + 1 if i = 0;

Si otherwise.

OperationSync(a, b):

(Sa)′ = (Sb)
′ = Sa t Sb.

Fig. 3. VVS semantics for slice 0.

2.1 Version vector slices

All operations over version vectors exhibit a pointwise nature: a given vector position
is only compared or updated to the same position in other vectors, resulting from all
information about updates originated in replicark being stored in componentk of each
version vector. This allows a decomposition of the replicated system intoN slices,
where each slice represents the updates that were originated in a given replica. Slicei
for aN replica system is made up of theith component of each version vector:

〈Vi
0, . . . , V

i
N−1〉.

This means that data causality inN replicas can be encoded by the concatenation of
the representation for each of theN slices. It also means that it is enough to concentrate
on a subproblem: encoding the distributed knowledge about a single source of updates,
and the corresponding version vector slice (VVS). The source of updates increments
its counter and all other replicas keep potentially outdated copies of that counter; this
subproblem amounts to storing a distributed representation of a total order.

For the remainder of the paper we will concentrate, for notational convenience and
without loss of generality, on finding a bounded representation for slice 0. Figure 3
presents the semantics of version vectors restricted to slice 0; in the run presented in
Fig. 2 this slice is shown using boxed counters.

3 Informal presentation

We now give an informal presentation of the mechanism and give some intuition of
how it works and how it accomplishes its purpose. Having shown that it is enough to
concentrate on a subproblem (a single source of updates) and the corresponding slice of
version vectors, we now present the stamp that will replace, in each replica, the integer
counter of the corresponding version vector.

For problem sizeN , i.e. assumingN replicas, withr0 the “primary” where up-
dates take place andr1, . . . , rN−1 the “secondary” replicas, we represent a stamp by
something like

c b a
c a
a
c a

r0

a
a
a
a

•
b a
a
a
a

◦OO

²²

b a
b a
a
a

•
c b a
b a
a
a

◦OO

²²

c b a
b a
a
c b a

◦OO

²²

c
c a
c
c

•
b c
c a
c
c

◦OO

²²

b c
b c
c
c

r1

a
a
a
a

◦
b a
b a
a
a

◦OO

²²

c b a
c a
a
c a

◦
b c
b c
c
c a

r2

a
a
a
a

◦OO

²²

c b a
c a
c
c

r3

a
a
a
a

◦
c b a
b a
a
c b a

◦
c b a
c a
a
c a

◦
c b a
c a
c
c

◦
c
c a
c
c

Fig. 4. Bounded stamps: example run.

It has a representation of bounded size, as it consists ofN rows, each with at mostN
symbols (letters here), taken from a finite setLN . An example run consisting of four
replicas is presented in Fig. 4.

A stamp is, in abstract, a vector of totally ordered sets. Each of theN components
(rows in our notation) represents a total order, with the greatest element on the left (the
first row above meansc > b > a). In a stamp for replicari, row i (i ∈ {0, . . . N − 1})
is what we call theprincipal order(displayed with a gray background), while the other
rows are thecached orders. (Thus, the stamp above would belong to replicar3.) The
cached order in rowj represents the principal order of replicaj at some point in time,
propagated to replicai (either directly or indirectly through several synchronizations).

The greatest element of the principal order (on the left, depicted in bold over gray) is
what we call theprincipal element. It represents the most recent update (in the primary)
known by the replica. In a representation using an infinite total ordered set instead of
LN nothing more would be needed. This element can be thought of as “corresponding”
to the value of the integer counter in version vectors.

The left column in a stamp (depicted in bold) is what we call theprincipal vector;
it is made up of the greatest element of each order (row). It represents the most recent
local knowledge about the principal element of each replica (including itself).

In a stamp, there is a relationship between the principal order and the principal
vector: the elements in the principal vector are the same ones as in the principal order.
In other words, the set of elements in the principal vector is ordered according to the
principal order.

3.1 Comparison and synchronization as well defined local operations

As we will show below, the mechanism is able to compare two stamps by a local oper-
ation on the respective principal orders. No global knowledge is used: not even a global
order on the set of symbolsLN is assumed. For comparison purposesLN is simply
an unordered set, with elements that are ordered differently in different stamps. As an
example, the comparison of

r0 =
b c
c a
c
c

with r1 =
c b a
c a
a
c a

involves looking atb c and c a , and givesr0 > r1.
When synchronizing two stamps, in the positions of the two principal elements, the

resulting value will be the maximum of the two principal elements; the rest of the result-
ing principal vector will be the pointwise maximum of the respective values. The com-
parisons are performed according to the principal orders of the two stamps involved.

It is important to notice that, in general, it is not possible to take two arbitrary
total orders and merge them into a new total order. As such, it could be thought that
computing the maximum as mentioned above is ill defined. As we will show, several
properties of the model can be exploited that make these operations indeed possible and
well defined. We will also show that it is possible to totally order the elements in the
resulting principal vector, i.e. to obtain a new principal order.

3.2 Garbage collection for symbol reuse

The boundedness of the mechanism is only possible through symbol reuse. When an
update operation is performed, instead of incrementing an integer counter, some symbol
is chosen to become the new principal element. By using a finite set of symbolsLN ,
an update will eventually reuse a symbol that was already used in the past to represent
some previous update that has been synchronized with other replicas.

However, by reusing symbols, an obvious problem arises that needs to be addressed:
the symbol reuse cannot compromise the well-definedness of the comparison operations
described above. As an example, it would not be acceptable that, due to reuse, the
principal orders of two stamps end up beinga b c andc a , as it would not be possible
to overcome the ambiguity betweena > b > c andc > a and to infer which one is the
greatest stamp.

To address the problem, the mechanism implements a distributed “garbage collec-
tion” of symbols. This is accomplished through the extra information in the cached
orders. As we will show, any element in the principal order/vector of any replica is
also present in the primary replica (in some principal or cached order). This is the key
property towards symbol reuse: when an update is performed, any symbol which is not
present in the primary replica is considered “garbage” and can be (re)used for the new
principal element.

As an example, in Fig. 4, when the final update occurs, symbolb can be used for the
new principal element because it is not present in the primary replica:

c
c a
c
c

Notice that the scheme only assures thatb does not occur in the principal orders/vectors.
In this exampleb occurs in some cached orders of replicas

r1 =
c b a
c a
a
c a

and r2 =
c b a
c a
c
c

but this is not a problem because those elements will not be used in comparisons; the
“old” b will not be confused with the “new”b.

3.3 Synopsis of formal presentation

The formal presentation and proof of correctness will make use of an unbounded mech-
anism which we call thecounter mode principal vectors(CMPV). This auxiliary mech-
anism represents what the evolution of the principal vector would be if we could afford
to use integer counters. The mechanism makes use of the total order on natural numbers
and does not encode orders locally. In Fig. 5 we present part of the run in Fig. 4 using
the counter mode mechanism.

The bulk of the proof consists in establishing several properties of the CMPV model
that allow the relevant comparison operations to be computed in a well-defined way
using only local information. The key idea is that, exploiting these properties, bounded
stamps can be seen as an encoding of CMPV using a finite setLN , where the principal
orders are used to encode the relevant order information.

4 Counter Mode Principal Vectors

Version Vector Slices (VVS) rely on an unbounded totally ordered set — the natural
numbers. Their unbounded nature is actually a consequence of adopting a predeter-
mined order relation (and hence globally known) to capture data causality among repli-
cas. To overcome this, we enrich VVS in a way that order judgments become, in a sense,
local to each replica. In this way, it will be possible to dynamically encode the causality
order and open the perspective of bounding the “counters” domain.

For a replica indexa, its stamp in the CMPV model is denoted byCa and defined
as the tuple〈a, a〉 wherea is a vector of integers with sizeN — theprincipal vectorfor
Ca (see Fig. 5). The value in positionk of vectora is denoted byak and represents the
knowledge of stampCa concerning the most recent update known by stampCk. The
elementaa plays a central role since it holdsCa’s view about the more recent update —
this is essentially the information contained in VVS counters and we call it theprincipal
elementfor stampCa.

r0

0
0
0
0

•
1
0
0
0

◦OO

²²

1
1
0
0

•
2
1
0
0

◦OO

²²

2
1
0
2

r1

0
0
0
0

◦
1
1
0
0

◦OO

²²

2
2
0
2

r2

0
0
0
0

◦OO

²²

2
2
2
2

r3

0
0
0
0

◦
2
1
0
2

◦
2
2
0
2

◦
2
2
2
2

Fig. 5. Counter mode principal vectors.

Figure 6 defines the semantics of the operations in the CMPV model. Symbolt
denotes the join operation under integer ordering (i.e. taking the maximum element).
Notice that the order information is only required to perform the synchronization op-
eration. Moreover, comparisons are always between principal elements or pointwise
(between the same position in two principal vectors). Occasionally, it will be conve-
nient to writea t b for the result of the synchronization on stampsCa andCb (i.e. the
principal vector of one of these stamps after synchronization).

A trace consists of a sequence of operations starting withInit() and followed by
an arbitrary number of updates and synchronizations. In the remainder, when stating
properties in the CMPV, we will leave implicit that they only refer to reachable states,
i.e. states that result from some trace of operations. Induction over the traces is the
fundamental tool to prove invariance properties, as the following simple facts about
CMPV.

Proposition 1. For every replicaCa, Cb and indexk,

1. ab ≤ bb,
2. aa ≤ 00,
3. ak ≤ aa.

Proof. Simple induction on the length of traces.

Given stampsCa andCb we define theirdata causality order under CMPV(≤C) as
the comparison of their principal elements:

Ca ≤C Cb iff aa ≤ bb.

OperationInit():

(ak)′ = 0.

OperationUpd(0):

(ak)′ =

(
ak + 1 if a = k = 0;

ak otherwise.

OperationSync(a, b):

(ak)′ = (bk)′ =

(
aa t bb if k ∈ {a, b};
ak t bk otherwise.

Fig. 6. Semantics of operations in CMPV.

By Fig. 6 it can be seen that the computation of principal elements only depends
upon principal elements. Moreover, if we restrict the impact of the operations to the
principal element we recover the VVS semantics (Figure 3). This observation leads
immediately to the correctness of CMPV as a data causality encoding for slice 0:

Ca ≤C Cb iff V0
a ≤V V0

b .

This result is not surprising since CMPV was defined as a semantics preserving exten-
sion of VVS.

Next we will show that the additional information contained in the CMPV model
makes it possible to avoid relying on the integer order, and to replace it with a locally
encoded order. For this, we will use a non-trivial invariant on the global state given by
the following lemma.

Lemma 1. For every stampCa andCb and indexk,

aa ≤ bb and bk ≤ ak implies ak ∈ b.

Proof. See [1].

Recall that the order information is only required to perform the synchronization
operation. Moreover, comparisons are always between principal elements or pointwise
(between the same position in two principal vectors). In the following we will show that
these comparisons can be performed without relying on integer order as long as we can
order the elements in the principal vector of each stamp individually.

Comparison between principal elements reduces to a membership testing.

Proposition 2. For every stampCa, Cb,

aa ≤ bb iff aa ∈ b.

Proof. =⇒ If aa ≤ bb then, by Proposition 1(1) we have thatba ≤ aa and so, by
Lemma 1,aa ∈ b.

⇐= If aa ∈ b then, by Proposition 1(3) we have thataa ≤ bb.

For a stampCa, let us denote by≤a the restriction of the intrinsic integer order to
the values contained in the principal vectora:

x ≤a y iff x ≤ y and x ∈ a and y ∈ a.

Using these orderings, we define new ones that are appropriate to perform the required
comparisons. For stampsCa andCb, let their combined order≤ab be defined as:

x ≤ab y iff (bb ∈ a and (x ∈ a ⇒ x ≤a y)) or
(aa ∈ b and (x ∈ b ⇒ x ≤b y)).

For convenience, we also define the corresponding join operationt
ab

as:

x t
ab

y =

{
y if x ≤ab y,

x otherwise.

The following proposition establishes the claimed properties for this ordering.

Proposition 3. For every stampCa andCb and indexk,

1. aa ≤ bb iff aa ≤ab bb,
2. ak ≤ bk iff ak ≤ab bk.

Proof. (1) Follows directly from Propositions 1 and 2.
(2) =⇒ Let ak ≤ bk. Whenbb ≤ aa Proposition 2 guarantees thatbb ∈ a and, by

Lemma 1, we havebk ∈ a and thenak ≤a bk, which establishesak ≤ab bk. The case
aa < bb is trivial since, eitherak ∈ b (in which caseak ≤b bk), or ak 6∈ b and so
ak ≤ab bk. ⇐= Let ak 6≤ bk (that is,bk < ak). The proof proceeds as in the previous
implication.

Restricted orders can be explicitly encoded (e.g. by a sequence) and can be easily
manipulated. We now show that when a synchronization is performed, all the elements
in the resulting principal vector were already present in the more up-to-date stamp.
This means that the restricted order that results is a restriction of the one from the more
up-to-date stamp.

Proposition 4. LetCa andCb be stamps andCx = Ca t Cb. If aa ≤ bb then, for allk,

xk ∈ b.

Proof. For the pointwise joinxk = ak t bk: if ak ≤ bk thenxk = bk ∈ b; if bk ≤ ak

then, by Lemma 1,ak ∈ b. Otherwise, note that the resulting principal element (bb) is
already inb.

These observations together with the fact that the global state can only retain a
bounded amount of integer values (an obvious limit isN2) opens the way for a change
in the domain from the integers in the CMPV model to a finite set.

5 Bounded Stamps

A migration from the domain of integer counters in CMPV to a finite setLN is faced
with the following difficulty: the update operation should be able to choose a value, that
is not present in any principal vector, for the new principal element in the primary.

Adopting a setLN sufficiently large (e.g. withN2 elements) guarantees that such
a choice exists under a global view. The problem lies in making that choice using only
the information in the state of the primary. To overcome this problem we make a new
extension of the model that allows the primary to keep track of all the values in use in
the principal vectors of all stamps.

We will present this new model parameterized by a setLN (the symbol domain),
a distinguished element0 ∈ LN (the initial element), and an oracle for new symbols
new(−) (satisfying an axiom described below). For each replica indexa, its local state
in the bounded stamps model is denoted byBa and defined as〈a, a, a 〉 where:

– a is the replica index;
– a is a vector of values fromLN with sizeN — the principal vector;
– a is a vector ofN total orders, encoded as sequences, representing the full bounded

stamp.

This last component contains all the information in the principal vector, the princi-
pal order and the cached orders. Although the principle vectora is redundant (as each
componentak is also present in the first position of eachak), it is kept in the model for
notational convenience in describing the operations and in establishing the correspon-
dence between the models.

The intuitive idea is that the state for each stamp keeps an explicit representation of
the restricted orders. More precisely, for stampBa, the sequenceaa contains precisely
the elements ofa ordered downward (first element isaa). From that sequence one easily
defines the restricted order for stampBa, what we callprincipal order to emphasize its
explicit nature.

x ≤B
a y iff x = y or 〈y, x〉 = aa

|{x,y}

wherel|m denotes the sequencel restricted to the elements inm, i.e.〈x | x ∈ l and x ∈
m〉. The combined order≤ab and associated join are defined precisely as in counter
mode, that is

x ≤ab y iff (bb ∈ a ∧ (x ∈ a ⇒ x ≤B
a y)) or

(aa ∈ b ∧ (x ∈ b ⇒ x ≤B
b y)).

The other sequences ina keep information about (potentially outdated) principal
orders of other stamps — these are called thecached orders.

Figure 7 gives the semantics for the operations in this model. The oracle for new
symbolsnew(−) is a function that gives an element ofLN satisfying the following
axiom:

For every stampBa, new(0) 6∈ a.

The argument0 in the oraclenew(−) intends to emphasize that the choice of the new
symbol should be made based on the primary local state.

OperationInit():

(ak)′ = 0,

(a k)′ = 〈0〉.
OperationUpd(0):

(00)′ = new(0),

(0
0
)′ = new(0) · 0 0

|(0)′ .

OperationSync(a, b):

(ak)′ = (bk)′ =

8<:aa t
ab

bb if k ∈ {a, b},
ak t

ab
bk otherwise,

if k ∈ {a, b}:

(a k)′ = (b
k
)′ =

(
b

b
|(b)′ if aa ∈ b,

a a
|(a)′ otherwise,

if k 6= a andk 6= b:

(a k)′ =

(
b

k
if (ak)′ 6= ak,

a k otherwise,

(b
k
)′ =

(
a k if (bk)′ 6= bk,

b
k

otherwise.

Fig. 7. Semantics of operations on BS model.

Data causality ordering under the Bounded Stamps model is defined by

Ba ≤B Bb iff aa ∈ b.

The correctness of the proposed model follows from the observation that, apart from
the cached orders used for the symbol reuse mechanism, it is actually an encoding of
the CMPV model. To formalize the correspondence between both models, we introduce
an encoding function[[−]]− that maps each integer in the CMPV model into the corre-
sponding symbol (inLN) in the state resulting from a given trace. This map is defined
recursively on the traces.

[[n]]Init() = 0,

[[n]]α ·Upd(0) =

{
new(0α) if n =

∣∣α|Upd(0)

∣∣ + 1,

[[n]]α otherwise,
[[n]]α · Sync(x,y) = [[n]]α.

Where
∣∣α|Upd(0)

∣∣ is the number of update events inα, 0α is the bounded stamp for the
primary after traceα, andnew(0α) gives a canonical choice for the new principal ele-
ment on the primary after the update. When we discard the cached orders, the semantics
of operations given in Fig. 7 are precisely the ones in CMPV (Figure 6) affected by the
encoding map. Moreover, the principal orders are encodings for the restricted orders
presented in the previous section.

Lemma 2. For an arbitrary traceα, replicas indexa andb:

1. ak = [[ak]]α,

2. [[ai]]α = [[aj]]α implies ai = aj ,

3. x ≤a y iff [[x]]α ≤B
a [[y]]α.

Proof. This results from a simple induction on the length of traces. When the last oper-
ation wasInit() it is trivial. When it wasUpd(0), the result follows from the induction
hypothesis and the axiom for the oraclenew(−). When it wasSync(x, y) the result
follows from induction hypothesis, the fact that definitions on both models coincide
since≤ab computes the required joins (Proposition 3), and the correctness of the new
restricted orders (Proposition 4).

As a simple consequence of the previous result, we can state the following correct-
ness result.

Proposition 5. For any arbitrary traceα and replica indexesa andb we have

Ba ≤B Bb iff Ca ≤C Cb.

Proof. Immediate from Lemma 2 and the definitions of≤B and≤C.

It remains to instantiate the parameters of the model. A trivial but unbounded in-
stantiation would be: setLN as the integers,0 as value0 andnew(0) = 00 + 1. In this
setting, principal orders would be an explicit representation of counter mode restricted
orders. Obviously, we are interested in bounded instantiations ofLN . To show that such
instantiations exists, we introduce the following lemma that puts in evidence the role of
cached orders.

Lemma 3. For every stampBa there exists ani such that

aa ⊆ 0 i
.

Proof. See [1].

We are now able to present a bounded instantiation for the model. LetLN be a
totally ordered set withN2 elements (the total order is here only to avoid making non-
deterministic choices). We define:

0 = uLN ,

new(a) = u{x | x ∈ LN and x /∈ a}.

Lemma 3 guarantees thatnew(0) satisfies the axiom. It follows then that it acts as an
encoding of counter mode model (Proposition 5). Thus we have constructed a bounded
model for the data causality problem in a slice, which generalizes, by concatenating
slices, to the full data causality problem addressed by version vectors.

6 Related Work

On what concerns bounded replacements for version vectors there is, up to our knowl-
edge, no previous solution to the problem. The possible existence of a bounded sub-
stitute to version vectors was referred in [2] while introducing the version stamps con-
cept. Version stamps allow the characterization of data causality in settings where ver-
sion vectors cannot operate, namely when replicas can be created and terminated au-
tonomously.

There have been several approaches to version vector compression. Update coalesc-
ing [15] takes advantage of the fact that several consecutive updates issued in isolation
in a single replica can be made equivalent to a single large update. Update coalescing
is intrinsic in bounded stamps since sequence restriction in the update operation dis-
cards non-propagated symbols. Dynamic compression [15] can effectively reduce the
size of version vectors by removing a common minimum from all entries (along each
slice). However, this technique requires distributed consensus on all replicas and there-
fore cannot progress if one or more replicas are unreachable. Unilateral version vector
pruning [17] avoids distributed consensus by allowing unilateral deletion of inactive
version vectors entries, but relies on some timing assumptions on the physical-clock’s
skew.

Lightweight version vectors [9] develop an integer encoding technique that allows a
gradual increase of integer storage as counters increase. This technique is used in con-
junction with update coalescing to provide a dynamic size representation. Hash histories
[10] track data causality by collecting hash fingerprints of contents. This representation
is independent of the number of replicas but grows in proportion to the number of up-
dates.

The minimality of vectors clocks as a characterization of Lamport causality [12],
presented by Charron-Bost [4] and recently re-addressed in [7], indicates particular runs
where the full expressiveness of vectors clocks is required. However there are cases
in which smaller representations can operate: Plausible Clocks [20] offer a bounded
substitute to vectors clocks that are accurate in a large percentage of situations and
may be used in settings were deviations only impacts performance and not correctness;
Resettable Vector Clocks [3] allow a bounded implementation of vector clocks under a
specific communication pattern between processes.

The collection of cached copies of the knowledge in other replicas has been explored
before in [6, 21] and used for optimization of message passing strategies. This concept is
sometimes referred to as matrix clocks [16]. These clocks are based on integer counters
and are similar to our intermediate “counter mode principal vector” representation.

7 Conclusions

Version vectors are the key mechanism in the detection of inconsistency and obsoles-
cence among optimistically replicated data. This mechanism has been used extensively
in the design of distributed file systems [11, 8], in particular for data causality tracking
among file copies. It is well known that version vectors are unbounded due to their use
of counters; some approaches in the literature have tried to address this problem.

We have brought the attention to the fact that causally ordering a limited number of
replicas does not require the full expressive power of version vectors. Due to the limited
number of configurations among replicas, data causality tracking does not necessarily
imply the use of unbounded mechanisms. As a consequence, Charron-Bost’s minimality
of vector clocks cannot be transposed to version vectors.

We have noted that to find a bounded alternative to version vectors, it was enough
to concentrate on a sub-problem: keeping distributed knowledge about a total order
generated by a single entity.

The key to bounded stamps was defining an intermediate unbounded mechanism
and showing that it was possible to perform comparisons without requiring a global total
order; this was the bulk of the proof correctness; bounded stamps were then derived as
an encoding into a finite set of symbols. This required the definition of a non-trivial
symbol reuse mechanism that is able to progress even if an arbitrary number of replicas
ceases to participate in the exchanges. This mechanism may have a broader applicability
beyond its current use (e.g. log dissemination and pruning) and become a building block
in other mechanisms for distributed systems.

The construction of the mechanism was supported by a simulator1, which was used
in the proof of correctness so as to probe (and discard) tentative hypotheses. The simu-
lator was also turned into a model checker which proved the correctness up toN = 4,
giving some confidence before the full proof of correctness was attempted.

Bounded version vectors are obtained by substituting integer counters on version
vectors by bounded stamps. It represents the first bounded mechanism for detection of
obsolescence and mutual inconsistency in distributed systems.

References

1. Jośe Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero. Bounded version vectors.
Technical Report UMDITR2004.01, Departamento de Informática, Universidade do Minho,
July 2004.

2. Paulo Śergio Almeida, Carlos Baquero, and Victor Fonte. Version stamps – decentralized
version vectors. InProceedings of the 22nd International Conference on Distributed Com-
puting Systems (ICDCS), pages 544–551. IEEE Computer Society, 2002.

3. A. Arora, S. S .Kulkarni, and M. Demirbas. Resettable vector clocks. In19th Symposium on
Principles of Distributed Computing (PODC’2000), Portland, 2000. ACM, 2000.

4. Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems.In-
formation Processing Letters, 39:11–16, 1991.

5. Colin Fidge. Timestamps in message-passing systems that preserve the partial ordering. In
11th Australian Computer Science Conference, pages 55–66, 1989.

6. Michael J. Fischer and A. Michael. Sacrificing serializability to attain high availability of
data. InProceedings of the ACM Symposium on Principles of Database Systems, pages
70–75. ACM, 1982.

7. V. K. Garg and C. Skawratananond. String realizers of posets with applications to distributed
computing. InProceedings of the ACM Symposium on Principles of Distributed Computing
(PODC’01), pages 72–80. ACM, 2001.

1 http://gsd.di.uminho.pt/bvv/bvv-simulator.py

http://gsd.di.uminho.pt/bvv/bvv-simulator.py�

8. Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page, Gerald J. Popek, and
Dieter Rothmeier. Implementation of the ficus replicated file system. InUSENIX Conference
Proceedings, pages 63–71. USENIX, June 1990.

9. Yun-Wu Huang and Philip Yu. Lightweight version vectors for pervasive computing devices.
In Proceedings of the 2000 International Workshops on Parallel Processing, pages 43–48.
IEEE Computer Society, 2000.

10. Brent ByungHoon Kang, Robert Wilensky, and John Kubiatowicz. The hash history ap-
proach for reconciling mutual inconsistency. InProceedings of the 23nd International Con-
ference on Distributed Computing Systems (ICDCS), pages 670–677. IEEE Computer Soci-
ety, 2003.

11. James Kistler and M. Satyanarayanan. Disconnected operation in the coda file system.ACM
Transaction on Computer Systems, 10(1):3–25, February 1992.

12. Leslie Lamport. Time, clocks and the ordering of events in a distributed system.Communi-
cations of the ACM, 21(7):558–565, July 1978.

13. Friedemann Mattern. Virtual time and global clocks in distributed systems. InWorkshop on
Parallel and Distributed Algorithms, pages 215–226, 1989.

14. D. Stott Parker, Gerald Popek, Gerard Rudisin, Allen Stoughton, Bruce Walker, Evelyn Wal-
ton, Johanna Chow, David Edwards, Stephen Kiser, and Charles Kline. Detection of mutual
inconsistency in distributed systems.Transactions on Software Engineering, 9(3):240–246,
1983.

15. David Howard Ratner.Roam: A Scalable Replication System for Mobile and Distributed
Computing. PhD thesis, 1998. UCLA-CSD-970044.

16. Fréd́eric Ruget. Cheaper matrix clocks. InProceedings of the 8th International Workshop
on Distributed Algorithms, pages 355–369. Springer Verlag, LNCS, 1994.

17. Yasushi Saito. Unilateral version vector pruning using loosely synchronized clocks. Techni-
cal Report HPL-2002-51, HP Labs, 2002.

18. Yasushi Saito and Marc Shapiro. Optimistic replication. Technical Report MSR-TR-2003-
60, Microsoft Research, 2003.

19. R. Schwarz and F. Mattern. Detecting causal relationships in distributed computations: In
search of the holy grail.Distributed Computing, 3(7):149–174, 1994.

20. F. J. Torres-Rojas and M. Ahamad. Plausible clocks: constant size logical clocks for dis-
tributed systems.Distributed Computing, 12(4):179–196, 1999.

21. G. T. J. Wuu and A. J. Bernstein. Efficient solutions to the replicated log and dictionary
problems. InProceedings of the ACM Symposium on Principles of Distributed Computing
(PODC’84), pages 232–242. ACM, 1984.

A Proof of Lemma 1

The hypothesis of Lemma 1 concern two stamps (saya andb) in which we can identify
some sort of conflict between each stamp knowledge: Stampb has a better knowledge
concerning the primary state (aa ≤ bb) but has an outdated vision concerning some
other stamp (sayk), i.e. bk ≤ ak. Lemma 1 states that when this happens stampb
already attributes the value ofak to some other stamp (sayl — that is,bl = ak). In order
to prove this result, it will be necessary to reinforce this statement: not onlybl = ak

but it is possible to identify a flow of information between stampl andk. Moreover, this
flow of information (a sequence of synchronization operations starting froml to k) can
be traced in stampb’s local state as a sequence of indexes enjoying some properties.
These sequence of indexes are calleddelay pathsand are defined as follows.

Definition 1 (Delay Path).A delay pathbetweenak andb is a non-empty sequence of
indexes〈i0, . . . , in〉 such that, for any stampc,

1. i0 = k,
2. bin = ak,
3. bip < ak for all 0 ≤ p < n,
4. ak ≤ ip

ip−1 for all 0 < p ≤ n,
5. ak < cip ⇒ ak ≤ cip−1 for all 0 < p ≤ n.

Some simple facts concerning delay paths.

Proposition 6. Let 〈i0, . . . , in〉 be a delay path betweenak andb. The following facts
hold:

1. bk ≤ ak,
2. ak ∈ b,
3. ak ≤ ip

ip for all 0 ≤ p ≤ n,
4. b ∈ 〈i0, . . . , in〉 ⇒ n = 0.

Proof. The first three facts are immediate consequences from the definition and Propo-
sition 1. Regarding the last fact, ifb occurred in a positionip, beingn > 0, by condition
(4) of delay paths we haveak ≤ bip−1 ; but this contradicts condition (3). Thus,b only
occurs in a singleton delay path.

Some of the conditions on delay paths impose global constrains on them that will
allow to reason about global state changes and their impact on the local states. The
following Lemma exposes the use of such global constrains.

Lemma 4 (Pointwise-join Lemma). Let 〈i0, . . . , in〉 be a non-empty sequence of in-
dexes. If for somex,

1. bin = x,
2. for all 0 ≤ p < n, bip < x,
3. for all 0 < p ≤ n and any stampc, if x < cip thenx ≤ cip−1 .

Then, for any stampd for whichdi0 ≤ x, there exists0 ≤ q ≤ n such thatbiq t diq = x
and, for all0 ≤ p < q, bip t dip < x.

Proof. By induction on the length of the sequence〈i0, . . . , in〉. For the base case (sin-
gular sequence) we have thatbi0 = x. Sincedi0 ≤ x we havebi0 t di0 = x and
the remaining condition is vacuous. For the induction step, we consider the following
cases: Ifdi0 = x then we setq = 0 sincebi0 t di0 = x. Otherwise, we know that
bi0 t di0 < x and, by (4), thatdi1 ≤ x. So we apply the induction hypothesis to the
sequence〈i1, . . . , in〉 and setq to the resulting index plus 1.

We now show that the conditions in Lemma 1 are sufficient to establish the existence
of delay paths.

Lemma 5. If a andb are two stamps andk a position such that

aa ≤ bb and bk ≤ ak,

then there exists a delay path betweenak andb.

Proof. We prove by induction on the length of the trace. If the last operation wasInit()
we use the singleton sequence〈k〉 for the delay path and the conditions hold trivially.
If the last operation wasUpd(0) consider the following cases:

a = b = 0: we pick the sequence〈k〉 that satisfies trivially all conditions;
a = 0 6= b: after the updateaa 6≤ bb, which contradicts the hypothesis;
b = 0 6= a: if k = 0 thenbk 6≤ ak, which contradicts the hypothesis. Ifk 6= 0 we use

the same delay path that comes from the induction hypothesis, which is still valid
after the update because it does not contain position0, sinceb = 0 6= k (Proposition
6).

0 6∈ {a, b}: we use the same delay path from the induction hypothesis, which is still
valid: (1,2,3) becausea andb are not affected by the update; (4) because only00

changes; (5) because even if for somep we haveip = 0, if ak < 00, thenak ≤ 0ip−1

due to (4).

If the last operation wasSync(x, y) (and lets assume, without loss of generality, thaty
is the more up-to-date stamp, i.e.xx ≤ yy) we need to distinguish the following cases:

{x, y} ∩ {a, b} = ∅: we use the same delay path from the induction hypothesis, which
is still valid: (1,2,3) becausea andb are not affected; (4) becauseip

ip−1 can only
increase; (5) because for everyc = x t y, if ak < cip , then eithercip is computed
pointwise andak ≤ cip−1 follows from the induction hypothesis, orip is eitherx
or y and (by 4)ak ≤ ip

ip−1 ≤ cip−1 .
{x, y} = {a, b}: stampsa andb become equal after the synchronization and we pick

the sequence〈k〉 for the delay path;
{x, y} ∩ {a, b} = {a} 6= {b}: in this case the stampa results from the synchronization

of x andy and we havexx ≤ yy = aa ≤ bb. Consider the following two cases:
Whenk = x andxx < yy = ak. First, given thatyy ≤ bb andby ≤ yy, we can
apply the induction hypothesis toy andb on indexy and establish the existence
of a delay path〈i0 = y, . . . , in〉 for yy in b. Then we prefix it byk, obtaining
〈k, y, . . . , in〉, which is a suitable delay path betweenak and b, given that: (1)
holds by construction, (2) from the induction hypothesis, (3) from the induction
hypothesis andbk < ak (sincebk ≤ xx < yy = ak); (4) from the induction
hypothesis andak = yy = yx = yk; (5) from the induction hypothesis and because
for every stampc, cy ≤ yy = aa = ak.
Otherwise, then eitherak = xk or ak = yk; applying the induction hypothesis
to eitherxk or yk andb in positionk gives us a valid delay path for the resulting
configuration (all conditions hold, including (5) as shown for the case{x, y} ∩
{a, b} = ∅).

{x, y} ∩ {a, b} = {b} 6= {a}: in this case the stampb results from the synchronization
of x andy.

Whenk is eitherx or y, we havebk = bb = yy; but this means (asaa ≤ bb and
bk ≤ ak) thatak = bk; therefore〈k〉 is a delay path.
Otherwise,bk = xk t yk; this means thatyk ≤ bk ≤ ak and by the induction
hypothesis there exists a delay pathP betweenak andy. Given that alsoxk ≤ ak,
Lemma 4 establishes the existence of a sequenceQ = 〈i0, . . . , iq〉 (prefix of P)
that is a delay path betweenak andb for the following reasons. Positionsx andy
do not appear inQ — x, y 6= i0 because we are assumingk 6= x, y, andx, y 6= ip
for p > 0, otherwise we would haveak ≤ xip−1 , yip−1 (condition (4) of delay paths
of which Q is a prefix) and thenak ≤ xip−1 t yip−1 , which contradicts Lemma 4.
Thus, all elementsbj , with j ∈ Q are computed pointwise (i.ebj = xj t yj),
making conditions (2,3 and 5) immediate consequences of Lemma 4. Condition
(1) is trivially observed (Q is a prefix ofP); and condition (4) from the induction
hypothesis and because upon a join values can only increase.

We can finally state Lemma 1.

Lemma (1). For every stampCa andCb, and every indexk,

aa ≤ bb and bk ≤ ak implies ak ∈ b.

Proof. Direct from Lemma 5.

B Proof of Lemma 3

Lemma 3 says that each principal order is already contained in some cached order on
the primary. Note that Lemma 1 already states that every principal elementaa belongs
to the primary principal vector, and delay paths were used to show where it can be
found. Now, we will show that it is precisely in the primary cached order located in
the position pointed out by the delay path betweenaa and0 that we can find all the
elements inaa. To prove this we need to reason about cached orders along delay paths.
This suggests an extension of these to what we callprincipal delay paths.

Definition 2. A principal delay pathfor stampBa is a delay path〈i0, . . . , in〉 between
aa and0 that additionally satisfies the following condition: for every0 ≤ p ≤ n and
any stampBc,

aa = cip implies aa ⊆ c ip or
(p > 0 and aa ≤ cip−1).

We now prove the existence of principal delay paths by extending the proof of exis-
tence in Lemma 5. Here we only go through the cases that are relevant for the additional
condition.

Lemma 6. For every stampBa there exists a principal delay path.

Proof. (Sketch)
Consider the following additional arguments to the proof of Lemma 5. If the last

operation wasSync(x, y) (assumexx ≤ yy):

{x, y} ∩ {a, 0} = ∅: let c = xt y. If ip is eitherx or y, we know thatp > 0 (since
a 6∈ {x, y}). Let cip = xx t yy = yy. Whenaa = cip , by condition (4), we have
aa ≤ xip−1 or aa ≤ yip−1 which determines thataa ≤ cip−1 . Whencip is computed
pointwise, the new condition follows by the induction hypothesis.

{x, y} ∩ {a, 0} = {a} 6= {0}: whena = x andxx < yy, let 〈i0 = y, . . . , in〉 be the
principal delay path fory. The new condition if verified for〈a, y, . . . , in〉 since, the
casec 6= y is trivial (becauseca = cx ≤ xx < yy = aa). For c = y, the new
condition is satisfied sinceaa ⊆ y y (Proposition 4).

{x, y} ∩ {a, 0} = {0} 6= {a} in this case the primary results from the synchronization
of x andy (i.e. y is the primary before synchronization). Sincex 6= a, then0a is
computed pointwise. By induction hypothesis we get a principal delay pathP to
which we apply Lemma 4 to get a new sequenceQ wherex andy never occur (c.f.
proof of Lemma 5). The new condition follows by the induction hypothesis.

Lemma (3). For every stampBa there exists a positioni such that

aa ⊆ 0 i
.

Proof. Let 〈i0, . . . , in〉 be the principal delay path fora (given by Lemma 6). Instanti-
ating the new condition for0 on in we get that

aa ⊆ 0 in .

