
Evaluating Certification Protocols in the

Partial Database State Machine
�

A. Correia Jr.
�

A. Sousa J. Pereira R. Oliveira F. Moura

Universidade do Minho

Abstract

Partial replication is an alluring technique to ensure the reliability of very large and geographically

distributed databases while, at the same time, offering good performance. Partial replication is done

by splitting the database according to application semantics and then by replicating each fragment at

a subset of the available sites. Access locality should allow that each transaction needs only a small

subset of all sites to execute and commit thus reducing processing and communication overhead

associated with replication.

The advantages of partial replication have however to be weighted against the added complexity

that is required to manage it. In fact, if the chosen configuration cannot make transactions execute

locally or if the overhead of consistency protocols offsets the savings of locality, potential gains

cannot be realized. Unfortunately, both these issues are heavily dependent on the application used

for benchmarking thus rendering simplistic benchmarks useless.

In this paper we present a detailed analysis of Partial Database State Machine (PDBSM) replica-

tion by comparing alternative partial replication protocols with full replication. This is done using a

realistic scenario based on a detailed network simulator and access patterns from an industry stan-

dard database benchmark. The results obtained allow us to identify the best configuration for typical

on-line transaction processing applications.

Keywords: Distributed Databases, Replication, Group Communication, Performance Evaluation.
�

Research funded by FCT, STRONGREP project (POSI / 41285 / CHS / 2001).�
Contact author. email: alfranio@lsd.di.uminho.pt Address: Departamento de Informática -Universidade do Minho, Cam-

pus de Gualtar, 4710-057 Braga, PORTUGAL

1

1 Introduction

Database replication based on group communication has recently been the subject of several research

efforts [3, 16, 13, 14, 19]. These have shown that scalability and performance limitations of traditional

database replication protocols, mostly involving distributed locking and atomic commitment [10], can

be overcome by taking advantage of order and atomicity properties of reliable multicast as offered by

group communication [6]. In contrast to the so called lazy or asynchronous replication strategies often

implemented in commercial products, this approach preserves 1-copy serializability [4].

One of the solutions that uses this approach is the Database State Machine (DBSM) [16]. Briefly,

each transaction request is optimistically executed by a single site. Upon entering the committing stage,

the outcome of the transaction is propagated to all replicas using an atomic multicast protocol. A cer-

tification procedure is run upon delivery by all sites to determine whether the transaction should be

committed or aborted due to conflicts with other concurrently executed transactions. Total order and

the determinism of the certification procedure ensure strong consistency. As deterministic execution is

confined to the certification procedure, no restrictions impairing performance are imposed on scheduling

during the execution stage.

The DBSM is however a full replication protocol: It assumes that the outcome of each transaction is

multicasted to all sites, which have complete copies of the database on which the certification procedure

can be run. On the other hand, partial replication is done by splitting the database according to application

semantics and then by replicating each fragment at a subset of the available sites. During certification, it

is expected that sites are only bothered with those fragments that are stored locally. This means however

that sites might fail to recognize conflicts related to fragments which are not locally available. Different

sites would therefore be able to decide differently and become inconsistent.

This is unfortunate as partial replication is invaluable for the scalability and performance of very large

and geographically distributed databases. Fragmentation allows less relevant data items to be replicated

by fewer sites. Access locality allows that data items are kept close to those sites that need them more

often. If each transaction needs only a small subset of all sites to execute and commit, the processing and

communication overhead associated with replication can be reduced.

The DBSM can be extended for partial replication [19] by adding a third stage to the protocol. After

2

certification, each site collects votes from at least a representative from each fragment accessed by the

transaction. The transaction is allowed to commit only if no conflicts happen in any of the fragments,

restoring strong consistency. The advantages of partial replication have however to be weighted against

the added complexity that is required to manage it. In fact, if the chosen configuration cannot make

transactions execute locally or if the overhead of consistency protocols offsets the savings of locality,

potential gains cannot be realized.

In this paper we address this issue by presenting a detailed analysis of Partial Database State Ma-

chine (PDBSM) replication. Specifically, we compare (i) the original DBSM protocol with (ii) a partial

replication protocol in which full certification is performed by all sites and (iii) a partial replication

protocol with the additional voting phase.

The trade-offs involved are however heavily dependent on the application used for benchmarking,

thus rendering simplistic benchmarks useless. Namely, depending on how the database is fragmented

and on transaction profiles, the overhead of full certification might compare differently with the voting

phase. Our approach is thus to use a realistic scenario based on a detailed network simulator [8] and

access patterns from the industry standard TCP-C [22] database benchmark. The results obtained allow

us to identify the best configuration for typical on-line transaction processing applications, as well as to

precisely characterize the trade-offs involved, thus gathering valuable knowledge on how to fragment the

database.

The rest of this paper is structured as follows: Section 2 introduces some important definitions such

as the system model, and the distributed data environment. In Section 3 we present an execution model

of the Partial Database State Machine along with two alternative termination protocols. In Section 4, we

describe the simulation model, the workload pattern used (TPC-C) and analyze the simulation results. In

Section 5, we present related works and we conclude in Section 6.

2 System Model and Definitions

We consider a distributed system composed of two completely connected sets �����
	�����������	���� and
� �����
��������������� , respectively of database and client sites. Sites communicate through message passing

(i.e., no shared memory). The system is asynchronous in that we make no assumptions about the time it

3

takes for a site to execute a step nor the time it takes for messages to be transmitted.

Sites may only fail by crashing (i.e., no Byzantine failures), and we do not rely on site recovery for

correctness. We assume that our asynchronous model is augmented with a failure detector oracle [5] so

that Atomic Multicast and View Synchronous Multicast [6] are solvable.

2.1 Databases and Transactions

A relational database � �!�"��#$����������#&%�� is a set of relations #('*)+�,�(-.�����/-0�21 defined over data

sets not necessarily distinct. Each element 354/���4768��������491�: of a relation #(' is called a tuple and each 4;' is

called an attribute. To uniquely identify each tuple of a relation, we assume the existence of a minimum

nonempty set of attributes, called the primary key.

The relations of the database can be fragmented horizontally and vertically by means of two op-

erators. The horizontal fragmentation of a relation #<' corresponds to a predicate selection and can be

defined as =>35#('?�@A:B�C��DFE
DHGI#J'�KL@B3MDN:�� . The vertical fragmentation of #&' is a projection of the relation

over a set of attributes and can be defined as OP35#<'QSRA:T�U��DNVWE D*GX#J'?� such that D�V$�$YZ�������4\[]�������^_[�`]V .
We consider a distributed relational database as a relational database whose relations are distributed

among the set � of database sites. This distributed database is given by �,� �a)b�,�a-c� .

Client sites submit transaction requests to database sites. A transaction represents a sequence of

operations of the relational algebra [24, 7], followed by a commit or abort operation. The result of

executing a transaction is a sequence of reads and writes of tuples. The read set of a transaction D ,
denoted by #<�H3MD�: , is the set of primary keys identifying the tuples read by D . Its write set, de�H3MD�: is the

set of primary keys identifying the tuples written by D , and deOP3MDN: , called write values, the set of tuples

written by D .

2.2 The Database State Machine

The Database State Machine [17] is based on the deferred update replication technique [4] which reduces

the need for distributed coordination among concurrent transactions during their execution. Using this

technique, a transaction is locally synchronized during its execution at the database where it initiated

according to some concurrency control mechanism [4] (e.g., two-phase locking, multiversion). From

4

a global point of view, the transaction execution is optimistic since there is no coordination with any

other database site possibly executing some concurrent transaction. Interaction with other database sites

on behalf of the transaction only occurs when the client requests the transaction commit. At this point,

a termination protocol is started: f) the transaction write values, read and write sets are atomically

propagated to all database sites, and fgf) each database site certifies the transactions determining its fate:

commit or abort.

The DBSM provides 1-copy-serializability [4] as its consistency criteria [16]. To ensure the same

sequence of committed transactions at all database sites the technique requires transactions to be: f)
executed only once, and its write values applied to all sites, fgf) totally ordered and, fgfgf) deterministically

certified and committed.

In order for a database site to certify a committing transaction D , the site must be able to determine

which transactions conflict with D . A transaction D�h conflicts with D if: f) D and Dih have conflicting opera-

tions and fgf) D h does not precede D .
Two operations conflict when they are issued by different transactions, access the same data item and

at least one of them is a write operation. The precedence relation between transactions D and D�h is denoted

D hkj D (i.e., D h precedes D) and defined as: f) if D and D h execute at the same database site, D h precedes D if

DQh enters the committing state before D ; or fgf) if D and D�h execute at different sites, for example 	8' and 	l[,
respectively, D h precedes D if D h commits at 	
' before D enters the committing state at 	8' .

3 Partially Replicated Database State Machine

Releasing the assumption that each database site contains a full copy of the database directly impacts

both the execution and the certification of transactions. In this section we address the issues raised by

partial replication in the Partial Database State Machine (PDBSM). In detail, we address the execution

model and two possible termination protocols that deal with partial replication, with either independent

or coordinated certification.

5

3.1 Transaction Execution

From the time it starts until it finishes, a transaction passes through some well-defined states. A transac-

tion is considered to be in the executing state as soon as the request is received by an initiator site and

until a commit operation is issued. The transaction then enters the committing state and the distributed

termination protocol is started. Unlike the DBSM, the initiator site in a partial replication setting may

not be able to locally complete the execution of a transaction. In fact, it is possible that no single site

can, if the required fragments are nowhere held together. Therefore, the execution of a transaction D in

the PDBSM requires that the initiator site 	m' coordinates the distributed processing of D among a set of

sites that together contain all the fragments accessed by D . Roughly, the initiator site 	9' goes through the

following steps [15]: f) it parses each request and rewrites the operations mapping the original database

relations into the actual fragments, fnf) selects the appropriate sites for each fragment accessed by D , fgfgf)
constructs D ’s execution plan, and fgo) starts the distributed execution. Concurrency control is performed

locally by each site when executing operations on behalf of the initiator site. In this paper we consider

multiversion locking [4].

3.2 Termination Protocol

An issue of major impact for the PDBSM is how the results of the transaction distributed processing

are handled. While in the DBSM, the whole set of write values, read and write sets were relevant to

all database sites, in a fragmented database this is no longer true. On the contrary, the fragmentation of

the database is meant to exploit data and operation locality and therefore the propagation of write values

should be restricted to the sites replicating the involved fragments.

With respect to the read and write sets, however, it is not obvious whether they should be propagated

to all database sites or just to those containing the relevant fragments. Indeed, this directly influences the

certification phase and establishes a trade-off between network usage and protocol latency. If the whole

read and write sets of the transaction are fully propagated, then it will enable each site to independently

certificate the transaction. Otherwise, if each site is provided with only the parts of the read and write sets

regarding the site’s fragments, then it can only make a partial judgment and the transaction certification

requires a final coordination among all sites. In the following we detail these two termination protocols

6

and in Section 4 we evaluate them.

3.2.1 Independent Certification

With the propagation of the whole read and write sets to all database sites we adopt a termination proto-

col similar to that of the DBSM, in which each site can independently certify the transactions. As soon

as a transaction D enters the committing state, all sites containing database fragments involved in the

transaction are requested to stabilize the transaction write values. The stabilization of a fragment ensures

that all sites are able to participate on the termination protocol and to eventually commit the transaction

despite the failure of the sites involved on the transaction execution. By request of the initiator site 	p' ,
each database site 	�[involved on the execution reliably multicasts the transaction write values of the

fragments it is responsible for to all sites replicating these fragments. The initiator 	 ' receives a stabi-

lization acknowledgment, in the form of read and write sets, from 	
[. Should 	l[fail, 	�' may unilaterally

decide to abort the transaction. Notice that view synchrony ensures that there is no ambiguity on which

transactions should be aborted due to site failures during stabilization.

Once the initiator site gathers all the acknowledgments, it atomically multicasts the transaction read

and write sets to all database sites. This message totally orders the certification of D , and thus upon

delivery of the message, along with the read and write sets of previously certified transactions, each site

has the necessary knowledge to certify D . If D passes the certification test, all write values of D previously

obtained during D ’s stabilization phase are applied to the database and D passes to the committed state.

Otherwise, D passes to the aborted state. Transactions in the executing state holding locks on data items

updated by D are aborted when D commits.

The cost of independent certification is given by the cost in network bandwidth of propagating the

whole read and write sets to all sites, plus the cost, at each site, of keeping these read and write sets

while required for the certification of pending transactions, and finally the cost of certifying the whole

transaction at each site. From these, our main concern should actually be on the network usage. The

read and write sets of a transaction D can be discarded as soon as D is known to precede every pending

transaction, that is, any transaction in the executing or committing state. The difference in the cost of

doing total or partial certification is almost negligible.

7

3.2.2 Coordinated Certification

On the other hand, to fully exploit data locality we restrict the propagation of the transaction read and

write sets to the database sites replicating the corresponding fragments. The knowledge required to

certify a transaction becomes itself fragmented and each site may only be able to certify part of the

transaction. Therefore, a final coordination protocol is required.

Once the transaction reaches the committing state the initiator site requests all sites containing

database fragments involved in the transaction execution to stabilize. Each one of these sites reliably

multicasts the read and write sets and write values of the transaction’s fragments it is responsible for to

all sites replicating these fragments and acknowledges the end of the stabilization.

Once the initiator site gathers all the acknowledgments it atomically multicasts a message to all sites

to totally order the certification of D . Upon the delivery of the message, each database site 	 [certifies

D against the fragments it replicates and votes on a Resilient Atomic Commitment (RAC) protocol to

decide the final state of D . This protocol allows participants to decide commit even if some of the replicas

of a fragment read or written by the transaction are suspected to have failed, as a single representative

from each fragment suffices. Resilient Atomic Commit satisfies the same agreement and termination

properties of Weak Non-Blocking Atomic Commit [11] and is defined as follows:

Agreement: No two participants decide differently.

Termination: Every correct participant eventually decides.

Validity: If a site decides commit for D , then for each fragment accessed by D there is at least a site 	;'
replicating it that voted yes for D .

Non-triviality: If for each fragment accessed by D there is at least a site 	9' replicating it that votes yes

for D and is not suspected, then every correct site eventually decides commit for D .

If the outcome of the RAC is commit, then all write values of D previously obtained during D stabi-

lization phase are applied to the database and D passes to the committed state. Otherwise, D passes to the

aborted state. If D commits, at each database site, transactions in the executing state holding locks on

data items updated by D are aborted.

8

The RAC protocol is trivially implemented by having each site multicast its vote. A site decides

upon receiving a vote from at least a representative of each database fragment. Evaluating the cost of a

protocol by its latency degree, as introduced in [18], we easily conclude that this is the implementation

of RAC offering the lowest cost.

3.2.3 Implementation Issues

In this section we point out several optimizations to the PDBSM termination protocols. We chose to

present them separately to avoid cluttering the description of the protocols with performance oriented

concerns. All of these optimizations were included in our PDBSM prototype and contribute to the

experience results presented in Section 4.

In order to allow independent certification and ensure 1-copy-serializability every database site must

have access to both read and write sets [16]. However, sometimes it becomes prohibitive to send the read

set due to its large size. This issue can be circumvented by the definition of a per relation threshold, above

which it is assumed that the read set corresponds to the entire relation. This solution can enormously

reduce network bandwidth consumption and transaction latency, at the cost of possibly increasing the

number of transaction aborts due to the coarser grain in conflict detection.

An optimization that has been used in [19] and can also be applied in large-scale settings [20] is

the use of the Fast Atomic Broadcast protocol. The idea behind this protocol is simple and consists

in the early delivery of transactions with a tentative order, allowing an optimistic certification to run

concurrently to the total ordering protocol. Whenever the tentative order matches the final delivery

order, this allows to overlap the final delivery of the transaction with its certification.

A structural optimization that can be applied to the coordinated certification protocol (Section 3.2.2)

consists in eliminating the stabilization phase prior to the multicast totally ordering the transaction.

Avoiding the stabilization acknowledgment messages across a long distance link can definitely reduce

the latency of the protocol. To do so, the multicast totally ordering the transaction is done right after the

commit request from the client and the write values stabilization postponed. When a site 	m[responsible

for executing the transaction on fragment q delivers the totally ordered message, 	8[certifies the transac-

tion against q and determines its vote. Its vote should be the same for all the database sites containing

9

copies of q . Therefore, instead of stabilizing D ’s write values, and read and write sets among the copies

of q , it uses view synchronous multicast to stabilize the write values and the fragment’s vote for D . Upon

the stabilization, each site containing q skips the certification phase and can immediately vote on the

RAC protocol. The trade-off here consists in delaying the point where the termination protocol becomes

resilient to the crash of 	�[, from a stabilization phase prior to the atomic multicast totally ordering D to

the beginning of the RAC.

Another optimization regarding the stabilization phase can be applied to fully replicated fragments.

The transaction write values regarding these fragments can be included in the atomic multicast message

which already ensures data stability upon delivery. This avoids the preliminary stabilization step.

4 Experimental Results

In this section, we use a simulation model to compare a fully replicated DBSM with partial replication

using the PDBSM. This is done with both independent and coordinated certification. We start by briefly

describing the simulation model and the traffic used. Afterwards we present and discuss the results.

4.1 Simulation Model

The model used combines simulated components for the network, database execution and traffic gen-

eration with real implementation of group communication and certification protocols. This provides a

centralized environment for testing and evaluating the performance of those components in which we

are interested, without the burden of a complete implementation and experimental setup. It allows also

to compare different configurations using the exact same input load replayed from trace files. A de-

tailed analysis of this simulation model is beyond the scope of this paper and is presented elsewhere [21].

Nonetheless, we briefly describe the operation of the model for completeness.

Traffic is injected by a set of clients. Each client is single threaded and communicates with only one

server. A trace is used to drive the client, specifying the sequence of transactions to be submitted. The

trace determines also the amount of time to wait before each transaction is submitted, thus modeling

think-time. Each transaction is specified as a sequence of operations that consume resources. Namely,

the request specifies CPU time, data to be read or written from disk, and the identifiers of data items

10

Relations Cardinality Tuple Length Relation Size
Warehouse 1 89 bytes 0.089 k bytes
District 10 95 bytes 0.950 k bytes
Customer 30 k 655 bytes 19650 k bytes
History 30 k 46 bytes 1380 k bytes
Order 30 k 24 bytes 720 k bytes
New Order 9 k 8 bytes 72 k bytes
Order Line 300 k 54 bytes 16200 k bytes
Stock 100 k 306 bytes 30600 k bytes
Item 100 k 82 bytes 8200 k bytes

Table 1: TPC-C Relations (k is 1000)

to be used for concurrency control. These values are obtained by profiling a real database server when

submitted to the desired load. The database server is therefore modeled as a corresponding collection of

resources, operating under the direction of a centralized scheduler. Upon reception of a transaction, op-

erations are sequentially scheduled to execute on corresponding resources. After the transaction commits

or aborts, a reply is issued back to the originating client.

When a transaction enters the committing state, the associated information is handed to the certifica-

tion protocol described in the previous section and is implemented as real code. The time consumed by

real code is accounted for and used to update the simulation time and usage of CPU resources, thus real-

istically combining simulated and real components [2]. The underlying network model is also simulated,

allowing testing using arbitrary network topologies [8].

4.2 Application Profile

The application profile used is based on TPC-C [22], the industry standard on-line transaction processing

(OLTP) benchmark. TPC-C mimics a wholesale supplier with a number of geographically distributed

sales districts and associated warehouses. The traffic is a mixture of read-only and update intensive

transactions. The database relations and associated information are presented in Table 1 along with

initial sizes of relations for 10 clients. Notice that, according to TPC-C, an additional warehouse should

be configured for each additional 10 clients. The initial sizes of tables are also dependent on the number

of configured clients.

This application scenario can easily be extended to consider partial replication. Specifically, we

consider horizontal fragmentation of tables according to the warehouse. The rationale for this is that

11

Relations New Order Payment Order Status Deliver Stock Level
wharehouse 1 / 1 / 1 / / /
district 1 / 1 1 / 1 / / 1 /
customer 1 / 4 / 2 3 / 14 / 14 /
order / 1 / 1 / 14 / 14 /
new order / 1 / / 10998 / 10 /
order line / 9 / 10 / 149 / 149 9 /
stock 9 / 9 / / / 9 /
item 9 / / / / /
history / / 1 / / /

Table 2: Average number of tuples read/written by each transaction type.

these need to be replicated only locally within the warehouse itself and not globally. The exceptions are

Warehouse, Stock and Item which are globally replicated to preserve original application semantics in

which an order may be serviced by stock from any warehouse.

An emulated client can request five different transactions types as follows: New Order, adding a new

order into the system; and Payment, updating the customer’s balance, district and warehouse statistics.

Both these transactions occurring with a probability of 44%. With a probability of 4% each, there are:

Order Status, returning a given customer latest order; Delivery, recording the delivery of products; and

Stock Level, determining the number of recently sold items that have a stock level below a specified

threshold. Table 2 presents the average number of tuples read or written from each of the relations

accessed, in a run with 20 emulated clients.

Notice that TPC-C is used by us only as the basis for a realistic application scenario for evaluating

PDBSM design decisions and not as a benchmark. The constraints mandated for throughput, perfor-

mance, wait time, response time, screen load and background execution of transactions are not consid-

ered here and thus the results are not comparable with results obtained with TPC-C.

4.3 Analysis

We outline in this section an analysis of the bandwidth consumption for the termination protocols pre-

sented. To compare the protocols we consider a network setting that privileges access locality. The

network is composed of a wide area network (WAN) with low bandwidth and high latency, aggregating

several local area networks (LANs) with much higher bandwidth and much lower latency. We assume

that all the replicas of a fragment are in a LAN and thus admit that the bandwidth requirements for data

12

propagation between copies of the same fragment are irrelevant when compared with the effect of traffic

crossing long distance links.

The transactions read set, write set, and write values have been divided in two subsets: (i) a subset of

fully replicated data items called #<�sr , de�Wr and deO�r , and (ii) a subset containing partially replicated

items called #<�Wt , de�Wt and deO�t . We represent by #&u � the bandwidth required by the RAC protocol.

The following formulas present the required bandwidth for the termination protocols proposed:

DBSM vw#<� rIx de� ryx deO rIx #<� t$x de� tzx deO t (1)

PDBSM v{#<�Wr x de�Wr x deO�r x #<�/t x de�/t (2)

PDBSM + RAC vw#<�|r x de�Wr x deO�r x #&u � (3)

Comparing formulas 1 and 2, it can be easily seen that, in the proposed network setting, the PDBSM

protocol using independent certification has lower bandwidth consumption as write values never leave

LANs and thus never cross long distance links.

Similarly, from formulas 1 and 3, PDBSM protocol using coordinated certification is expected to out-

perform the DBSM protocol as long as the RAC’s required bandwidth does not exceed the requirements

for propagating the read and write sets, and the write values of partially replicated fragments.

Finally, formulas 2 and 3, reveal that coordinated certification is preferable when the bandwidth

required for the RAC does not exceed that for transmitting the read and write sets of partially replicated

fragments. Specifically, our simulation model has 6 database sites, 3 in each side of the long distance

link, and we use multisend to broadcast messages. Therefore, every atomic broadcast implies that 3 times

the estimated atomic broadcast message size crosses the long distance link (we ignore the message from

the coordinator establishing the message order as it will be the same in all protocols).

Considering the workload used in the simulation and characterized in Tables 1 and 2, the expected

size of the atomic broadcast messages for each transaction when using DBSM, partial replication with

independent certification (PDBSM) or partial replication with coordinated certification (PDBSM with

13

RS WS WV Total

DBSM

New Order 168 168 3367 3703
Payment 48 40 1540 1628
Order Status 112 0 0 112
Delivery 1424 1496 17632 20552
Stock Level 152 0 0 152

PDBSM

New Order 168 168 2754 3090
Payment 48 40 89 177
Order Status 112 0 0 112
Delivery 1424 1496 0 2920
Stock Level 152 0 0 152

PDBSM
with
RAC

New Order 152 72 2754 2978
Payment 8 8 89 105
Order Status 0 0 0 0
Delivery 0 0 0 0
Stock Level 72 0 0 72

Table 3: Expected message size.

DBSM PDBSM PDBSM with RAC
Size }
~����7� � �\��}��7��~ �
�\���]���������(�$�*�T�

Table 4: Average transaction required size.

RAC) are presented in Table 3. This values are obtained using equations 1, 2 and 3, respectively. A

threshold of 150 tuples is used for the read set.

Using this information along with the frequency probability of each transaction we estimate the per

transaction average size for each of the protocols. Considering that the traces used as simulation input

generates, on average, 3 new transactions per second, we can estimate the minimum bandwidth for data

transmission required for each protocol. The values of transaction size are presented in Table 4 and

exclude: IP, group management, protocol management and failure detection overheads.

The values in Table 4 suggest that partial replication should present better results than full repli-

cation. It should require about half the bandwidth of a fully replicated scenario. In the PDBSM with

RAC protocol this analysis depends on the message overheads since it requires 18 messages per RAC,

which means that just in IP headers, which are, about 40 bytes per message it requires 720 bytes. The

values presented led us to conclude that DBSM consumes more network resources than PDBSM and that

PDBSM should perform better when there is contention in the network.

Until now we have analyzed the required bandwidths but have said nothing about the expected laten-

cies of the protocols we are evaluating. Every protocol starts broadcasting the transaction using the fast

14

DBSM PDBSM PDBSM with RAC
Link (Kbps) 256 512 256 512 256 512
Latency (ms) 539.5 164.5 286.2 164.2 1572 223
Abort Rate (%) 21 8 13 8 34 13

Table 5: Simulation Results.

atomic broadcast protocol, and as this protocol propagates the messages concurrently with the ordering

mechanism, we expect that it will mask the differences in latency that should happen due to message

size. In a network without network congestion we expect that atomic broadcast contribution for the final

latency will be the same in all protocols. In such a scenario, PDBSM should be marginally better than

DBSM. The PDBSM with RAC protocol on the other hand incurs in the additional latency of the RAC

protocol and should present higher latencies.

4.4 Results

Simulation results have been obtained with a wide area network model, composed by a backbone net-

work with several routers connected through long distance links to which the 2 leaf networks (100 Mbps

LANs), containing each a group of 3 simulated database sites are connected. The network latency be-

tween two hosts in different leafs is 60 ms. Each site is configured according to the profiling of a server

equipped with 2 Pentium III 1GHz processors, 1GB RAM and a storage device with maximum through-

put of 9.486MBps1. The lock behavior is based in PostgreSQL’s multiversion and a cache hit ratio of 1

is assumed.

In order to evaluate our expectations about transaction latencies we ran a set of simulations using

long distance links of 256 and 512 Kbps, whose latency and abort rates are registered in Table 5. In

the simulation with bandwidth of 512 Kbps, DBSM and PDBSM present similar results. This confirms

our expectation that the additional amount of data required by the DBSM protocol should be masked by

the use of fast atomic broadcast. Also as expected PDBSM with RAC has higher latencies due to the

overhead of the RAC protocol. The higher abort rate of PDBSM with RAC is also a consequence of its

higher latency which increases the number of concurrent transactions in the system and consequently the

probability of conflicts.

1This value has been measured during a run of a TPC-C benchmark syncing after each finished transaction.

15

When the bandwidth is reduced to 256 Kbps, PDBSM is clearly the best choice. In this case there is

network contention and as such the atomic broadcast protocol can not mask the extra bandwidth required

by the DBSM protocol, which presents a latency almost 89% larger than PDBSM and an abort rate about

60% larger. The PDBSM with RAC results are worse than DBSM due to the higher number of messages

and by network congestion prevention mechanisms, which drop messages requiring its retransmission

and as such increasing the latencies and consequently the abort rates.

5 Related Work

Most of previous work on database replication using group communication [3, 16, 13, 14] concentrates

on full replication strategies. Along with the assumption of the deterministic processing of transactions

at every replica, the resulting protocols, characterized as non voting [23], take advantage of not requiring

a final agreement protocol.

To the best of our knowledge, the works in [1, 9, 19, 12] are the only ones to consider partial database

replication. Alonso in [1] discusses future trends for partial database replication based on atomic broad-

cast, stating that solutions for full replicated scenarios may not be solutions for partially replicated ones.

The work in [9] considers an object-oriented database and uses group communication primitives to im-

mediately broadcast read operations to all replicas of an item, and broadcast all write operations along

with the transaction commit request. Transaction atomicity is ensured by a final atomic commit protocol.

By contrast, we eliminate replica interaction during transaction processing in both approaches presented.

In [19], it is assumed that any transaction can be entirely executed in any database site thus not consider-

ing the distributed execution of transactions. Moreover, in [19] the termination protocol fully propagates

read and write sets and yet uses a final agreement protocol.

The work of [12] uses epidemic protocols for implementing a dynamic, adaptive replication schema.

Transaction execution is entirely local by temporarily caching relations not replicated at the initiator’s

site. Similarly to the PDBSM, transactions are executed optimistically without any coordination be-

tween database sites. Unlike the PDBSM that uses atomic multicast to tottaly order the certification of

transactions, in [12], the transaction read and write sets are epidemically propagated and the transac-

tion “certifies” at each site. By contrast to the PDBSM, a conflict between two transactions dictates the

16

abortion of both.

Except for [21], all the analysis of previous work uses simple workloads which do not realistically re-

produce the behavior of concurrency control on performance or of certification on the number of aborted

transactions. The accurate simulation of bandwidth usage in the network is also dependent on the realism

of the model.

Other important aspect of our work, is the simulation model. Usually, the researches mentioned

here implement full simulation, except [14] that uses a real DBSM implementation. However, a real

implementation makes difficult the setup and management of different experiments (e.g., exploit WAN

environments). The combination of simulated and real components [2] give us the possibility to use

different environment scenarios but focus on the components under study.

6 Conclusion

We analyze and evaluate two alternative protocols to extend the Database State Machine (DBSM) [16]

for partial replication. Our main goal is to reduce communication overhead associated with the full

replication by exploiting application data distribution and access locality.

In detail, the first alternative proposed propagates the read set and write set of each transaction ex-

ecuted to all replicas, while ensuring that the propagation of the updates is restrited to interested sites.

Our experimental results show that partial replication reduces the used bandwidth. The second protocol

ensures that both read and write sets as well as updates are all restricted to interested sites. Our exper-

imental results show that this approach is still better than full replication. The overhead of the required

final coordination protocol of this approach makes increases the required bandwidth. These results were

obtained with realistic traffic patterned after the industry standard TPC-C benchmark in which some fre-

quently used tables are fully replicated to preserve application semantics. Analysis shows that if a more

thoroughly fragmented database with strong access locality would make the second approach preferable.

The overall evaluation of PDBSM replication using a detailed model of an wide area network pre-

sented in this paper, is however sufficient to show that partial replication using this approach is useful for

large and geographically distributed databases.

17

Acknowledgments

We thank Luciano Rocha and Luis Soares for their helpful comments and suggestions on the elaboration

of this paper.

References

[1] G. Alonso. Partial database replication and group communication primitives (extended abstract).

In Proceedings of the � �8� European Research Seminar on Advances in Distributed Systems (ER-

SADS’97), 1997.

[2] G. Alvarez and F. Cristian. Applying simulation to the design and performance evaluation of fault-

tolerant systems. In IEEE Intl. Symp. Reliable Distributed Systems, 1997.

[3] Y. Amir, D. Dolev, P. Melliar-Smith, and L. Moser. Robust and efficient replication using group

communication. Technical Report CS94-20, Institute of Computer Science, The Hebrew University

of Jerusalem, Jerusalem, 1994.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, 1987.

[5] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of

the ACM, 43(2), 1996.

[6] G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: a comprehensive

study. ACM Computing Surveys, 33(4), December 2001.

[7] T. Connolly, C. Begg, and A. Strachan. Database Systems: A Pratical Approach to Design, Imple-

mentation and Management. Addison-Wesley, 1998.

[8] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski. Towards realistic million-node internet simula-

tion. In Intl. Conf. Parallel and Distributed Processing Techniques and Applications (PDPTA’99),

1999.

18

[9] U. Fritzke and P. Ingels. Systéme transactionnel pour donnés partiellement dupliqués, fondé sur la

communication de groupes. Technical Report 1322, INRISA, Rennes, France, 2000.

[10] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. In

Proceedings of theACM SIGMOD International Conference on Management of Data, volume 25,

2 of ACM SIGMOD Record. ACM Press, June 1996.

[11] R. Guerraoui. Revisiting the relationship between non-blocking atomic commitment and consen-

sus. In Proceedings of the 9th Intl. Workshop on Distributed Algorithms (WDAG-9), LNCS 972.

Springer-Verlag, 1995.

[12] J.-A. Holliday, D. Agrawal, and A. El Abbadi. Partial database replication using epidemic commu-

nication. In IEEE Intl. Conf. Distributed Computing Systems. IEEE, 2002.

[13] B. Kemme and G. Alonso. A suite of database replication protocols based on group communication

primitives. In IEEE Intl. Conf. Distributed Computing Systems, 1998.

[14] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, a new way to implement

database replication. In Proceedings of 26th Intl. Conf. Very Large Data Bases (VLDB 2000).

Morgan Kaufmann, 2000.

[15] D. Kossmann. The state of the art in distributed query processing. ACM Computing Surveys, 32(4),

2000.

[16] F. Pedone. The Database State Machine and Group Communication Issues. PhD thesis, Départe-

ment d’Informatique, École Polytechnique Fédérale de Lausanne, 1999.

[17] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach. Technical Report

SSC/1999/008, École Polytechnique Fédérale de Lausanne, Switzerland, 1999.

[18] A. Schiper. Early consensus in an asynchronous system with a weak failure detector. Distributed

Computing, 10(3), 1997.

[19] A. Sousa, F. Pedone, R. Oliveira, and F. Moura. Partial replication in the database state machine.

In IEEE Intl. Symp. Network Computing and Applications. IEEE Computer Science, 2001.

19

[20] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in wide area networks. In

Proc. 21st IEEE Symposium on Reliable Distributed Systems, pages 190–199. IEEE CS, October

2002.

[21] A. Sousa, J. Pereira, L. Soares, A. Correia Jr, L. Rocha, R. Oliveira, and F. Moura. Evaluating

the performance of the database state machine (DBSM). Technical report, Universidade do Minho,

Departamento de Informática, 2003.

[22] Transaction Processing Performance Council (TPC). TPC benchmark C standard specification

revision 5.0, 2001.

[23] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database replication techniques:

a three parameter classification. In Proceedings of 19th IEEE Symposium on Reliable Distributed

Systems (SRDS2000), pages 206–215, Nürnberg, Germany, October 2000. IEEE Computer Society.

[24] M. Özsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall International,

1999.

20

