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CCTC/DI
Universidade do Minho

Braga, Portugal
{cbm,psa,vff,tome}@di.uminho.pt

Abstract—In cloud computing environments, data storage
systems often rely on optimistic replication to provide good
performance to geographically disperse users and to allow
operation even in the presence of failures or network partitions.
In this scenario, it is important to be able to accurately and
efficiently identify updates executed concurrently. In this paper,
first we review, and expose problems with current approaches
to causality tracking in optimistic replication: these either lose
information about causality or do not scale, as they require
replicas to maintain information that grows linearly with the
number of clients or updates. Then, we propose a novel, scalable
solution that fully captures causality: it maintains very concise
information that grows linearly only with the number of servers
that register updates for a given data element, bounded by the
degree of replication. Moreover, causality can be checked in O(1)
time instead of O(n) time for version vectors. We have integrated
our solution in Riak, and results with realistic benchmarks show
that it can use as little as 10% of the space consumed by current
version vector implementation, which includes an unsafe pruning
mechanism.

I. INTRODUCTION

The design of Amazon’s Dynamo system [1] was an im-
portant influence to a new generation of databases, such as
Cassandra [2] and Riak1, focusing on partition tolerance, write
availability and eventual consistency. The underlying rationale
to these systems stems from the observation that when faced
with the three conflicting goals of consistency, availability and
partition-tolerance only two of those can be achievable in the
same system [3], [4]. Facing wide area operation environments
where partitions cannot be ruled out, consistency requirements
are inevitably relaxed in order to achieve high availability.

These systems follow a design where the data store is
always writable: replicas of the same data item are allowed to
temporarily diverge and to be repaired later on. A simple repair
approach followed in Cassandra, is to use physical timestamps
to arbitrate which concurrent updates should prevail. As a
consequence some updates will be lost since a last writer
wins (LWW) policy is enforced over concurrent updates. An
approach avoiding lost updates must be able to maintain
divergency until it can be reconciled: concurrent updates must
be not only accurately detected, but also fully preserved.

Accurate tracking of concurrent data updates can be
achieved by a careful use of well established causality tracking

1http://www.basho.com/Riak.html

mechanisms [5], [6], [7], [8]. In particular, for data storage
systems, version vectors [6] enable the system to compare
any pair of replica versions and detect if they are equivalent,
concurrent or if one makes the other obsolete. However,
current cloud storage systems, e.g. Dynamo and Riak, make
several compromises regarding causality tracking, leading to
lost updates and/or introduction of false concurrency. The
reasoning behind these compromises is to achieve higher scal-
ability, limiting the number of entries in the version vectors.

In this article we propose to overcome these limitations
and present a new, and simple, causality tracking solution
that allows both scalable and fully accurate tracking. The
key idea of our approach is to maintain the identifier of the
event separate from the causal past. Besides allowing the size
of information to be bounded by the degree of replication,
instead of the number of clients, this approach allows to verify
causality in constant time (instead of O(n) time with version
vectors).

The remainder of this paper is organized as follows. Sec-
tion II presents the system model. Section III surveys the
current solutions used for causality tracking and discusses their
limitations. Section IV presents the new mechanism: Dotted
Version Vectors. Section V evaluates the performance of the
proposed mechanism. Section VI discusses related work, and
Section VII concludes the paper with some final remarks.

II. SYSTEM MODEL

Storage systems for cloud computing environments can be
seen as composed of a set of interconnected storage server
nodes that provide a data read/write service to a much larger
set of clients. In a data center, a typical configuration includes
both storage nodes and application server nodes. In each ap-
plication server node, multiple threads execute independently,
acting as an independent clients. Thus, even if the data center
includes a similar number of storage nodes and application
servers nodes, the number of clients if much larger.

Without loss of generality, we consider a standard key-
value store interface that exposes two operations: reading,
GET(KEY):VALUES,CONTEXT; and writing, PUT(KEY,VALUE,
CONTEXT). (A delete operation can be implemented, for
example, by executing a PUT() with a special value.) A given
key is replicated in a subset of the server nodes, which we call
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the replica nodes for that key. The GET() operation returns
one or more concurrent values that are collected in the node
handling the request, and an immutable CONTEXT that encodes
the causal knowledge in the value(s). The PUT() operation
submits a single value that supersedes all values associated to
the supplied immutable CONTEXT. This CONTEXT is obtained
in the client by a previous GET() operation.

Typically, clients engage in a sequence of GET() followed by
PUT() using the last received CONTEXT, but any combination
is allowed. Provided only a nil or a previously received CON-
TEXT is used, they can be re-used multiple times and in any
order. A replica node allows multiple clients to concurrently
update values for the same key. i.e. any interleaving of GET()
and PUT() is permissible among clients. We assume no affinity,
so clients are free to read values from a replica node and write
them to different ones. The encoded causality information
encoded in CONTEXT allows linking a GET() to a subsequent
PUT().

The GET() and PUT() operations can be associated to
given read and write quorums, that control the number or
replica nodes contacted. However, this aspect will be largely
orthogonal to the causality tracking task.

A salient aspect in these systems, is that all data changes
to any given key are mediated by the server nodes that act as
replica nodes for that key. Thus, since clients cannot engage
in direct communication with each other, one can aim for
scalable solutions for causality tracking that do no depend
on the number of clients. Otherwise, known scalability lower
bounds would apply [9].

An important aspect to consider when reasoning about
the scalability of these approaches, is the existence of three
different orders of magnitude at play: a small number of
replica nodes for each key; a large number of server nodes;
a huge number of clients, keys and issued operations. Thus,
a scalable solution should avoid mechanisms that are linear
with the highest magnitude and, if possible, it should strive to
match the lowest scale, i.e. the number of replica nodes.

III. CURRENT APPROACHES

Under the defined system model one can consider the pos-
sible executions and the causality patterns that they produce.
In these executions causality can be precisely characterized by
causal histories [7]. Causal histories are sets of unique update
event identifiers. Here we will consider the composition of
unique server ids and a monotonic integer counter. The partial
order of causality can be precisely tracked by comparing these
sets by set inclusion. An history A causally precedes C iff
A ⊂ C. Two histories are concurrent if neither include the
other: A ‖ B iff A 6⊆ B and B 6⊆ A.

In Figure 1 we consider an execution where two clients,
Cx and Cy , concurrently update the same key in the same
replica node, Ra. Since updates are concurrent, the replica
node will store the two conflicting values and only later a
new value is produced that takes those values into account
and produces a new value that resolves the conflict. Values
whose causal history is strictly included in the causal history
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Fig. 1. Two clients concurrently modifying the same key on a replica node.
Causal histories.
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Fig. 2. Two clients concurrently modifying the same key on a replica node.
Version vector with one id-per-server.

of another value are replaced by the later value: e.g. in this
figure, MAYBE causally succeeds both YES and NO ({a1} ⊂
{a1, a2, a3}, {a2} ⊂ {a1, a2, a3}), and replaces them.

In systems that enforce a last writer wins policy, such as in
Cassandra, concurrent updates are not represented in the stored
state and only the last update prevails. Under LWW, for the run
in Figure 1 where we have two concurrent updates, since YES
happened to be registered before NO, it will be lost and the
final outcome is NO. This leads to loss of information and the
semantic conflict resolution that previously lead to MAYBE
is no longer possible. Although some specific application
semantics are compatible with a LWW policy, this simplistic
approach is not adequate for many other application semantics.
A correct tracking of concurrent updates is essential to allow
all updates to be considered upon conflict resolution.
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Fig. 3. Two clients concurrently modifying the same key on a replica node.
Version vector with one id-per-client.

A. Version vectors with id-per-server

If causality is tracked by version vectors with one entry
per server node, it is possible to correctly detect concurrent
updates that are handled by different server nodes. However
if concurrent updates are handled by the same server there
is no way to identify the concurrent values and typically the
last write will prevail. Figure 2 illustrates this situation. In the
example NO overwrites YES. Notice that if the updates where
handled by different replica nodes, say a and b, then they
would be properly marked and could later be determined to
be concurrent – unlike a pure LWW policy where one would
have a higher “real time” clock and always overwrite the other
(as occurs in Cassandra).

In all examples we represent version vectors as a set of
pairs that depict an id and its associated integer counter,
e.g. {(x, 2), (y, 4), (z, 1)}. The classic representation for this
version vector, [2, 4, 1], assumes a total order on node ids,
x < y < z, and a fixed number of nodes.

Version vectors with one id-per-server cannot express the
degree of concurrency permitted by the system model and the
consequence is the serialization of concurrent updates to the
same server and in practice a LWW policy on those updates.
The Dynamo system uses one entry per server node and thus
is sensible to this issue.

One can argue that the server node could instead verify
that the new update is concurrent with its current version
by checking that the version vector included in the operation
does not dominate the version vector of the current version
(since {} 6≥ {(a, 1)} it was based on a past value). In this
case, the replica node could reject the update, implementing a
conditional write semantics. This approach is used, e.g., in the
CVS version control system (although not necessarily relying
on version vectors). In Coda [10], the update is accepted but
no further access is allowed to the file until the conflict is
solved by a special mechanism. These solutions go against
the usual policy of write availability [1], the norm in modern

key-value stores.
A simple solution to the lack of expressive power in the id-

per-server approach is to use an id-per-client and thus match
the number of concurrency allowed in the model. This was
the approach followed in the Riak data store.

B. Version vectors with id-per-client

If each active client is allowed one entry in the version
vector, one has enough entries to express the concurrency that
the system produces. Once the server node correctly identifies
each client (e.g. by including client ids in the PUT() API) it can
adequately register updates by associating them to the client id.
Figure 3 illustrates this. Notice that the two concurrent updates
are properly registered and that the semantic reconciliation
is performed and overwrites the previous values ({(x, 1)} <
{(x, 2), (y, 1)}, {(y, 1)} < {(x, 2), (y, 1)}).

In the Riak implementation, since clients are stateless and
do not keep their last counter locally, it is important that
the last GET() CONTEXT includes the client’s last write. The
default quorum settings in Riak, ensures a read your writes
semantics [11], so that the most recent update by a given client
is present in the CONTEXT.

Although this approach does capture all system concurrency,
it does so at the expense of a large state growth. In each
key all replica nodes will end up storing the ids of all the
clients that ever issued writes on that key. The Riak system
tries to compensate this by using version vector pruning, a
concept also used in the Dynamo system. However pruning
has important consequences.

C. Version vector pruning

Consider a value vp in the data store under some key. The
context meta-data cp (e.g. version vector) associated to the
value vp identifies the causal history of all the updates reflected
on that value. By pruning cp, some of these update events
are lost from the context, and another competing value vq
for the same key and with context cq , can now be compared
differently. For instance, consider c′p as the pruned version of
cp, if we have cq < cp, it can become that cq ‖ c′p. Old and
obsolete data can creep back from the past.

In the example of Figure 3, in the last server version,
pruning could be performed by forgetting the entry for client
y. If by any chance, a different replica with the pruned vector
received the original PUT from client y, value “NO” would
revive and the system would assume it to be concurrent with
“MAYBE”.

Pruning typically leads to the introduction of false concur-
rency and further need for reconciliation. The higher the de-
gree of pruning, the higher is the degree of false concurrency in
the system. Depending on the properties of the reconciliation
algorithms this can possibly even lead to lost updates.

Both Dynamo and Riak use pruning to bound the growth of
version vectors. Dynamo does not state what is the maximum
number of entries per clock. On the other hand, Riak does
not use a simple value for this. Instead, it uses an interval of
values in which it may prune or not the clock, depending on



data freshness. By default, clocks with size between 20 and
50 are subject to pruning (uses timestamps to determine data
freshness), while after 50 they are always pruned.

In the next section we present a solution to the problems
identified in the current mechanisms and systems. The new
mechanism, dotted version vectors: (1) accurately tracks all
the causality allowed in the system model (that reflects the
operation of modern key-value stores); (2) scales with the
(small) number of replica nodes for a key; (3) and does not
require pruning.

IV. DOTTED VERSION VECTORS

We now present a concise and accurate representation for
the clocks to be used as a substitute for the classic version
vectors in key-value stores. The mechanism allows a lossless
representation of causality (contrary to, e.g., Plausible Clocks)
while only using server-based ids, and only a component per
replica node, thus avoiding the space consumption explosion
that occurs in id-per-client approaches.

One could be led to think that the conciseness obtained
using server-based ids would contradict Charron-Bost mini-
mality result [9]. Such is not the case because, not only the
problems addressed by version vectors and vector clocks are
different [12], but essentially because the present scenario does
not involve direct client-to-client interaction: all interactions
are intermediated by a server node.

Using server-based ids, a precise representation of causality
could be obtained by using causal histories (sets of uniquely
identified events in the causal past); but these are unreasonable
in practice due to space consumption. On the other hand, a
version vector compresses causal histories by representing, for
each component, all events up to a given sequence number, i.e.,
a downward closed set of events (or down-set for short). This is
not enough to identify the concurrent versions generated when
several clients perform a get of some key from one server and
then all perform a put, using the same causal past.

The basic idea of dotted version vectors (DVV) is to add the
possibility of representing an individual event (a “dot”) with
an isolated sequence number outside the contiguous range.
The dot is kept separate from the causal past and it identifies
the globally unique event being described, the new version in
this case. This allows describing events as concurrent (due to
having different dots) even if they were generated from the
same causal past (and have identical version vectors in the
causal past).

Figure 4 clarifies the differences in expressive power of
causal histories, version vectors and dotted version vectors.
There we assume three nodes {a, b, c} and events tagged with
sequence numbers in each node. A causal history is able to
represent an arbitrary set of events such as {a3, b1, b2, c2, c4}
(left); a version vector is able to represent a down-set: all
events up to some given number for each node such as
{a1, a2, a3, b1, b2, c1, c2} (center); a dotted version vector is
able to represent a down-set plus an extra isolated event, such
as {a1, a2, a3, b1, b2, c1, c2, c4} (right), where event c4 falls
outside the range from 1 to 2.
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b2 c2
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Fig. 4. Sets of events representable by causal histories (left), version vectors
(center) and dotted version vectors (right).

Keeping the event described separate from the causal past
allows the order between events to be computed in O(1): to
see if X ≤ Y it is enough to check if the sequence number for
the dot of X is less or equal to the corresponding sequence
number in the Y version vector.

A. Definition
A dotted version vector (DVV) is a logical clock which

consists of a pair d, v, where v is a traditional version vector
(a mapping from identifiers to integers) and the dot d is a
pair (i, n), with i a node identifier and n an integer. The dot
represents the globally unique event being described, while
the VV represents the causal past. The events represented by
a DVV can be characterized by a semantic function from DVV
(or sets of clocks) to causal histories:

C[[((i, n), v)]] = {in} ∪ C[[v]]
C[[v]] =

⋃
(i,n)∈v

{im | 1 ≤ m ≤ n},

where in denotes the event with sequence number n gener-
ated by node i, and C[[v]] is the semantic function for traditional
version vectors. With this definition, the causal history:

{a1, a2, a3, b1, b2, c1, c2, c4}

that cannot be represented by a version vector,
will be represented by the dotted version vector
((c, 4), {(a, 3), (b, 2), (c, 2)}). An alternative, more compact,
encoding can share the node id in the version vector and use
a triplet to represent the dot. In this example, it would lead
to the compact representation {(a, 3), (b, 2), (c, 2, 4)}.
B. Partial order

The partial order on DVV can be defined, as usual, in terms
of inclusion of causal histories; i.e.:

X ≤ Y ⇐⇒ C[[X]] ⊆ C[[Y ]],

which amounts to:

((i, n), u) ≤ ((j,m), v)⇐⇒ {in} ∪ C[[u]] ⊆ {jm} ∪ C[[v]].

Given that each dot is generated as a globally unique incom-
parable event, using the notational convenience of considering
a mapping to return 0 for any non mapped id, the partial order
on possible DVV values becomes:

((i, n), u) < ((j,m), v)⇐⇒ n ≤ v(i) ∧ u ≤ v,

where the traditional point-wise comparison of VV is used:
u ≤ v ⇐⇒ ∀(i,n)∈u. n ≤ v(i).
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Dotted version vectors.

1) O(1) computation of the partial order: A significant
difference between DVV and traditional clock mechanisms
such as VV is that while these conflate present event and
causal past, DVV keep the present event (in the dot) separated
from the causal past. An important consequence of this is that
if the dot in X is contained in the causal past of Y , it means
that Y was generated causally following X , which implies that
Y also contains the causal past of X . This means that for any
DVV ((i, n), u) and ((j,m), v), if n ≤ v(i) then it follows
that we must also have u ≤ v. This means that there is no
need for the comparison of the VV components and the order
can be computed as an O(1) operation, simply as:

((i, n), u) < ((j,m), v)⇐⇒ n ≤ v(i).

This partial order allows concurrent clocks even using only
a single replica node identifier. As an example:

((r, 4), {(r, 3)}) ‖ ((r, 5), {(r, 3)}),

as they represent the causal histories:

{r1, r2, r3, r4} ‖ {r1, r2, r3, r5},

This situation will arise when ((r, 4), {(r, 3)}) is stored in
a replica node and a client, which has previously read some
value and got a context which represents the same causal
past {(r, 3)}, now performs a put using this context. This
situation is very common but cannot be handled with current
mechanisms using server-based identifiers.

In Figure 5, we present our usual run using dotted version
vectors in the alternative compact notation. It can be seen that
causality is accurately tracked, even tough per-server identi-
fiers are used. Notice that the replica node, when handling a
put operation on behalf of a client node, looks at the current
versions in the data store to determine the next available
integer and uses it to register the update and delete obsolete
versions, if any.

C. Kernel operations for eventual consistency

We have seen that, as soon as clients can perform concurrent
updates managed by a single replica node, several concurrent
versions may have to be kept in that node. These version sets
are returned by a get operation, and their clocks are supplied
as the context in a put operation.

In this section we argue that, even though a key-value store
wants to make available to clients the get and put operations
(essentially), the mechanics of a distributed key-value store,
in terms of causality tracking, should be based on two more
core functions on the sets of logical clocks of replicas:

• sync(S1, S2): takes two clock sets and returns a clock
set. It returns a set of the more up-to-date concurrent
clocks for the union of S1 and S2, while discarding ob-
solete clocks. When accessing versions stored in different
replicas, this operation identifies the versions that are not
overwritten by some other version;

• update(S, Sr, r): takes a set of clocks S (the context
supplied by the client), the set of clocks Sr in the replica
node (for the given key), and the replica node id r, and
returns a clock for the new version written by a client
in a put operation. This new DVV contains a globally
unique event and also dominates all clocks sent in the
context. When writing a new version, this operation can
be used to generate a new clock that overwrites clocks
of previously read versions.

The idea is that both a get and a put are complex operations
which have several steps (e.g., for a get, receiving request,
asking replica nodes for values, merging the partial results,
and finally replying). To reason about clock mechanisms it
helps to consider these more core sync and update functions
and to define a get using sync, and a put using both sync and
update. Different clock mechanisms, such as DVV, can then
be defined for the use in the sync and update operations.

We now describe how a key-value store can implement the
operations it intends to make available to clients (get and put)
by using the kernel operations sync and update. The proposed
mechanics have some deviation from the current practice. We
will discuss practical impact in Section V.

Operation get(k): When a client asks some server node N
to perform a get of some key k (step 1 in Figure 6):

• N computes the set of replica nodes R for k;
• N asks a subset of nodes in R for the value for that

key. Depending on the expected semantics, this subset
may contain, for example, a single node or a quorum of
nodes (step 2);

• N waits for the replies (step 3);
• N performs a reduce of the replies using the sync

operation, which discards obsolete values and returns
only the more up-to-date concurrent values, and replies
to the client (step 4).

Operation put(k, v, S): When a client asks some server
node N to perform a put for some key (step 1 in Figure 7):

• N computes the set of replica nodes R for k;
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• if N is a replica node for k, then N will coordinate the
request; otherwise N will forward the request to some
replica node for k, that will act as coordinator (step 2);

• the coordinator C performs an update operation, resulting
in a clock value u = update(S, SC , C), performs a sync
between u and the local set of concurrent instances, which
serves to discard instances now made obsolete, and stores
the result of the sync S′C = sync(SC , {u}) (step 3);
this state transition from SC to S′C , comprised of the
composition of update and sync, must be implemented
as an atomic operation (for any given key; different keys
can be handled concurrently);

• C sends S′C to a subset of other nodes in R. Depending
on the expected semantics, this subset may, for example,
be empty or contain a quorum of nodes (step 4);

• each of those nodes performs a sync between S′C and
the local set of instances, stores the result of the sync
S′i = sync(Si, S

′
C), and acknowledges to C;

• C waits for the replies (if the subset is not empty) (step
5);

• C acknowledges to node N (step 6), which in turn
acknowledges to the client (or C acknowledges directly
if that is possible) (step 7).

Replication-aware client library: We have described the
steps taken when a generic load balancer or client library is
used. While any node can coordinate a get operation, for a put
the coordinator must be a replica node. Using a replication-
aware client library or load balancer will help in reducing the
response time of a put by removing the forwarding hop.

D. Operations on DVV

1) The sync function: The function sync produces a set of
concurrent clocks that describe the collective causal past of the
two sets of clocks in the parameters. It simply returns elements
from the sets supplied, and it can have a general definition
only in terms of the partial order on clocks, regardless of their
actual representation:

sync(S1, S2) = {x ∈ S1 |6 ∃y ∈ S2. x < y} ∪
{x ∈ S2 |6 ∃y ∈ S1. x < y}

2) The update function: An update registered on a replica
node r containing the set of versions Sr (for the given key),
and with client supplied context S can have a reference
definition in terms of causal histories using replica node ids
plus sequence numbers to denote globally unique events, as:

update(S, Sr, r) = {rn+1} ∪
⋃

S with

n = max({0} ∪ {x | rx ∈
⋃

Sr}).

This definition states that the result of an update contains the
causal history supplied by the client plus a new unique event
tagged by the replica node using the next available value in
the sequence for that node (for the given key).

To define the update function over dotted version vectors,
we make use of some auxiliary functions. The ids function
gives the set of identifiers in a pair, VV, DVV or set of DVV:

ids((i, )) = i,

ids((i, n), v) = {i} ∪ ids(v),
ids(X) = {ids(x) | x ∈ X}.

The d e function takes a DVV or set of DVV and a replica
node identifier and returns the maximum sequence number of
the events from that replica node represented:

d((i, n), v)er = max({n | i = r} ∪ {v(r)}),
dSer = max({0} ∪ {dCer | C ∈ S}).

The update function can now be defined:

update(S, Sr, r) = ((r, dSrer + 1), {(i, dSei) | i ∈ ids(S)}).

It is easy to see that under this definition, the update function
produces a DVV that represents the same causal history as
the one produced by the reference definition in terms of
causal histories, while keeping the new globally unique event
separated in the dot.



E. Correctness
The operations on a key-value store invoked by clients (get

and put) resort to the kernel operations sync and update. These
operate on (and return) sets of clocks. DVV are expressive
enough to represent causality accurately in the key-value store
setting because they exploit an important point: that single
clocks are not a first class entity that can be operated upon
by clients. A client may perform a get, which may return
a set of concurrent replicas and an opaque context for the
corresponding set of clocks. The client may then use the
context on a subsequent put operation, but cannot operate
upon individual clocks from that context. E.g., a client, having
receiving 3 concurrent replicas, cannot invoke a put that
depends only on two of them, because a single opaque context
is returned by a get and this same context must be supplied
in the subsequent put.

First we define the following predicate that formalizes the
notion of down-set for sets of clocks:

Definition 1 (Downset): A set of clocks S is called a down-
set, written downset(S), if and only if ∀i ∈ ids(S).∀ 1 ≤ n ≤
dSei. in ∈ C[[S]].

This is true for sets of clocks for which the union of
the corresponding causal histories are downward closed sets,
under the order over events ri ≤ sj ⇐⇒ r = s ∧ i ≤ j.
In other words, the predicate is true if, for each node r, the
set contains all events generated at r up to some sequence
number.

The reason that makes it possible to have an accurate
representation of causality using DVV is that, as we will show,
all sets of clocks, kept at replica nodes or returned to clients,
are down-sets. One of the reasons for this is that the set of
down-sets is closed under the sync operation:

Lemma 1: If X and Y are down-sets, then sync(X,Y ) is
also a down-set.

Proof: Trivial, from the definition of sync: the set of
events corresponding to the result of sync is the union of the
corresponding events of the arguments, i.e., C[[sync(X,Y )]] =
C[[X]] ∪ C[[Y ]], which means it is a downward closed set.

Proposition 1: For each key, in a given system containing
a set of replica nodes R, each r ∈ R storing a replica set Sr,
then ∀r ∈ R. downset(Sr).

Proof: By induction on a trace of core operations (sync
and update) that produces the current state. (Even though there
is concurrent execution of get and put by different clients,
the core sync and update operations are atomic; they can be
serializable into some sequential trace.) Any new set of clocks
S′r to be stored in a replica node r can only be the result of
one of two cases: 1) in a coordinator node, from the atomic
composition of sync and update: S′r = sync(Sr, {u}), where
u = update(S, Sr, r). By the induction hypothesis the sets of
clocks stored, namely Sr, are down-sets; S sent by the client as
context is also a down-set, from the previous lemma, because it
is the result of one or more sync operations of down-sets stored
in replica nodes. As S and Sr are down-sets, S′r will also be
a down-set because: although {u} itself may not be a down-
set, for any identifier i other than r, the computed mapping

(i, dSei) represents a contiguous range of events starting from
1 for identifier i in the corresponding causal history of S; the
sync between {u} and Sr will therefore represent a contiguous
range of events in what concerns these identifiers; for identifier
r, as Sr represents all events from r up to dSrer, and u
contains only one more event with number dSrer+1, then S′r
represents a contiguous range starting from 1 for id r; 2) in a
replica node r that receives S′C computed by the coordinator
C in a put, S′r = sync(Sr, S

′
C) will also be a down-set because

S′C sent by the coordinator is a down-set, Sr is a down-set by
the induction hypothesis and because the sync of down-sets
produces down-sets.

Having shown that all sets of DVV stored or returned to
clients are down-sets, we now show that each DVV generated
encodes causality information correctly and that the exposed
operations perform as they should: get returns sets of con-
current DVV and put discards obsolete replicas and stores
concurrent updates.

From the definition of sync, the set of DVV in the result
represents the union of the corresponding causal histories of
its arguments. This means that the result of a get describes
accurately the causal past of the replicas replied to the coordi-
nator of the get and reduced through the repeated use of sync.
It can also be seen from the definition of sync that it discards
obsolete replicas, returning only the more up-to-date ones.

From the above lemma and proposition, the clock set S sent
from a client is a down-set. Given that a DVV can represent a
down-set plus an isolated event, this means that any new DVV
u, which is computed by the update u = update(S, SC , C)
represents accurately the causality information for the new
replica: the union of the causal histories corresponding to
clocks in S (the context sent by the client) plus a new globally
unique event (using the next available sequence number for
the coordinator id, for that key). Each put obtains a globally
unique event because each makes use of the atomic compo-
sition of the operations update and sync: if two puts for the
same key are being served concurrently, one will use the S′C
generated by the other in its invocation of update.

In a put, the sync of the singleton {u} containing the newly
generated DVV with the existing replicas discards obsolete
values while maintaining the set of DVV that represent the
concurrent replicas. The resulting set of DVV is then sent to
other replica nodes, where a sync similarly discards obsolete
replicas and keeps the more up-to-date concurrent ones.

V. EVALUATION

We implemented and evaluated the usage of Version Vectors
(VV) and Dotted Version Vectors (DVV) in Riak. Implement-
ing DVV in Riak was rather trivial. The PUT operation pipeline
was modified to follow the description of Figure 7. In addition
to the DVV source code, only a hundred of lines of code were
modified to accommodate these changes.

Regarding the evaluation, the setup was a Riak cluster
running on 6 machines, and another machine simulating the
clients. The simulated client’s request rate was chosen to
ensure resource exhausting did not occur during the evaluation.



Get Put Update Clock Values
Workload Type Mean 95th Mean 95th Mean 95th Size per Key

(ms) (ms) (ms) (ms) (ms) (ms) (bytes) (average)

60% GET VV 7.65 15.9 5.71 10.1 14.4 24.0 790 1.34
10% PUT DVV 3.16 5.25 4.31 6.27 7.76 10.9 127 1.31
30% UPD DV V

V V
0.41 0.33 0.76 0.62 0.54 0.46 0.16 0.98

30% GET VV 10.4 21.6 7.48 13.8 18.8 31.9 859 1.20
10% PUT DVV 3.45 5.83 4.56 6.59 8.39 11.8 123 1.16
60% UPD DV V

V V
0.33 0.27 0.61 0.48 0.45 0.37 0.14 0.97

TABLE I
DVV AND VV BENCHMARKS WITH A GENERIC APPROACH.

Get Update Clock Values
Workload Type Mean 95th Mean 95th Size per Key

(ms) (ms) (ms) (ms) (bytes) (average)

VV 2.15 3.63 5.00 7.70 159 1.00081
Browsing DVV 2.01 3.49 5.70 8.80 89 1.00051

Mix DV V
V V

0.94 0.96 1.13 1.15 0.56 0.99970
VV 2.84 5.00 6.80 11.0 117 1.00066

Shopping DVV 2.77 4.94 7.70 12.8 82.0 1.00039
Mix DV V

V V
0.98 0.99 1.13 1.16 0.70 0.99973

VV 7.70 16.2 14.4 24.0 682 1.00549
Ordering DVV 2.95 4.76 7.40 10.0 113 1.00425

Mix DV V
V V

0.38 0.29 0.51 0.42 0.17 0.99877

TABLE II
DVV AND VV BENCHMARKS WITH TPC-W APPROACH.

We used N=3, R=W=2, with N being the total number of
replicas, while R and W depict the size of the read and
write quorum. There were 50k keys, accessed using a Pareto
distribution (20% of the keys were requested 80% of the time),
and value payload was set to a fixed size of 1 KB or 5KB.
Runs took 20 minutes each, sufficient time to achieve enough
operations (about 2 million) and a stable state for measuring.
million operations.

We considered three core actions on clients: (1) a simple
GET, returning value(s); (2) a blind PUT where a value is
written in a given key, with no causal context supplied (this
operation will always increase concurrency); (3) an update,
that is expressed by a GET returning value(s) and a context, a
50 ms delay, and a PUT that re-supplies the context and writes
a value that supersedes those acquired in the GET (reducing
the possible concurrency in the GET).

From these three core actions we evaluated two benchmarks
that considered different workload mixes. The first benchmark
was to do a simple generic distribution load, with the propor-
tion of blind puts kept at 10% and interchanged proportions of
30% versus 60% for gets and updates. The size per value was
fixed at 1KB. The second benchmark was to simulate TPC-
W [13] workloads, using the “Shopping Mix” (80% reads,
20% writes) with a fixed value size of 5KB, the “Ordering
Mix” (50% reads, 50% writes) and the “Browsing Mix” (95%
reads, 5% writes), both with 1KB per value. Reads were done
with the normal GET operation, while writes were done in
updates, a GET followed by a PUT.

A. Comparison of overall latency

The first, generic, benchmark results are in table I, while
the TPC-W approach benchmark results are in table II. Both
tables show the DV V/V V ratio that helps compare the two
mechanisms, values smaller than 1.0 show an improvement
and are depicted in bold.

In all tests we find that clock size is always (much) smaller
in DVV, even with the (default) pruning that occurs with Riak
VV. One can also confirm that pruning is occurring, because
all the tests reveal that there were more concurrent values in
the VV case. The difference in the number of values per key
between the two logical clocks, results from false conflicts cre-
ated by pruning. We recall that since Riak VV resort to pruning
they do not reliably represent concurrency, and introduce false
conflicts that need to be resolved. Having no pruning, our
DVV implementation accurately tracks concurrency, while still
allowing an expressive reduction of metadata size. It is easy
to see that even if the default pruning activation threshold was
lowered in Riak VV case, although it would reduce clock sizes,
this would also lead to an increase of false concurrency and
higher numbers of values per key.

Regarding performance, the generic benchmark results show
that using a value payload of 1KB, the write and read opera-
tions were much better then using VV. Having less conflicts,
and factoring the smaller clock size, on average operations
transfer smaller data (1.8KB versus 1.2KB).

In the TPC-W case, the first thing we can see is that
concurrency (rate of conflicts, measured by values per object)
is very low, as it would be expected in a more realistic
setting (concurrency rates in Dynamo’s paper [1] are very
similar to these). Read operations were always better, or pretty
even between both mechanisms. This is to be expected since
the read pipeline was not modified by our implementation,
but DVV is usually smaller, thus requiring less data to be
transferred.

Write operations were pretty good in the ordering mix,
since (like the generic approach) each value was 1KB and
the difference in clock size was significant. In contrast, the
browsing mix also had 1KB per value, but the difference in
clock sizes was not very large (too few writes in 20 minutes
for the VV clock to grew significantly, but with time, it would
probably grow much larger). Then, on average, values with
VV and DVV had 1.16KB and 1.09KB in size, respectively.
The same can be said of the shopping mix, in this case 5.12KB
and 5.08KB for the VV and DVV, respectively. Therefore, in
the shopping mix and browsing mix, the difference in clock
size was not sufficient to make up for the changes we had to
made in the write pipeline. Simply put, using DVV in Riak,
when writing some value, the coordinator has to send every
conflicting value to replicas. Moreover, if the coordinator is not
a replica for that key, then it has to forward the write request to
a new coordinator that is also a replica. In the standard Riak
implementation, the VV case, the write pipeline is simpler,
only the new client value is passed to replicas and every node
can be a coordinator for any write request.



B. Comparison of clock sizes
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Fig. 8. Theoretical growth in clock size, as factor of writing clients.
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Fig. 9. Real growth in clock size using TPC-W workload mixes.

Figure 8 illustrates the theoretical effect of the number of
writing clients in the number of clock entries, and thus the
overall clock size. DVV stabilizes in size when the number
of entries reaches the replication factor (usually 3), while VV
with id-per-client grow indefinitely. Thus, in practice, systems
usually resort to pruning to control its growth. In Riak’s case,
the imposed limit to the number of kept ids, and the trigger
to pruning, is in the 20 to 50 range.

In Figure 9 we depict the evolution of the average clock size
per key during the execution of the TPC-W based benchmarks
in the Riak cluster. Here we can see that the DVV size becomes
constant after a short time, whereas the Riak VV size is
constantly increasing until stabilizing somewhere close to 1KB
in the Ordering Mix case. Notice that it only stabilizes because
of pruning in Riak VV, if not that it would grow linearly. The
other workloads using Riak VV did not have enough time to
stabilize, but would eventually be similar to the ordering mix.
DVV has more or less 3 entries per clock (N=3) and size of
100 bytes, thus 1000 bytes in average for each VV means that
it has roughly 30 entries, in line with the pruning range of
Riak [20− 50].

VI. RELATED WORK

Version tracking solutions as used in cloud storage systems
are rooted on Lamport’ seminal work on the definition and
role of causality in distributed systems [5]. This work was
the foundation for subsequent advances in causality’s basic
mechanisms and theory, including the introduction of ver-
sion vectors [6] for tracking causality among replicas in a
distributed storage system and vector clocks [14], [15] for
tracking causality of events in a distributed systems.

Most of this initial work dealt with a fixed, mostly small,
number of participants. Later, several systems introduced
mechanisms for the dynamic creation and retirement of vector
entries to be used when a server enters and leaves the system.
While some techniques required the communication with
several other servers [16], others required communication with
a single server [17]. Interval Tree Clocks [18] are able to track
causality in a dynamic, decentralized scenario where entities
can be autonomously created and retired. Other systems, such
as Dynamo [1], use unsafe techniques to remove entries, that
are expected not to be necessary, based on time.

Even with these mechanisms, tracking causality through
version vectors or vector clocks requires a space linear with the
number of entities in the system, posing scalability problems
for system with a large number of elements [9]. This problem
is experienced in practice, for example, in cloud computing
storage systems, as discussed in Section III.

The Roam system [19] runs a consensus protocol to de-
crease, in all servers, the value of all entries of the version
vector by a constant value. The system only keeps the en-
tries that are larger than zero. The dependency sequences
[20] mechanism assumes a scenario where dynamic, weakly-
connected sets of entities (mobile hosts) communicate through
designated proxy entities chosen from a stable, well-connected
(mobile service stations). The mechanism maintains informa-
tion about the causal predecessors of each event. It needs to
take periodic global snapshots to prune discardable causality-
tracking metadata.

In Depot [21], the version vector associated with each
update only includes the entries that have changed since the
previous update in the same node. However, each node still
needs to maintain version vectors that include entries for all
clients and servers. In a similar scenario, the same approach
could be used as a complement to our solution.

Other storage systems explore the fact that they manage
a large number of objects to maintain less information for
each object. In Microsoft’s WinFS [22], a base version vector
for all objects is maintained for the file system, and each
object maintains only the difference for the base in a concise
version vector. In Cimbiosys [23], the authors suggest the
use of the same technique in a peer-to-peer system. These
systems, as they maintains only one entry per server, cannot
generate two concurrent version vectors for tagging concurrent
updates submitted to the same server from different clients,
as discussed in Section III. In a separate WinFS work [24]
the authors describe a mechanism that allows encoding of



non sequential causal histories by registering exceptions to the
sequence; e.g. {a1, a2, b1, c1, c2, c3, c7} could be represented
by {(a, 2), (b, 1), (c, 7)} plus exceptions {c4, c5, c6}. One im-
portant feature in dotted version vectors is that following the
update rules for the target environment, at most a single update
event that is outside the initial sequence is needed, and thus
a single dot is enough. Additionally, by isolating the dot that
identifies the version, causality can be checked in O(1) time
instead of O(n) time.

Another direction is to use unsafe space-folding approaches
that can reduce the storage and communication overhead at
the expense of less accuracy of the causality relation captured
by these mechanisms. Although devised as an alternative not
to version vectors but to vector clocks, plausible clocks [25]
propose techniques for condensing event counting from mul-
tiple replicas over the same vector entry. The resulting order
does not contradict the causal precedence relation but because
counters are effectively shared between processes, some con-
current events will be perceived as causally related. In fact,
the previously mentioned Lamport clocks [5], are a notable
example of plausible clocks.

VII. CONCLUSION

We have introduced dotted version vectors, a novel solution
for tracking causal dependencies among update events. The
base idea of our solution is to add the capability to represent an
extra isolated event over the downward closed causal history
described by version vectors.

Dotted version vectors allow an accurate tracking of causal-
ity among updates executed by multiple clients, while using
server-based identifiers. Their size is only linear with the num-
ber of servers that register the updates, being bounded by the
degree of replication. When compared with previous accurate
proposals that require client-based identifiers, linear with the
number of clients, our solution is much more efficient, as the
number of clients tends to be several orders of magnitude
larger than the number of servers that register updates for a
given data element. Additionally, causality can be checked in
O(1) time instead of O(n) of previous proposals.

Our solution is simple and practical: we have modified the
Riak key-value store to use it. Evaluation showed a significant
reduction in the size of metadata, and a good reduction in the
latency when serving requests. Other relevant benefits are the
elimination of false conflicts, and the simplification of the key-
value store API, avoiding the need to generate and transmit
globally unique client identifiers.
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