
A correlation-aware data placement strategy for
key-value stores

Ricardo Vilaça, Rui Oliveira and José Pereira
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Abstract

Key-value stores hold the bulk of the data produced by the unprecedented
activity of social networking applications. Their scalability and availability re-
quirements often outweigh sacrificing richer data and processing models, and
even elementary data consistency.

In this report we exploit arbitrary data relations easily expressed by the
application to foster data locality and improve the performance of complex
queries common in social network read-intensive workloads.

To this end, we present the prototype of an elastic key-value data store
embodying a novel data placement strategy based on multidimensional locality-
preserving mappings. The system is built on the basis of an efficient peer-to-peer
overlay, provides atomic access to tuples and flexible data replication.

We evaluate different data placement strategies under the workload of a
typical social network application and show that the proposed correlation-aware
data placement offers a major improvement on the system’s overall response
time and network requirements. The elasticity of the system is also put under
test by measuring the impact of a significant change on the number of nodes of
the system.



1 Introduction

Until now, relational database management systems have been the key tech-
nology to store and process structured data. However, these systems based on
highly centralized and rigid architectures are facing a major challenge: The
volume of data currently quadruples every eighteen months while the available
performance per processor only doubles in the same time period [21]. This is the
breeding ground for a new generation of elastic data management solutions, that
can scale both in the sheer volume of data that can be held but also in how re-
quired resources can be provisioned dynamically and incrementally [7, 5, 4, 16].
Furthermore, the underlying business model supporting these efforts requires
the ability to simultaneously serve and adapt to multiple tenants with diverse
performance and dependability requirements which add to the complexity of the
whole system. These first generation remote storage services are built by major
Internet players, like Google, Amazon, FaceBook and Yahoo, by embracing the
cloud computing model.

DHTs running over tens to hundreds of nodes in a controlled environment
with a reasonably stable membership are well suited for the access and man-
agement layer of these elastic and dependable data storages [25]. In these data
intensive applications, the routing overlay implicit in the DHT is used to find
the nodes responsible for a particular data item. At this scale, it is prefer-
able to maintain information about all nodes using one-hop protocols to reduce
lookup latency [6], as typical multi-hop DHTs impose a higher cost in routing
and searching of data. On these controlled environments of stable and high ca-
pacity networks, one-hop DHTs also consume less query bandwidth [17], which
is crucial in data intensive systems.

However, to the best of our knowledge, data placement strategies in existing
key-value stores [4, 5, 7, 16] efficiently support only single item or range queries.
Most applications have however general multi-item operations that request reads
and/or writes to a specific subset of items to accomplish a certain customer
task while the availability and performance of multi-items operations are highly
affected by the data placement strategy [27]. Also, correlation, the probability
of a pair of items being requested together in a query is not uniform but often
highly skewed [29]. Additionally, correlation is mostly stable over time for real
applications. Therefore, if the data placement strategy places correlated items
on the same node the communication overhead for multi-items operations tends
to reduce.

The challenge here is achieving such placement in a decentralized fashion,
without resorting to a global directory, while at the same time ensuring that the
storage and query load on each node remains balanced. We address this chal-
lenge with a novel correlation-aware placement strategy that considers arbitrary
tags on data items and combines the usage of a Space Filling Curve (SFC) with
random partitioning to store and retrieve correlated items.

This strategy was built into DataDroplets, an elastic data storage system
with a one-hop DHT supporting a conflict-free strongly consistent data with in-
place processing capabilities. DataDroplets is suitable to handle multi-tenant
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data and is meant to be run in a cloud computing environment over tens to
hundreds of nodes in a controlled environment with a reasonably stable mem-
bership. It extends first generation remote storage services data models with
tags allowing applications to mark and query correlated items.

DataDroplets supports also traditional random and order based strategies
used in first generation remote storage services. This allows it to adapt and to
be optimized to the clients’ workloads and, in the specific context of cloud com-
puting, to suit the multi-tenant architecture. Moreover, as some data placement
strategies may be non-uniform, with impact on the overall system performance
and fault tolerance, we implemented a load balancing mechanism to enforce
uniformity of data distribution among nodes.

Finally, we have evaluated our proposals with a realistic environment and
workload based on Twitter in different configurations regarding replication, and
number of nodes. The results show that the novel strategy has lower overall
latency than others strategies and attest the performance and scalability of
DataDroplets.

The remainder of the report is organized as follows. Section 2 presents Data-
Droplets. Section 3 presents a thorough evaluation of the three data placement
strategies. Section 4 discusses related work and Section 5 concludes the report.

2 DataDroplets Key-value store

DataDroplets is a key-value store targeted at supporting very large volumes
of data leveraging the individual processing and storage capabilities of a large
number of well connected computers. It offers a low level storage service with
a simple application interface providing the atomic manipulation of key-value
tuples and the flexible establishment of arbitrary relations among tuples.

A salient aspect of DataDroplets is the multi-item access that allows to
efficiently store and retrieve large sets of related data at once. Multi-item op-
erations leverage disclosed data relations to manipulate sets of comparable or
arbitrarily related elements.

The performance of multi-item operations depends heavily on the way cor-
related data is physically distributed. The balanced placement of data is partic-
ularly challenging in the presence of dynamic and multi-dimensional relations.
This aspect is a major drive in the design of DataDroplets and the main con-
tribution of the current work.

2.1 Data placement strategies

DataDroplets builds on the Chord [23] structured overlay network. Physical
nodes are kept organized on a logical ring overlay. Nodes in the DataDroplets
overlay have unique identifiers uniformly picked from the [0, 1] interval and
ordered along the ring. Each node is responsible for the storage of buckets of a
distributed hash table (DHT) also mapped into the same [0, 1] interval.
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The DHT is expected to provide a uniform distribution of data across all
nodes (for the sake of load balancing) while being able to embody specific group-
ing strategies justified by the current application and workload.

In the following we describe the current data placement strategies offered
by DataDroplets. The first is the random placement, the basic load-balancing
strategy present in most DHTs [23, 18, 28, 11]. The ordered placement takes into
account order relationships among items favouring the response to range ori-
ented reads. The tagged placement is our solution to efficiently handle dynamic
multi-dimensional relationships of aribitrarily tagged items.

2.1.1 Random placement

The random strategy is based on a consistent hash function [13]. When using
consistent hashing each item has a numerical ID (between 0 and MAXID) ob-
tained by, for example, by pseudo-randomly hashing the item’s key. The output
of the hash function is treated as a circular space in which the largest value
wraps around the smallest value. This is particularly interesting when made
to overlap the overlay ring. Furthermore, it guarantees that the addition or
removal of a bucket (the corresponding node) incurs in a small change in the
mapping of keys to buckets.

The major drawback of the random placement is that items that are com-
monly accessed by the same operation may be distributed across multiple nodes.
A single operation may need to retrieve items from many different nodes leading
to a performance penalty.

2.1.2 Ordered placement

The ordered strategy places items according to the partial order of the items’
keys. This order needs to be disclosed by the application and can be per ap-
plication, per workload or even per request. We use an order-preserving hash
function [10] to generate the identifiers. Compared to a standard hash function,
for a given ordering relation among the items, an order-preserving hash func-
tion hashorder() has the extra guarantee that if o1 < o2, then hashorder(o1) <
hashorder(o2).

In order to make the hash function uniform as well it is needed some knowl-
edge on the distribution of the item’s keys [10]. For a uniform and efficient dis-
tribution it is needed to know the domain of the item’s key, the minimum and
maximum values. This yields a tradeoff between uniformity and reconfiguration.
While a pessimistic prediction of the domain will avoid further reconfiguration
it may break the uniformity. In the current implementation of DataDroplets
the hash function is not made uniform but, as described later on, we use a more
general approach to achieve load balance.

2.1.3 Tagged placement

The tagged strategy realizes the data placement according to the set of tags de-
fined per item allowing to efficiently support complex tag searches. The strategy
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uses a dimension reducing and locality-preserving indexing scheme that effec-
tively maps the multidimensional information space to the identifier space, [0, 1].

Tags are free-form strings and form a multidimensional space where tags are
the coordinates and the data items are points in the space. Two data items are
collocated if their tags are lexicographically close. Tags can be viewed as base-n
numbers, for example n can be 10 for numeric keywords or 26 if the tags are
words. Not all combinations of characters represent meaningful tags, resulting
in a sparse tag space with non uniformly distributed clusters of data items.

This mapping is derived from a locality-preserving mapping called Space Fill-
ing Curves (SFCs) [19]. An SFC is a continuous mapping from a d-dimensional
space to a one-dimensional space (f : Nd → N). The d-dimensional space is
viewed as a d-dimensional cube partitioned into sub-cubes, which is mapped
onto a line such that the line passes once through each point (sub-cube) in the
volume of the cube, entering and exiting the cube only once. Using this map-
ping, a point in the cube can be described by its spatial coordinates, or by the
length along the line, measured from one of its ends.

SFCs are used to generate the one-dimensional index space from the multidi-
mensional tag space. Applying the Hilbert mapping [3] to this multidimensional
space, each data element can be mapped to a point on the SFC. Any range query
or query composed of tags can be mapped to a set of regions in the tag space
and corresponding clusters in the SFC.

As this strategy only takes into account tags, all items with the same set
of tags will have the same position in the identifier space and therefore will
be allocated to the same node. To prevent this we adopt a hybrid-n strategy.
Basically, we divide the set of nodes into n partitions and the item’s tags in-
stead of defining the complete identifier into the identifier space define only the
partition. The position inside the partition is defined by a random strategy.

2.2 Overlay management

In DataDroplets each node maintains complete information about the overlay
membership as in [11, 17]. This fits our informal assumptions about the size and
dynamics of target environments, tens to hundreds of nodes with a reasonably
stable membership, and allows efficient one-hoping routing of requests [11].

On membership changes (due to nodes that join or leave the overlay) the
system adapts to its new composition updating the routing information at each
node and readjusting the data stored at each node according to the redistribu-
tion of the mapping interval. In DataDroplets this procedure follows closely the
one described in [11].1

Besides the automatic load redistribution on membership changes, because
some workloads may impair the uniform data distribution even with a random
data placement strategy the system implements dynamic load-balancing as pro-

1To the reviewer: since in this report we do not assess the impact of dynamic membership
changes and because the algorithm has been described elsewhere, we omit most of the details
of the procedure.
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posed in [14]. Roughly, the algorithm has a node, chosen at random, periodically
contacting its successor in the ring to carry a pairwise adjustment of load.

DataDroplets uses synchronous replication to provide fault-tolerance and
automatic fail-over on node crashes. Read operations leverage replicated data
to improve performance. As in Chord [23], we replicate the whole data held
by a node into its r successors in the ring, where r is the previously configured
replication degree. Replication is done using a synchronous primary-backup
algorithm: the completion of a write operation requires the previous update of
all replicas. The synchrony requirement can, of course, be released should the
application semantics permit.

In the case of a node failure fail-over to one its backups is done as transpar-
ently and automatically as possible. While current requests being handled by
the failed node are lost any incoming read requests are immediately handled by
one of the replicas. Write requests wait for the membership change.

2.3 Request handling

DataDroplets assumes a very simple data model. Data is organized into disjoint
collections of items identified by a string. Each item is a triple consisting of
a unique key drawn from a partially ordered set, a value that is opaque to
DataDroplets and a set of free form string tags. The data placement strategy
is defined on a collection basis.

The system supports common single item operations such as put, get and
delete, multi item put and get operations, and set operations to retrieve ranges
and equally tagged items. The detailed set of operations is the following:

put(Comparable key, Object value, Set<String> tags)

Object get(Comparable key)

Object delete(Comparable key)

multiPut(Map<Comparable key, Pair<Object, Set<String>>> map)

Map<Comparable, Object> multiGet(Set<Comparable> keys)

Map<Comparable, Object> getByRange(Comparable min, Comparable max)

Map<Comparable, Object> getByTags(Set<String> tags)

Any node in the overlay can handle client requests. When handling a request
the node may need to split the request, contact a set of nodes, and compose the
clients reply from the replies it gets from the contacted nodes. This is particu-
larly so with multi item and set operations. When the collection’s placement is
done by tags, this also happens for single item operations.

Indeed, most request processing is tightly dependent of the collection’s place-
ment strategy. For the put and multiPut this is obvious as the target nodes
result from the chosen placement strategy.

For operations that explicitely identify the item by key, get, multiGet and
delete the node responsible for the data can be directly identified when the
collection is being distributed at random or ordered. Having the data distributed
by tags all nodes need to be searched for the requested key.
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For getByRange and getByTags requests the right set of nodes can be di-
rectly identified if the collection is being distributed with the ordered and tagged
strategies, respectively. Otherwise, all nodes need to be contacted and need to
process the request.

The processing of requests also needs to take into account data replication.
When using replication the replicas may be exploited to improve the read per-
formance. Indeed, in DataDroplets a single read of an item is sent at random
to one of the nodes holding the data.
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Figure 1: Minimizing the number of contacted nodes

Additionally, for multi item operations, as multiple nodes have redundant
data, the number of contacted nodes can be minimized.

Consider the example in Figure 1. In this scenario there are 8 nodes in the
system and 3 replicas per item. A getByRange request for all keys in the interval
[0.1, 0.9] is issued. If processing is restricted to the primary node of the items
then the set of nodes contacted is [N2, N3, N4, N5, N5, N7, N8].

However, making use of the several replicas the set of contacted nodes can
be reduced to [N4, N7, N8]. Nodes N4 and N7 will answer with the all stored
items, those for which they are the primary node and those for which they are
replicas at distance 1 and 2. Node N8 will only answer with the items for which
it is the primary node.

3 Experimental evaluation

We ran a series of experiments to evaluate the performance of the system, in
particular the suitability of the different data placement strategies, under a
workload representative of applications currently exploiting the scalability of
emerging key-value stores.

In the following we present performance results for the three data placement
strategies previously described, then for the impact of adding replication in order
to increase fault tolerance and finally, for the effects of scale by substantially
increasing the number of nodes.
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3.1 Test workload

For the evaluation of the several placement strategies we have defined a workload
that mimics the usage of the Twitter social network.

Twitter is an online social network application offering a simple micro-
blogging service consisting of small user posts, the tweets. A user gets access to
other user tweets by explicitly stating a follow relationship.

The central feature of Twitter is the user timeline. A user’s timeline is the
stream of tweets from the users she follows and from her own. Tweets are
free form strings up to 140 characters. Tweets may contain two kinds of tags,
user mentions formed by a user’s id preceded by @ (e.g.. @john) and hashtags,
arbitrary words preceded by # (e.g.. #topic) meant to be the target of searches
for related tweets.

Our workload definition has been shaped by the results of recent studies on
Twitter [12, 15, 2]. In particular, we consider just the subset of the seven most
used operations from the Twitter API [24] (Search and REST API as of March
2010):

List<Tweet>statuses user timeline(String userID, int s, int c) re-
trieves from userID’s tweets, in reverse chronological order, up to c tweets
starting from s (read only operation).

List<Tweet>statuses friends timeline(String userID, int s, int c)

retrieves from userID’s timeline, in reverse chronological order, up to c
tweets starting from s. This operation allows to obtain the a user’s time-
line incrementally (read only operation).

List<Tweet>statuses mentions(String userID) retrieves the most recent
tweets mentioning userID’s in reverse chronological order (read only op-
eration).

List<Tweet>search contains hashtag(String topic) searches the system
for tweets containing topic as hashtag (read only operation).

statuses update(Tweet tweet) appends a new tweet to the system (update
operation).

friendships create(String userID, String toStartUserID) allows userID
to follow toStartUserID (update operation).

friendships destroy(String userID, String toStopUserID) allows userID
to unfollow toStopUserID (update operation).

For the implementation of the test workload we consider a simple data model
of three collections: users, tweets and timelines. The users collection is
keyed by userid and for each user it stores profile data (name, password, and
date of creation), the list of the user’s followers, a list of users the user follows,
and the user’s tweetid, an increasing sequence number. The tweets collection
is keyed by a compound of userid and tweetid. It stores the tweets’ text and
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date, and associated user and topic tags if present. The timelines collection
stores the timeline for each user. It is keyed by userid and each entry contains
a list of pairs (tweetid, date) in reverse chronological order.

In a nutshell, the operations listed above manipulate these data structures
as follows. The statuses_update operation reads and updates the user’s cur-
rent tweet sequence number from users, appends the new tweet to tweets and
updates the timeline for the user and each of the user’s follower in timelines.
The friendships_create and friendships_destroy operations update the in-
volved users records in users and recomputes the follower’s timelines adding
or removing the most recent tweets from the followed, or unfollowed, user. Re-
garding the read only operations, statuses_friends_timeline simply accesses
the specified user timeline record in timelines, statuses_user_timeline ac-
cesses a range of the user’s tweets, and statuses_mentions and search_contains_hashtag

the tweets collection in general.
For the experiments described in the next section the application is firstly

initialized with a set of users (that remains unchanged throughout the experi-
ments), a graph of follow relationships and a set of tweets.

Twitter’s network belongs to a class of scale-free networks and exhibit a small
world phenomenon [12]. As such, the set of users and their follow relationships
are determined by a directed graph created with the help of a scale-free graph
generator [1].

In order to fulfill statuses_user_timeline, statuses_friends_timeline
and statuses_mentions requests right from the start of the experiments, the
application is populated with initial tweets. The generation of tweets, both for
the initialization phase and for the workload, follows a couple of observations
over Twitter traces [15, 2]. First, the number of tweets per user is proportional
to the user’s followers [15]. From all tweets, 36% mention some user and 5%
refer to a topic [2]. Mentions in tweets are created by randomly choosing a user
from the set of friends. Topics are chosen using a power-law distribution [12].

Each run of the workload consists of a specified number of operations. The
next operation is randomly chosen taking into account the probabilities of occur-
rence depicted in Table 1. To our knowledge, no statistics about the particular
occurrences of each of the Twitter operations are publicly available. The figures
of Table 1 are biased towards a read intensive workload and based on discussions
that took place during Twitter’s Chirp conference (the Twitter official develop-
ers conference, e.g.. http://pt.justin.tv/twitterchirp/b/262219316).

3.2 Experimental Setting

We evaluate our implementation of DataDroplets using the ProtoPeer toolkit [8]
to simulate 100 and 200 nodes networks. ProtoPeer is a toolkit for rapid dis-
tributed systems prototyping that allows switching between event-driven sim-
ulation and live network deployment without changing any of the application
code.

From ProtoPeer we have used the network simulation model and extended it
with simulation models for CPU as per [26]. The network model was configured
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Table 1: Probability of Operations
Operation Probability

search contains hashtag 15%
statuses mentions 25%

statuses user timeline 5%
statuses friends timeline 45%

statuses update 5%
friendships create 2.5%

friendships destroy 2.5%

to simulate a LAN with latency uniformly distributed between 1 ms and 2
ms. For the CPU simulation we have used a hybrid simulation approach as
described in [22]. All data has been stored in memory, persistent storage was
not considered. Briefly, the execution of an event is timed with a profiling timer
and the result is used to mark the simulated CPU busy during the corresponding
period, thus preventing other event to be attributed simultaneously to the same
CPU. A simulation event is then scheduled with the execution delay to free the
CPU. Further pending events are then considered. Each node was configured
and calibrated to simulate one dual-core AMD Opteron processor running at
2.53GHz.

For all experiments presented next the performance metric has been the
average request latency as perceived by the clients. A total of 10000 concurrent
users were simulated (uniformly distributed by the number of configured nodes)
and 500000 operations were executed per run. Different request loads have been
achieved by varying the clients think-time between operations. Throughout the
experiments no failures were injected.

3.3 Evaluation of data placement strategies

The graphs in Figure 2 depict the performance of the system when using the
different placement strategies available. The workload has been firstly config-
ured to only use the random strategy (the most common in existing key-value
stores), then configured to use the ordered placement for both the tweets and
timelines collections (for users placement has been kept at random), and fi-
nally configured to exploit the tagged placement for tweets (timelines were
kept ordered and users at random). The lines random, ordered and tagged in
Figure 2 match these configurations.

We present the measurements for each of the seven workload operations
(Figure 2(a) through 2(g)) and for the overall workload (Figure 2(h)). All runs
were carried with 100 nodes.

We can start by seeing that for write operations (statuses_update and
friendships_destroy) the system’s response time is very similar for all sce-
narios (Figures 2(a)and 2(b)). Both operations read one user record and sub-
sequently add or update one of the tables. The costs of these operations is
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Figure 2: System’s response time for Twitter workload with 100 nodes
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basically the same in all the placement strategies.
The third writing operation, friendships_create, has a different impact,

though (Figure 2(c)). This operation also has a strong read component. When
creating a follow relationship the operation performs a statuses_user_timeline
which, as can be seen in Figure 2(d), is clearly favored when tweets are stored
in order.

Regarding read-only operations, the adopted data placement strategy may
have an high impact on latency, see Figures 2(d) through 2(g).

The statuses_user_timeline operation (Figures 2(d)) is mainly composed
by a range query (which retrieves a set of the more recent tweets of the user) and
is therefore best served when tweets are (chronologically) ordered minimizing
this way the number of nodes contacted. Taking advantage of SFC’s locality
preserving property grouping by tags still considerably outperforms the random
strategy before saturation.

Operations status_mentions and search_contains_hashtag are essentially
correlated searches over tweets, by user and by topic, respectively. Therefore,
as expected, they perform particularly well when the placement of tweets uses
the tagged strategy. For status_mentions the tagged strategy is twice as fast
as the others, and for search_contains_hashtag keeps a steady response time
up to ten thousand ops/sec while with the other strategies the systems struggle
right from the beginning.

Operation statuses_friends_timeline accesses the tweets collection di-
rectly by key and sparsely. To construct the user’s timeline the operation gets
the user’s tweets list entry from timelines and for each tweetid reads it from
tweets. These end up being direct and ungrouped (i.e.. single item) requests
and, as depicted in Figure 2(g) best served by the random and ordered place-
ments.

Figure 2(h) depicts the response time for the combined workload. Overall,
the new SFC based data placement strategy consistently outperforms the others
with responses 40% faster.

Finally, it is worth noticing the substantial reduction of the number of ex-
changed messages attained by using the tagged strategy. Figure 3 compares
the total number of messages exchanged when using the random and tagged
strategies.

3.4 Evaluation of node replication

Data replication in DataDroplets is meant to provide fault tolerance to node
crashes and improve read performance through load balancing. Figure 4 shows
the results of the combined workload using tagged placement when data is
replicated over three nodes.

The minimized and not minimized lines correspond to a synchronous replica-
tion algorithm where the write operations completion depends on the successful
writes in all replicas. As explained in Section 2.3, the minimized strategy takes
advantage of replication to minimize the number of nodes contacted per opera-
tion having each node responding for all the data it holds, while the other, on
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the contrary, leverages replication to increase concurrent accesses to different
nodes.

In both cases we can see that despite the impact synchronous replication
inevitably has on write operations, the overall response time is improved by
12% with not minimized strategy and 27% with minimized strategy.

To better assess the benefits of replication to the performance of read op-
erations we also tested the system with asynchronous replication. The overall
gain is up to 14% which would not, per se, justify the increased complexity of
the system. It is actually the dependability facet that matters most, allowing
to provide seamless fail over of crashed nodes.

3.5 Evaluation of the system elasticity

To assess the system’s response to a significant scale change we carried the
previous experiments over the double of the nodes, 200. Figure 5(b) depicts the
results.

Here, it should be observed that while the system appears to scale up very
well providing almost the double of throughput before getting into saturation,
for a small workload, up to 2000 ops/sec with 200 nodes there is a slightly higher
latency. This result motivates for a judicious elastic management of the system
to maximize performance, let alone economical and environmental reasons.
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Figure 5: System’s response time with 100 and 200 nodes.

4 Related Work

There are several emerging decentralized key-value stores developed by major
companies like Google, Yahoo, Facebook and Amazon to tackle internal data
management problems and support their current and future Cloud services.
Google’s BigTable[4], Yahoo’s PNUTS[5], Amazon’s Dynamo[7] and Facebook’s
Cassandra[16] provide a similar service: a simple key-value store interface that
allows applications to insert, retrieve, and remove individual items. BigTable,
Cassandra and PNUTS additionally support range access in which clients can
iterate over a subset of data. DataDroplets extends these systems’ data models
with tags allowing applications to run more general operations by marking and
querying correlated items.

These systems define one or two data placement strategies. While Cassandra
and Dynamo use a DHT for data placement and lookup, PNUTS and BigTable
have special nodes to define data placement and lookup. Dynamo just im-
plements a random placement strategy based on consistent hashing. Cassandra
supports both random and ordered data placement strategies per application but
only allows range queries when using ordered data placement. In PNUTS spe-
cial nodes, called routers, maintain an interval mapping that divides the overall
space into intervals and the nodes responsible for each interval. It also supports
random and ordered strategies, and the interval mapping is done by partition-
ing the hash space and the primary key’s domain, respectively. BigTable only
supports an ordered data placement. The items’ key range is dynamically par-
titioned into tablets that are the unit for distribution and load balancing. With
only random and ordered data placement strategies existing decentralized data
stores can only efficiently support single item operations or range operations.
However, some applications, like social networks, need frequently to retrieve
general multi correlated items.

Our novel data placement strategy that allows to dynamically store and
retrieve correlated items is based on Space Filing Curves(SFCs). SFCs have
been used for the placement of static and pre-defined multi attribute items and
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multi attribute queries in [20, 9]. These systems use a similar approach to index
data and distribute the index at nodes. However, their query engines differ.
The approach used by Ganesan et. al. [9] increases false-positives (e.g., non-
relevant nodes may receive the query) to reduce the number of sub-queries while
Squid [20] decentralize and distribute the query processing across multiple nodes
in the system.

Differently from other systems that use SFC strategies [20, 9] for multi at-
tribute queries DataDroplets allows the application to dinamicaly define tags as
a hint to the items correlation, using them to construct the SFC multi dimen-
sional space and then efficiently querying correlated items. Furthermore, other
systems distribute the query processing while we only use the SFC to reduce the
overall one dimensional index space to a set of partitions and redirect the query
to the nodes responsible for that partitions. Additionally, in DataDroplets the
SFC based strategy is combined with an generic load balancing mechanism to
improve uniformity even when the distribution of tags is highly skewed.

5 Conclusion

Cloud computing and unprecedented large scale applications, most strikingly,
social networks such as Twitter, challenge tried and tested data management so-
lutions and call for a novel approach. In this report, we introduce DataDroplets,
a key-value store whose main contribution is a novel data placement strategy
based on multidimensional locality preserving mappings. This fits access pat-
terns found in many current applications, which arbitrarily relate and search
data by means of free-form tags, and provides a substantial improvement in
overall query performance. As a secondary contribution, we show the usefulness
of having multiple simultaneous placement strategies in a multi-tenant system,
by supporting also ordered placement, for range queries, and the usual random
placement.

Finally, our results are grounded on the proposal of a simple but realistic
benchmark for elastic key-value stores based on Twitter and currently known
statistical data about its usage. We advocate that consensus on benchmarking
standards for emerging key-value stores is a strong requirement for repeatable
and comparable experiments and thus for the maturity of this area. This pro-
posal is therefore a first step in this direction.
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