Using Less Links to Improve Fault-Tolerant
Aggregation

(Fast Abstract)

Paulo Jesus
pcoj@di.uminho.pt

Carlos Baquero
cbm@di.uminho.pt

Paulo Sérgio Almeida
psa@di.uminho.pt

Universidade do Minho, Departamento de Informética (CCTC/DI)

1. MOTIVATION

Data aggregatio plays a basal role in the design of scalable
distributed applications [1], allowing the determination of
meaningful system-wide properties to direct the execution of
the system. For instance, aggregation can be used to estimate:
the size of the network to dimension of Distributed Hash
Table (DHT) structures [2], or to set a quorum in dynamic
settings [3]]; the average system load to guide local load-
balancing decisions; the total network disk space in a P2P
sharing system. In the particular case of Wireless Sensor
Networks (WSN), due to energy constraints, data collection
is often only practicable if aggregation is performed.

Several aggregation algorithms have been proposed in the
recent years, tackling the problem for different settings,
and yielding different characteristics in terms of accuracy,
time and communication tradeoffs. Traditional tree-based ap-
proaches [4]], [5]], [6] rely on the existence of a hierarchic ag-
gregation structure (e.g. spanning tree) to perform in-network
aggregation, but a single point of failure can jeopardize the
obtained result. Common gossip aggregation algorithms [7],
[8]], [9], [LO] are based on the execution of iterative averaging
techniques for all nodes to converge to the correct result.
Nonetheless, the correctness of such algorithms depends on a
fundamental invariant commonly designated as “mass conser-
vation”, which is broken by node crashes and message losses,
unpredictably affecting the estimated results [[L1], [12].

The majority of existing aggregation techniques are found
lacking in terms of fault-tolerance, being unable to simultane-
ously provide accuracy and efficiently tolerate faults. To the
best of our knowledge, only a recent approach has successfully
tackled this issue: Flow Updating [12]. Flow Updating is
an aggregation algorithm that provides an accurate estimate
(converges to the correct value) at all nodes, and it is by
design immune to message loss. We propose a simple heuristic
that extends the initial version of Flow Updating by locally
ignoring some communication links between neighbors while
keeping it’s fault-tolerance properties. We also provide some
preliminary results and discuss the benefits of the proposed
extension.

I'We refer to data aggregation as the distributed computation of aggregation
functions (e.g. COUNT, AVERAGE, SUM).

II. AN EXTENSION TO FLOW UPDATING

Flow Updating is inspired on existing gossip-based aggrega-
tion approaches, but unlike them it tolerates faults by design.
The algorithm is based on the concept of flow (from graph
theory). In a nutshell, an averaging iterative process is executed
at each node, keeping the initial input value unchanged and
performing idempotent flow updates. At each round, nodes
compute the average of known estimates (received from neigh-
bors) and update the neighbors flows in order to converge to it.
The new computed estimate and the flows are sent in a single
message (local broadcast) to all neighbors. The estimation of
the aggregation result can be produced at each node from it’s
initial value and the flow to each neighbor. More details about
the algorithm can be found in [12].

A. Extension

We observe that during the execution of Flow Updating,
a node will commonly receive data targeted to other nodes
that will not be used, since nodes locally broadcast data for
all known neighbors in a single message. Furthermore, if
two nodes share common neighbors they may receive from
different paths (neighbors) data that has already taken into
account the estimate of the other node, ending up multiplying
its influence in the next averaged estimate. For instance,
considering three nodes 4, j, and k directly connected to
each other, the data (estimate and flow) targeted to ¢ from j
may already consider the estimate of k, and the one received
by ¢ from £ may also take into account the estimate of j,
duplicating the influence of j and k in the next estimate
computed by ¢. In this situation, node ¢ will only need to
receive the message from one of those neighbors, since they
already take into consideration the estimation of each other.
Attending to this, we propose an extension to Flow Updating
in order to reduce the communication required to perform
aggregation and improve it’s performance.

The main idea is to reduce the exchange of redundant data
between nodes that share the same neighbors, by breaking
local communication cycles. To achieve this, we defined a
simple heuristic that takes advantage of all neighbors data
contained in each message, to find shared neighbors and
locally decide to ignore some communication links between
them. In particular, upon receiving a message from neighbor j,



FU

FU extension
L
2 01t
o
°
9]
N
: -
5 0.01 ¢ T
P4

0001 ! ! ! ! ! !
0 5 10 15 20 25 30 35 40
Rounds
Fig. 1. Convergence speed of Flow Updating Vs Flow Updating Extension

(2D/mesh networks, n = 1000, and d ~ 10).

node ¢ scans it’s contents looking for neighbors in common. If
a shared neighbor k is found, one of the communication links
between them will be “deactivated” according to a predefined
criteria. We simply rely on node IDs so that each node
independently decides which link will be deactivated (e.g. link
between the two nodes with the greater IDs). The execution of
Flow Updating proceeds normally, only ignoring deactivated
neighbors at each node (e.g. estimate and flow removed from
the local state).

III. EVALUATION

We obtained some preliminary results by comparing Flow
Updating with the proposed extension in a synchronous sim-
ulation environment. In particular, we considered a network
in which communication links between nodes are established
according to their geographical proximity (2D/mesh). Both al-
gorithms are used to determine the AVERAGE of different input
values distributed uniformly at random across the network.
Figure (1| shows the average convergence speed (number of
rounds to reach a given accuracy) from 50 repetitions of the
execution of the compared algorithms under identical settings,
generating different 2D/mesh networks with the same size
(n = 1000) and average connection degree (d =~ 10) in each
repetition.

Results show that the Flow Updating extension outperforms
the basic version of the algorithm in terms of convergence
speed at an early stage, requiring approximately half of the
number of rounds to reach an average accuracy of 10% across
the network (normalized RMSE = 0.1), but the speed of the
extended version progressively slows down and it is surpassed
by Flow Updating for accuracies < 3% (from the 25th round).
Furthermore, Flow Updating extension allowed the average
deactivation of approximately 75% of the existing links in the
considered scenario. This preliminary results turned out to be
very interesting and promising, since the proposed heuristic
allowed the seamless (relying only on data available in Flow
Updating, without any additional mechanism) definition of a

“lighter” communication overlay (using only a quarter of the
initial communication links) that increases the convergence
speed of the algorithm.

IV. CONCLUSION

In this work, we extend Flow Updating [12] — a fault-
tolerant aggregation algorithm, by deactivating some commu-
nication links between nodes that share a common neighbor-
hood. A simple heuristic is proposed, relying only on the
data available from the algorithm to enable each node to
independently decide which links can be deactivated.

Some empirical results are provided, showing that the
proposed heuristic initially improves the performance of the
aggregation process, and also considerably reduces the number
of active communication links. The obtained results are inter-
esting and promising. A thorough and wider study of the effect
of link remotion on aggregation algorithms is required in order
to fully understand the potential of this research direction.

REFERENCES

[1] R. V. Renesse, “The importance of aggregation,” Future Directions in
Distributed Computing, Lecture Notes in Computer Science, vol. 2584,
pp. 87-92, 2003.

[2] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
SIGCOMM °01: Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications,
pp. 149-160, Aug 2001.

[3] I. Abraham and D. Malkhi, “Probabilistic quorums for dynamic sys-
tems,” Distributed Computing, Springer Berlin/Heidelberg, vol. 18,
no. 2, pp. 113-124, Dec 2005.

[4] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a Tiny AG-
gregation service for ad-hoc sensor networks,” ACM SIGOPS Operating
Systems Review, vol. 36, no. SI, pp. 131-146, Dec 2002.

[5] J. Li, K. Sollins, and D. Lim, “Implementing aggregation and broadcast
over distributed hash tables,” ACM SIGCOMM Computer Communica-
tion Review, vol. 35, no. 1, pp. 81-92, 2005.

[6] Y. Birk, I. Keidar, L. Liss, A. Schuster, and R. Wolff, “Veracity
radius: capturing the locality of distributed computations,” PODC ’06:
Proceedings of the twenty-fifth annual ACM symposium on Principles
of distributed computing, Jul 2006.

[71 D. Kempe, A. Dobra, and J. Gehrke, Foundations of Computer Science,
2003. Proceedings. 44th Annual IEEE Symposium on, pp. 482— 491,
2003.

[8] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Transactions on Computer Systems
(TOCS), 2005.

[9] J.-Y. Chen, G. Pandurangan, and D. Xu;, “Robust computation of ag-

gregates in wireless sensor networks: Distributed randomized algorithms

and analysis,” IEEE Transactions on Parallel and Distributed Systems,

vol. 17, no. 9, pp. 987 — 1000, Sep 2006.

F. Wuhib, M. Dam, R. Stadler, and A. Clemm, “Robust monitoring of

network-wide aggregates through gossiping,” 10th IFIP/IEEE Interna-

tional Symposium on Integrated Network Management, pp. 226 — 235,

2007.

P. Jesus, C. Baquero, and P. S. Almeida, “Dependability in aggregation

by averaging,” in Simpdsio de Informdtica (INForum), September 2009

(in press).

P. Jesus, C. Baquero, and P. S. Almeida, “Fault-tolerant aggregation

by flow updating,” in 9th IFIP International Conference on Distributed

Applications and Interoperable Systems (DAIS), ser. Springer LNCS,

vol. 5523, Lisbon, Portugal, June 2009, pp. 73-86.

[10]

(11]

[12]



	Motivation
	An Extension to Flow Updating
	Extension

	Evaluation
	Conclusion
	References

