Information Sharing in Peer-to-Peer Systems

Nuno Lopes

Departamento de Informática

Novembro, 2006
1 Motivation

2 Contributions

3 Open Issues and Final Remarks
P2P System Characterization

- Large number of hosts.
- Completely decentralized.
- Highly variable host uptime.
Unstructured overlays rely on flood-based queries (Gnutella)

Structured overlays rely on distributed hash tables (Chord, Pastry, ...)

©2006 Nuno Lopes
Search on Distributed Hash Table systems

- Efficient object location given a key.
- No explicit search functionality, only exact key matching.
- Inverted index model used to implement searching: $word \mapsto document_reference_{set}$.
- Unbalanced load caused by Zipf distribution of data.
Contents

1 Motivation

2 Contributions

3 Open Issues and Final Remarks
Distributed Balanced Tree Algorithm

- Operations have logarithmic cost, following tree depth.
- Block independence adapts to dictionary-like interface storage (was originally designed for secondary storage).
- Decentralized unique block key generation scheme.
- Related work presents other tree-based structures.
Tree structure can be used as a Set implementation, to build a single large-scale textual inverted index for example.

It can also be used for any distributed application that would benefit from a large-scale B^+-Tree implementation.
A Python-based simulator was developed.

It follows the “Scalable Simulation Framework” model for network oriented simulations.

It provides with a simpler API and library interface than it’s Java counterpart.

To be made available to the community in the future.
Contents

1 Motivation

2 Contributions

3 Open Issues and Final Remarks
Open Issues

- Evaluating performance of the algorithm for range-query implementation.
- Semantic-based data reconciliation algorithm is being developed to handle data consistency issues.
This thesis presents a solution to store and search for unbalanced data over any DHT system without losing scalability.

Furthermore, by using a well known data algorithm, the B⁺ Tree, a generic index functionality is available for developing new large-scale P2P applications.