B Trees on P2P: Providing content indexing over DHT overlays

Carlos Baquero*

Nuno Lopes

Departamento de Informética, Universidade do Minho
{cbm,nuno.lopes} @di.uminho.pt

Abstract

The ability to search by content has been at the core
of P2P data sharing systems and is a fundamental
tool in the modern Web. However, currently de-
ployed P2P search technology still suffers from ei-
ther excessive centralization, abuse of network re-
sources or low accuracy.

Efficient overlay structuring systems, like dis-
tributed hash tables (DHTs), provide adequate so-
lutions to content location as long as unique identi-
fiers are used. They cannot, however, directly sup-
port search without negative impacts on the load
balance of data distribution among peer nodes.

We will show that DHTs can be used as a base
for efficient content indexing by building a B+ Tree
structure that coordinates the use of homogeneous
size blocks, compatible with the DHT load balance
assumptions. The remaining of the paper is ded-
icated to a discussion of some of the issues, prob-
lems and possible solutions, that need to considered
when building complex data structures on top of a
peer-to-peer DHT layer.

1 Introduction

In the last few years peer-to-peer (P2P) systems
have been extensively used for cooperative file
sharing among user nodes at the network edges.
One of the basic required functionalities is the abil-
ity to search across shared contents. Search can
target compact object descriptions, like a summary
string or long file name, or extend to full text search
in document objects. When a globally unique iden-
tifier is known we are no longer facing search but
object location and/or retrieval.

*Currently visiting Lancaster University Computing De-
partment, under FCT grant BSAB/390/2003.

Approaches to P2P search can be coarsely di-
vided into two classes: those that rely on pre-
computed indexes [13, 11] and those that do not
[6]. The first class pays an overhead when nodes
join and update their contents, being influenced by
the network dynamics. In the former case, over-
head is at query time, and is often very signifi-
cant in flood based strategies [14]. Also in the for-
mer case more reasonable query time overheads —
for instance when using random walks instead of
flooding [1, 10] — often leads to negative impacts
on search accuracy. Determining which class ex-
hibits the best overall behavior is still an open prob-
lem. The answer depends on a characterization of
node uptimes and shared data stability that is not
yet clear on present surveys [16].

In this position paper we will consider the case
in which an inverted index of shared contents is to
be kept along the P2P nodes. In contrast to the
shared data itself, which is usually of a read-only
nature, such an index is a dynamic structure whose
mappings are added when new nodes connect and
publish more contents, and are removed upon dis-
connections or content deletions.

Seminal work on P2P data structures introduced
several efficient models of Distributed Hash Tables
(DHTs) that cover a vast design space [17, 15, 12].
Designs span from systems where a node knows
a constant number of nodes, O(1), and lookups are
O(log N) to the number of nodes N [9]; to systems
where nodes keep knowledge of O(v/N) nodes to
achieve lookups in a fixed number of hops, O(1)
[7].

The effectiveness of P2P DHTs makes them ob-
vious candidates for storing an inverted index that
would support search. However, the data distribu-
tion patterns [5] that occur in such indexes break
the assumptions made by DHT models on what



concerns load balancing among the nodes [2]. In-
verted indexes map the most common keywords
into a lengthy list of object locations, and if the
keyword is to be used directly as a key in the DHT
mapping, the whole list would be assigned to a sin-
gle node. Load balancing approaches that split the
contents into lists of fixed sized blocks are only ad-
equate to immutable data, they cannot be used with
mutable sets.

Our observation is that this problem can affect
not only the construction of inverted indexes but
also other mutable data structures, such as files or
directories. Although the idea of using DHTSs as
building blocks for more complex structures is not
new, the need to keep uniform loads on DHT's map-
pings is often overlooked [13]. However, DHTs
operate correctly and are quite efficient when map-
ping keys to contents that exhibit an homogeneous
scale.

In order to achieve a well balanced distribution
of an inverted index and have a generic approach to
the storage of mutable sets we have explored the
construction of BT Trees over DHT storage, tak-
ing advantage of the fixed overhead associated to
BT Trees [3]. This approach has a strong parallel
to the use of inodes in the CFS storage system for
read only data [4].

In the next session we give a brief description
of the approach and then proceed to a more general
discussion of the problems that arise when building
such data structures over P2P DHTs.

2 Approach Synopsis

Our approach makes use of a DHT as a store for
(key — walue) pairs. The DHTSs uniform hash
function ensures that pairs are evenly distributed
across nodes. The BT Tree blocks will be stored
as values, assigning a uniform load to each pair.
While the reverse index stores information of the
kind (word < locationx) the BT Tree will in fact
be used to manage the set location*. For any given
word in the inverted index the DHT is used to map
that word into a BT Tree root block. Each block
can hold a given set of locations, as raw data, as
well as other block identifiers for navigation in the
B*tTree. Since all blocks, from all Bt Trees, are
stored in the same DHT, as well as word to root

800

no cache
10 block cache

700 F

Hits

. .
1 10 100
Blocks (log scale)

10000

Figure 1: Number of accesses on individual blocks.
With and without caching.

block associations, collisions must be prevented.
To this end, the root words are used in conjunc-
tion with block positions within the tree in order to
compose distinguished DHT keys.

As a direct result from the use of B Trees, pop-
ular words will have its location set scattered along
several blocks, and thus several nodes. The over-
head for lookups is constant with respect to the
number of nodes, and the average overhead for in-
sertions and deletions is constant as well. The over-
head will depend on the cardinality of the location
set and grows in logarithmic proportion to its size.
For most words, which are the non popular ones
and therefore the most significant for searches, the
overhead is non existent since the root block will
act as a leaf block and hold the whole location set.

Load balancing of data storage across the nodes
is achieved by the B*Tree DHT combination and
the spreading of block ids by the DHT hash func-
tion. However, unbalanced communication load
can still be found on peers responsible for root
and top level blocks of popular words. Fortunately
those contention points are also the less subject
to updates in the distributed structure and conse-
quently are easy to overcome by simple caching
techniques. Figure 1 depicts a simulation showing
how a 10 block cache in each node can lead to a or-
der of magnitude reduction in block accesses upon
insert operations.



3 Discussion

Without having presented a complete analysis of
the combined used of BT Trees and DHTS, we hope
to have established at this point the potential of
combining traditional data structuring models with
a base infrastructure of DHT mediated storage. In
this section we will discuss some of the more gen-
eral issues that come to surface in the process of
making this combination.

3.1 DHT encapsulation

Keeping a rigid interface between the DHT middle-
ware and the upper layers forces a client centered
mode of operation. In this mode, the BT Tree code
is run at the node acting as client to the requested
BT Tree operation. Each block request must be
served in turn by its DHT layer, meaning that al-
though DHT routing keeps distributed, all the re-
construction of the stored set is done at the client.

In order to provide a distributed reconstruction
of the stored sets, the B Tree algorithm must run
across all nodes responsible for relevant blocks in
the target BT Tree. This can only be achieved by ex-
posing the DHT routing to the BT Tree algorithms,
precluding the use of a simple update(key,value),
get(key), remove(key) interface. Nevertheless, such
approach would not be tied to any specific DHT
routing algorithm, although the routing details
would have to be considered for each case.

3.2 Data structures and code

The development of efficient distributed data struc-
tures over a P2P layer can only be achieved if
the involved algorithms execute in the most appro-
priate nodes, with respect to the location of ma-
nipulated data [8]. A paradigmatic case is found
when computing set intersections while searching
for documents matching multiply query terms [13].
Retrieving both sets in the client node and them
performing the intersection is clearly an inefficient
approach.

For massively distributed data, operation ship-
ping is often more efficient than data shipping.
Consequently, the presentation of the distributed
data middleware to its client code must accommo-
date programming models that provide an efficient

manipulation of the distributed data structures. A
good example of efficient manipulation of generic
data structures can be found on the C++ STL pro-
gramming model. It can constitute a good source
of example both for algorithms and structures.

3.3 Cache Consistency

The use of caching techniques is crucial when tam-
ing communication contention zones due to: “flash
crowds” for popular queries; and content hot spots
on popular keywords. Two kinds of reference local-
ity can be explored in the reverse index BT Trees:
one associated to blocks fetched due to client re-
quests, and another linked to the requests origi-
nated from other nodes. The first case explores
word locality within the contents that are exported
in a given node, while the second case takes ad-
vantage of block correlations within the B Tree. It
seems advisable to keep some separation between
the two caches.

Regardless of the actual cache under considera-
tion, it is not an option to propagate cache invali-
dations when changes occur. In order to avoid in-
validations, block caching in B*Trees is only ap-
plied to non-leaf blocks, so that stale entries can
be detected and corrected, when fetching lower
level blocks with newer versions. The cache con-
trol algorithm must then ensure that stale entries
do not compromise the consistency of the stored
data structure and that only performance is affected
when using stale block references.

3.4 Garbage Collection

Content indexing over large volumes of data is
often partially inconsistent with the data actually
available. This happens in Web indexing, where the
window of inconsistency is defined by the search
cycle period. Recent contents are not present in the
indexes and removed contents persist until the next
cycle.

In our approach, contents are announced by
nodes at join time, consequently reducing the win-
dow of inconsistency for new contents. Here the
tradeoff was to favor communication at join time,
reducing the load associated to queries.

Content removal on an announce based system
cannot be simply approached by detecting a node



failure and asking all the nodes that index its con-
tents to remove the appropriate entries. The main
obstacle in this situation is the absence of a dis-
tributed direct index, mapping a node to its con-
tents. These direct indexes are only available in the
actual nodes at stake, and those can leave the sys-
tem without prior notice.

One option to overcome this consists on having
the nodes, that hold leaf blocks with locations, pe-
riodically check the availability of those locations
and after given thresholds remove them, possibly
propagating this removal along the BT Tree. An-
other option is to associate a time-to-live tag to
each content association and make sure that con-
tent holders initiate a refresh operation along the
BT Tree at appropriate times.

Both options would benefit from insight into the
statistical distribution of node uptimes. From avail-
able data [16], it appears that the longer a given
node has been connected, the more probable it is
that it will remain connected. A complete charac-
terization of uptimes will lead to an adequate cali-
bration of the refresh, or polling, cycles that mini-
mizes traffic while keeping a low level of outdated
entries.

4 Conclusions

In this position paper we have brought attention to
the inefficiency of DHTs when dealing with non-
uniform mutable structures, of which a relevant ex-
ample is found on inverted indexes used for an-
nounce based search. Next, we have shown that
traditional data structuring tools, like B Trees, can
be a solution to load balance data distribution. Sim-
ple caching techniques can also be applied in order
to even communication loads.

We concluded with an analysis of the concerns
that are at stake when building complex data struc-
tures on top of a DHT based storage substrate,
and in particular BT Tree based inverted indexes.
One relevant finding is that the statistical proper-
ties of node uptimes and re-connection patterns are
of primary importance for the determination of the
adequate approaches to search in P2P and index
garbage collection policies.

References

[1] Lada Adamic, Rajan Lukose, Amit Puniyani, and
Bernardo Huberman. Search in power-law net-
works. Physical Review E, 64(046135),2001.

[2] Carlos Baquero and Nuno Lopes. Towards peer-
to-peer content indexing. ACM Operating Systems
Review, 37(4):90, October 2003.

[3] Thomas Cormen, Charles Leiserson, and Ronald
Rivest. Introduction to Algorithms. MIT Press,
1989.

[4] Frank Dabek, M. Frans Kaashoek, David Karger,
Robert Morris, and Ion Stoica. Wide-area cooper-
ative storage with cfs. In Proceedings of the 18th
ACM Symposium on Operating System Principles,
Alberta, Canada, October 2001.

[5] Zipf G. Human Behaviour and the Principle of
Least Effort. Addison-Wesley, 1949.

[6] Gnutella website. http://gnutella.wego.com/.

[7] Indranil Gupta, Kenneth Birman, Prakash Linga,
Al Demers, and Robbert Van Renesse. Kelips:
building an efficient and stable p2p dht through
increased memory and background overhead. In
Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS’03), Cambridge,
USA, March 2003.

[8] Matthew Harren, Joseph M. Hellerstein, Ryan
Huebsch, Boon Thau Loo, Scott Shenker, and Ion
Stoica. Complex queries in dht-based peer-to-peer
networks. In Revised Papers from the First Inter-
national Workshop on Peer-to-Peer Systems, pages
242-259. Springer-Verlag, 2002.

[9] M. Frans Kaashoek and David R. Karger. Ko-
orde: A simple degree-optimal distributed hash ta-
ble. In Proceedings of the 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS’03), Cam-
bridge, USA, March 2003.

Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott
Shenker. Search and replication in unstructured
peer-to-peer networks. In Proceedings of the
16th international conference on Supercomputing,
pages 84-95. ACM Press, 2002.

Napster. http://www.napster.com.

Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, and Scott Shenker. A scalable con-
tent addressable network. In Proceedings of the
ACM SIGCOMM’01 Conference, pages 161-172,
2001.



[13]

[14]

[15]

[16]

(17]

Patrick Reynolds and Amin Vahdat. Efficient peer-
to-peer keyword searching. In Proceedings of the
4th ACM/IFIP/USENIX International Middleware
Conference, Rio de Janeiro, Brazil, 2003.

Jordan Ritter. Why gnutella can’t scale. no, really.
http://www.darkridge.com/ jpr5/doc/gnutella.html,
2001.

Antony Rowstron and Peter Druschel. Pastry:
Scalable, decentralized object location, and rout-
ing for large-scale peer-to-peer systems. In Pro-
ceedings of the 18th IFIP/ACM International Con-
ference on Distributed Systems Platforms, Ger-
many, 2001.

Stefan Saroiu, P. Krishna Gummadi, and Steven D.
Gribble. A measurement study of peer-to-peer file
sharing systems. In Proceedings of Multimedia
Computing and Networking 2002 (MMCN’02),
San Jose, CA, USA, January 2002.

Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet
applications. In Proceedings of the ACM SIG-
COMM’01 Conference, pages 149-160, 2001.



