
2011 Nuno Alexandre Carvalho  

Experimental Evaluation of Distributed Middleware 
with a Virtualized Java Environment

MINHA  

Nuno A. Carvalho, João Bordalo, Filipe Campos and José Pereira
HASLab / INESC TEC

Universidade do Minho

MW4SOC’11
December 12, 2011



2011 Nuno Alexandre Carvalho  MINHA  

Motivation

Service oriented architectures span a wide range of 
application scenarios

Geographically dispersed

Deployed outside enterprise information systems

Comprehensive evaluation requirements

Correctness

Performance

2



2011 Nuno Alexandre Carvalho  MINHA  

Motivation

Current evaluation solutions

Simulation models: useful while the whole system 
isn’t available, but can only validate design and not 
the middleware and service implementation

Actual deployment: most realistic but costly and time 
consuming, also requires the availability of the entire 
system

3



2011 Nuno Alexandre Carvalho  MINHA  

Overview

Traditional experimental middleware evaluation

4

Network

JVM n

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Target middleware

Target application

JVM 2

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Target middleware

Target application

JVM 1

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Target middleware

Target application

...



2011 Nuno Alexandre Carvalho  MINHA  

Overview

Traditional experimental middleware evaluation

5

Network

JVM n

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Target middleware

Target application

JVM 2

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Target middleware

Target application

JVM 1

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Target middleware

Target application

...

Multiple instances of an 
application are deployed in 
multiple JVMs

JVMs are scattered across 
multiple physical hosts

The amount of the 
required hardware 
resources is o&en 
prohibitive



2011 Nuno Alexandre Carvalho  MINHA  

Overview

MINHA middleware evaluation

6

JVM

Bytecode instrumentation

Java Interpreter / JIT Compiler

Platform libraries (java.*)

MINHA

Virtual JVM n

Target middleware

Target applicationVirtual JVM 1

Target middleware

Target application
Virtual JVM 1

Target middleware

Target application

...



2011 Nuno Alexandre Carvalho  MINHA  

Overview

MINHA middleware evaluation

7

Reproduces the same 
distributed run within a 
single JVM

Application and middleware 
classes for each vJVM are 
automatically transformed

Some simulation models 
are developed from scratch, 
others are produced by 
translating native libraries

JVM

Bytecode instrumentation

Java Interpreter / JIT Compiler

Platform libraries (java.*)

MINHA

Virtual JVM n

Target middleware

Target applicationVirtual JVM 1

Target middleware

Target application
Virtual JVM 1

Target middleware

Target application

...



2011 Nuno Alexandre Carvalho  MINHA  

Overview

MINHA middleware evaluation advantages

8

Global observation without 
interference

Simulated components

Large scale scenarios

Automated “What-If” 
analysis

JVM

Bytecode instrumentation

Java Interpreter / JIT Compiler

Platform libraries (java.*)

MINHA

Virtual JVM n

Target middleware

Target applicationVirtual JVM 1

Target middleware

Target application
Virtual JVM 1

Target middleware

Target application

...



2011 Nuno Alexandre Carvalho  MINHA  

Agenda

9

Simulation Kernel

Virtualized JVM

Input/Output Models

Calibration

Case Study



2011 Nuno Alexandre Carvalho  MINHA  

Simulation Kernel

Event-based simulation kernel

Abstract resource management primitives

10

JVM

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Virtual JVM n

Target middleware

Target applicationVirtual JVM 1

Target middleware

Target application
Virtual JVM 1

Target middleware

Target application

...

Simulated events and resources



2011 Nuno Alexandre Carvalho  MINHA  

Simulation Kernel

Combination of real and simulated code:

Measuring the time of execution and management of a 
simulated processor

Allowing sequential Java code to execute by eliminating the 
inversion of control resultant from the event simulation

11

JVM

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Virtual JVM n

Target middleware

Target applicationVirtual JVM 1

Target middleware

Target application
Virtual JVM 1

Target middleware

Target application

...

Simulated events and resources

Time virtualization



2011 Nuno Alexandre Carvalho  MINHA  

Simulation Kernel

12

public class Foo {

   public static void main(...){
      int i = 0;
      while (i<100)
         i++;
   }

}



2011 Nuno Alexandre Carvalho  MINHA  

Simulation Kernel

12

public class Foo {

   public static void main(...){
      int i = 0;
      while (i<100)
         i++;
   }

}

class load

JVM

start



2011 Nuno Alexandre Carvalho  MINHA  

Simulation Kernel

12

public class Foo {

   public static void main(...){
      int i = 0;
      while (i<100)
         i++;
   }

} For simplicity, let’s assume 
that this segment is a thread

class load

JVM

start



2011 Nuno Alexandre Carvalho  MINHA  

Simulation Kernel

12

public class Foo {

   public static void main(...){
      int i = 0;
      while (i<100)
         i++;
   }

}

start()

Thread

For simplicity, let’s assume 
that this segment is a thread

class load

JVM

start



2011 Nuno Alexandre Carvalho  MINHA  

Simulation Kernel

12

public class Foo {

   public static void main(...){
      int i = 0;
      while (i<100)
         i++;
   }

}

start()

Thread

For simplicity, let’s assume 
that this segment is a thread

class load

JVM

startevent.run()



2011 Nuno Alexandre Carvalho  MINHA  

Simulation Kernel

12

public class Foo {

   public static void main(...){
      int i = 0;
      while (i<100)
         i++;
   }

}

start()

Thread

For simplicity, let’s assume 
that this segment is a thread

class load

JVM

startevent.run()

st.pause()

Simulation
Thread

startTime()

st.wakeup()

stopTime()
st.pause()



2011 Nuno Alexandre Carvalho  MINHA  

Simulation Kernel

12

public class Foo {

   public static void main(...){
      int i = 0;
      while (i<100)
         i++;
   }

}

start()

Thread

For simplicity, let’s assume 
that this segment is a thread

class load

JVM

startevent.run()

simulation
time delta

real
time delta

st.pause()

Simulation
Thread

startTime()

st.wakeup()

stopTime()
st.pause()



2011 Nuno Alexandre Carvalho  MINHA  

Virtualized JVM

Reflect real time of execution of a sequence of code in 
the occupation of a simulated processor

Blocking operations (thread synchronization and I/O) 
must be intercepted and translated into corresponding 
simulation primitives

Code executing in different virtual instances cannot 
interfere directly through shared variables 

13



2011 Nuno Alexandre Carvalho  MINHA  

Virtualized JVM

Bytecode manipulation: custom class 
loader that uses ASM Java bytecode 
manipulation and analysis framework 
to rewrite classes

Isolation: each virtual JVM has its own 
separate instance of the class loader 
acting like a sandbox

Interaction: A subset of classes, 
containing the simulation kernel and 
models, are kept global providing a 
controlled channel for virtual JVMs to 
interact

14

JVM

Bytecode instrumentation

Translated platform libraries

Virtual JVM 2

Bytecode instrumentation

Translated platform libraries
(moved.java.*)

Target middleware

Target application

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Virtual JVM 1

Target middleware

Target application

...

Bytecode instrumentation

Simulated events and resources

Time virtualization



2011 Nuno Alexandre Carvalho  MINHA  

Virtualized JVM

Bytecode manipulation: custom class 
loader that uses ASM Java bytecode 
manipulation and analysis framework 
to rewrite classes

Isolation: each virtual JVM has its own 
separate instance of the class loader 
acting like a sandbox

Interaction: A subset of classes, 
containing the simulation kernel and 
models, are kept global providing a 
controlled channel for virtual JVMs to 
interact

14

JVM

Bytecode instrumentation

Translated platform libraries

Virtual JVM 2

Bytecode instrumentation

Translated platform libraries
(moved.java.*)

Target middleware

Target application

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Virtual JVM 1

Target middleware

Target application

...

Bytecode instrumentation

Simulated events and resources

Time virtualization



2011 Nuno Alexandre Carvalho  MINHA  

Virtualized JVM

Bytecode manipulation: custom class 
loader that uses ASM Java bytecode 
manipulation and analysis framework 
to rewrite classes

Isolation: each virtual JVM has its own 
separate instance of the class loader 
acting like a sandbox

Interaction: A subset of classes, 
containing the simulation kernel and 
models, are kept global providing a 
controlled channel for virtual JVMs to 
interact

15

JVM

Bytecode instrumentation

Translated platform libraries

Virtual JVM 2

Bytecode instrumentation

Translated platform libraries
(moved.java.*)

Target middleware

Target application

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Virtual JVM 1

Target middleware

Target application

...

Bytecode instrumentation

Simulated events and resources

Time virtualization



2011 Nuno Alexandre Carvalho  MINHA  

Virtualized JVM

Bytecode manipulation: custom class 
loader that uses ASM Java bytecode 
manipulation and analysis framework 
to rewrite classes

Isolation: each virtual JVM has its own 
separate instance of the class loader 
acting like a sandbox

Interaction: A subset of classes, 
containing the simulation kernel and 
models, are kept global providing a 
controlled channel for virtual JVMs to 
interact

15

JVM

Bytecode instrumentation

Translated platform libraries

Virtual JVM 2

Bytecode instrumentation

Translated platform libraries
(moved.java.*)

Target middleware

Target application

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Virtual JVM 1

Target middleware

Target application

...

Bytecode instrumentation

Simulated events and resources

Time virtualization



2011 Nuno Alexandre Carvalho  MINHA  

Virtualized JVM

Bytecode manipulation: custom class 
loader that uses ASM Java bytecode 
manipulation and analysis framework 
to rewrite classes

Isolation: each virtual JVM has its own 
separate instance of the class loader 
acting like a sandbox

Interaction: A subset of classes, 
containing the simulation kernel and 
models, are kept global providing a 
controlled channel for virtual JVMs to 
interact

16

JVM

Virtual JVM n

Bytecode instrumentation

Translated platform libraries
(moved.java.*)

Target middleware

Target applicationVirtual JVM 2

Bytecode instrumentation

Translated platform libraries
(moved.java.*)

Target middleware

Target application

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Virtual JVM 1

Target middleware

Target application

...

Bytecode instrumentation

Simulated events and resources

Time virtualization Simulation models (network,...)



2011 Nuno Alexandre Carvalho  MINHA  

Virtualized JVM

Platform libraries

Java prohibits the transformation 
of classes under java.* package

Rewrite classes that contains 
native methods

Overwrite special static methods, 
like System.nanoTime()

The remaining classes are 
analyzed and processed 
automatically

17

JVM

Bytecode instrumentation

Translated platform libraries

Virtual JVM 2

Bytecode instrumentation

Translated platform libraries
(moved.java.*)

Target middleware

Target application

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Stubbed platform libraries

Virtual JVM 1

Target middleware

Target application

...

Bytecode instrumentation

Stubbed platform libraries
(fake.java.*)

Translated platform libraries
(moved.java.*)

Simulated events and resources

Time virtualization



2011 Nuno Alexandre Carvalho  MINHA  

Virtualized JVM

Synchronization

Primitives in java.util.concurrent.*

Rewrite to fake.*

Java monitor operations and implicit 
mutex/condition variables

Inject a special 
fake.java.lang.Object 
ancestor on all translated classes and 
rewrite monitor operations to 
invocations to methods on this class

static synchronized methods 
are solved in a similar way with a 
singleton object

18

JVM

Bytecode instrumentation

Translated platform libraries

Virtual JVM 2

Bytecode instrumentation

Translated platform libraries
(moved.java.*)

Target middleware

Target application

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Stubbed platform libraries

Virtual JVM 1

Target middleware

Target application

...

Bytecode instrumentation

Stubbed platform libraries
(fake.java.*)

Translated platform libraries
(moved.java.*)

Simulated events and resources

Time virtualization



2011 Nuno Alexandre Carvalho  MINHA  

Input/Output Models

Filesystem

Reads and writes are intercepted in order to avoid direct 
invocation of native methods, thus providing separate 
filesystems to different virtual JVMs

Network

Modeled as a resource shared by all communication 
channels with a finite capacity

Access control is performed by the leaky bucket algorithm

TCP and UDP sockets, including Multicast, supported 
through the java.net API

19



2011 Nuno Alexandre Carvalho  MINHA  

Calibration

Network

Bandwidth

Sending and receiving overheads

Latency

Performed by running two benchmarks:

Flood

Round-trip

20



2011 Nuno Alexandre Carvalho  MINHA  

Calibration

21

 0

 200

 400

 600

 800

 1000

 1200

 0  1000  2000  3000  4000  5000
B

W
 (

M
b
it/

s)
Size (bytes)

Real
Minha

 0

 200

 400

 600

 800

 1000

 1200

 0  1000  2000  3000  4000  5000

B
W

 (
M

b
it/

s)

Size (bytes)

Real
Minha

a) Writing b) Reading

Bandwidth with realistic behavior



2011 Nuno Alexandre Carvalho  MINHA  

Calibration

22

c) Latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1000  2000  3000  4000  5000

R
o
u
n
d
 T

ri
p
 (

m
s)

Size (bytes)

Real
Minha

Latency with realistic behavior



2011 Nuno Alexandre Carvalho  MINHA  

Case Study

Devices Profile for Web Services (DPWS)

Standard that defines a set of protocols for devices to achieve 
seamless networking and interoperability through Web Services

Proposed as the base for large scale smart grids and safety 
critical medical devices

Used on recent operating systems, home automation, assembly 
lines and car industry

Web Services for Devices (WS4D-JMEDS)

Framework that implements DPWS standard

Supports J2SE and J2ME

23



2011 Nuno Alexandre Carvalho  MINHA  

Case Study

Membership notification

Manager finds peers through multicast

Manager sends producers addresses to peers 

Peers register themselves on producers

Producers initiate notification rounds

Number of peers go from 10 to 300

24

ProducerManager

C C C C C C C...

Rounds of events



2011 Nuno Alexandre Carvalho  MINHA  

Case Study

In a normal WS4D deploy we would have

Each peer on a different device

Each device with only one CPU core

25



2011 Nuno Alexandre Carvalho  MINHA  

Case Study

In a normal WS4D deploy we would have

Each peer on a different device

Each device with only one CPU core

Due to hardware restrictions we deployed 300 devices on 
multiple JVMs on a single host with 24 CPU cores

Localhost network with minimal latency

Producer can send up to 24 notifications in parallel 
(biasing the results) 

25



2011 Nuno Alexandre Carvalho  MINHA  

Case Study

26

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 0  50  100  150  200  250  300

D
u
ra

tio
n
 (

s)

Devices

Multiple JVMs
Minha (sim)
Minha (real)

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300

L
a
te

n
cy

 (
m

s)

Devices

Multiple JVMs
Minha

a) Latency b) Duration

MINHA eliminates false latency when all peers run on a 
single host

MINHA is faster than real deployments on I/O bound 
scenarios (up to 50 times)



2011 Nuno Alexandre Carvalho  MINHA  

Conclusion

27

Allows off-the-shelf code (bytecode) to run 
unchanged including threading, concurrency control 
and networking

Manages a simulated timeline which is updated using 
accurate measurements of time spent executing real 
code fragments

Provides simulation models of networking primitives 
and an automatic calibrator 

Allows off-the-shelf middleware stack evaluation 
deployed on a large scale system with hundred of 
devices 



2011 Nuno Alexandre Carvalho  MINHA  

Conclusion

28

http://gitorious.org/minha

http://gitorious.org/minha
http://gitorious.org/minha

