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Abstract—The sheer volumes of data handled by today’s
Internet services demand uncompromising scalability from the
persistence substrates. Such demands have been successfully
addressed by highly decentralized key-value stores invariably
governed by a distributed hash table. The availability of these
structured overlays rests on the assumption of a moderately sta-
ble environment. However, as scale grows with unprecedented
numbers of nodes the occurrence of faults and churn becomes
the norm rather than the exception, precluding the adoption
of rigid control over the network’s organization.

In this position paper we outline the major ideas of a
novel architecture designed to handle today’s very large scale
demand and its inherent dynamism. The approach rests on the
well-known reliability and scalability properties of epidemic
protocols to minimize the impact of churn. We identify several
challenges that such an approach implies and speculate on
possible solutions to ensure data availability and adequate
access performance.
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I. INTRODUCTION

Cloud Computing is often portrayed as the panacea of
all IT needs, promising infinitely scalable services as a
commodity. Part of the attractiveness of this perspective
can be attributed to the ever growing need of scalable and
dependable IT services, either in the form of storage or
computing, by enterprises and the general public that tend
to increasingly act on a global scale.

Still this general overarching need is far from being satis-
fied and, in particular, the need for a scalable and dependable
data store capable of operating with unprecedented volumes
of clients and ever growing data [1], [2] that needs to be
stored, retrieved and most importantly processed in order
to obtain usable information. This fueled the emergence
of a new generation of data stores capable of handling
large volumes of data and requests, albeit forfeiting the
rich interface and consistency guarantees found in traditional
database systems [3], [4], [5], [6].

Architecturally, traditional relational database manage-
ment systems (RDBMS) offer strong consistency models
but are confined to a single node, or rely on distributed
coordination protocols that are known to scale only to a
few dozen nodes [7]. Novel distributed approaches relax the
consistency model in order to scale to hundreds of nodes at
the cost of simple few single-item guarantees.

The classical approach to distribution is by recurring to
structured substrates, where nodes are organized in a well
defined and strictly controlled fashion. This is for instance
done in Cassandra [4], by organizing nodes in a Distributed
Hash Table. While highly efficient, the rigid structure and
organization of DHTs is sensible to faults and churn [8].
Structure maintenance in a dynamic environment is hard
because several invariants need to be observed and costly as
repair mechanism are reactive and thus induce an overhead
proportional to churn.

Unfortunately, as the system size grows, churn becomes
pervasive due to hardware and software failures as well as
system reconfigurations [9]. For instance, field studies show
error rates in RAM as high as 8% [10] and disk replacements
rates up to 13% [11]. Furthermore, there is evidence that
failure rates grow at least linearly with the system size and
are affected by system load [12] both important aspects in
existing infrastructures. While those studies present already
high failure rates of hardware components, churn is expected
to be higher due to transient failures of these and other
components. The purported scalability rests therefore on the
assumption of a moderately stable environment that tends to
vanish as the system grows. Most strikingly, with systems
being designed at million node scales [9] to cope with next
generation demands at a global scale current designs are
lacking: knowing all nodes to perform some operations as
in Cassandra is unattainable, as is the requirement of a (set
of) master nodes as in Bigtable/HBase [13], [5].

Scenario: The alternative seems thus to rely on a
substrate that scales and is able to cope with a churn and
faulty environment as a consequence of scale itself. This
scenario ranges thus from the typical data center made of
commodity hardware but also organizations with a large
existing computing infrastructure such as universities and
global enterprises, where the common denominator is very
large scale and high dynamism.

In this position paper we discuss our current effort on
applying an epidemic-based approach to the problem of mas-
sive data store systems, presenting the general architecture of
the proposed system, its current status and open challenges.
The rest of the paper is organized as follows: in Section II
we present our two-layered system architecture, describing
the requirements of each layer, how they integrate and its
current status. Then in Section III we discuss several open
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design questions, the research path we intend to follow and
the expected open problems.

II. DATADROPLETS

The guiding principle behind our proposal is clear sep-
aration of concerns between different functional aspects of
the system that we addressed at different abstractions levels
with different goals and assumptions.

The architecture we propose is driven by a careful anal-
ysis of client requirements and expectations that could be
broadly divided in two major domains: i) client interface
and concurrency control and ii) data storage itself and
low level processing. Most strikingly this is the approach
taken by traditional relational database management systems
(RDBMS) and sidestepped by new data store proposals. As
a matter of fact, in RDBMS the client has access to a clearly
defined interface that allows the specification of details
such as isolation guarantees and primitives for performance
tuning such as indexes, but hides the details of how data is
actually stored, maintained and processed. This is in sharp
contrast with popular data processing approaches such as
MapReduce [14].

We address these two distinct domains with the hybrid
architecture depicted in Figure 1.

At the top, a soft-state layer is responsible for handling
client requests and avoiding issues such as conflicts that
eventually arise due to concurrency. Those problems require
a careful ordering of requests and thus coordination among
participating nodes which is best achieved by a structured
DHT-based approach where nodes partition the key-space
among themselves in order to achieve load-balancing and

unequivocal responsibility for partitions [15]. With requests
ordered, the remaining and costly procedure of performing
the actual read or write over the data is delegated to the
persistent-state layer below. As the soft-state layer only
carries simple and lightweight operations over metadata,
which can be maintained in memory, we expect it to be
moderately sized and thus manageable with a structured
approach. In fact, on the event of a catastrophic failure,
or when a new node joins this layer, metadata can be
reconstructed from the data reliably stored at the underlying
persistent-state layer.

The design of the soft-state layer also takes into account
several performance-wise considerations. We take advantage
of spare capacity to serve as a tuple cache [16] thus avoiding
unecessary operations at the persistent-state layer. As the
soft-layer always knows the most recent version of an
item, cache inconsistency issues are eliminated. This is
also leveraged to improve search performance: as the (last)
version of the item to retrieve is always well-known the
use of quorums at the persistent-state layer is not necessary.
Maintaining knowledge of some of the nodes that store the
data in the persistent-state layer is also a straightforward
technique to improve operation performance [17]. Further,
the use of effective tuple placement strategies that take into
account, for instance, the correlation among tuples also has
a significant impact on performance as studied in [18].

With the major problems of the upper layer mostly
addressed we are now shifting our research focus to the
underlying persistent-state layer which is where the actual
data storage and processing takes place. Due to the scale
of both nodes and data the approach is to leverage on the
scalability and resilience of epidemic-based protocols. The
fundamental requirements of this layer are data availability,
operation performance and processing capabilities. The only
assumption we do so far is that write operations are correctly
ordered by the soft-state layer.

III. PROPOSAL AND OPEN PROBLEMS

In this section we describe the main design ideas to the
epidemic-based persistent state layer, discuss open problems
and set the roadmap for future research. The essential prop-
erties of a low level storage system are i) data availability
and ii) performance: without the first the system is unusable,
the second makes it desirable.

In an initial approach we assume simple read and write
operations. They are ordered and identified with a request
version. Any node in the system may receive requests to
perform such operations.

The key idea is to rely on an epidemic dissemination
protocol to spread data and operations to relevant nodes,
taking advantage of the inherent scalability and ability to
mask transient node and link failures. We first discuss the
problem of correctness, data availability and durability, and



then how the system can be improved to achieve good
performance.

A. Data availability and durability

Data availability is mainly affected by failures and churn
as data present in offline nodes becomes inaccessible. The
only way to cope with unavailability due to offline nodes is
by redundancy and thus the main concern about that avail-
ability is how to achieve and maintain adequate redundancy
levels, which, despite the redundancy strategy used boils
down to the question: how many nodes need to replicate
an item.

Upon a write request, it is necessary to ensure that several
copies of the item are spread throughout the system for
durability. Due to the low capacity of individual nodes
and high churn rates it is impossible to track down the
state of individual nodes and do globally informed data
placement decisions. Our strategy is instead based on a
global dissemination/local decision approach.

The key idea is to spread data in an epidemic fashion [19],
[20], [21] and have nodes locally decide if they need to
store that data. The cost, in terms of network and processor
usage, of achieving atomic infection, i.e. reaching all nodes
in the system is however considerable as nodes need to
relay messages to In(N) + ¢ neighbors, where N is the
system size and c a parameter related to the probability of
atomic infection, given by Datomic = ¢~¢ °. Thus supposing
a system with 50 000 nodes, in order to achieve atomic
infection with high probability (patomic = 0.999 — ¢ =T7)
each node will have to relay around 18 copies of each single
message (In(50 000) + 7 ~ 18).

Unfortunately, atomic dissemination is not sufficient to
ensure data availability due to the presence of faults and
churn. This is because even if updates reach all nodes, it
is not guaranteed that the node responsible for keeping that
update is available. Redundancy is thus necessary to mask
faults and churn and ensure data availability. Most strikingly,
with an uniform redundancy strategy (i.e. with copies evenly
distributed throughout the system) atomic dissemination is
not even necessary as it is enough to reach a proportion of
the system that covers the required number of replicas. This
allows the system to have relaxed atomic dissemination guar-
antees which directly impact the overhead of dissemination.
In fact going from reaching a major portion of the population
to guaranteeing atomic dissemination requires a substantial
increase in the number of the number of copies that need to
be relayed. The combination of the replication factor with
the dissemination effort yields an interesting trade-off that
requires further exploration.

The remaining challenge is then to decide which nodes
should keep the data, restricted by the impossibility to store
all data in a single node and by the required redundancy
level. Our idea is to address this by means of local sieves
that should retain only small fractions of data. Thus upon

reception of a new message, nodes locally decide if the
message falls into the sieve range and relay it to fanout
neighbors. This is in fact similar to what is done in structured
DHT approaches where each node is responsible for a given
portion of the key space [15], [22]. The sieve function can be
computed locally in a random fashion or take into account
some similarity metric, either computed by the node itself
or as hinted by the soft-state layer. The only correctness
requirement is that all the possibilities in the key space
are covered in order to avoid data-loss. This gives also
enough flexibility to cope with nodes with disparate storage
capabilities, as it is only a matter of adjusting the sieve
grain in order to impact the amount of stored data. A
simple sieve function could simple store locally an item with
probability given by 1/number of nodes. The number of
nodes could be estimated also in an epidemic manner as
in [23]. Using replication, the sieve function could be simply
extended to take into account the replication degree, 7, as
r/number of nodes.

The other issue to address is the maintenance of the
redundancy levels, accordingly to the redundancy strategy
chosen, which should ensure that a minimal number of
copies of every item exist in the system. Again due to scale
and churn a centralized deterministic approach is infeasible
and thus we must rely on probabilistic epidemic-based
methods. Those methods, based on random walks [24], [25],
allow each node to obtain an uniform sample of the data
stored at other nodes and eventually determine how many
copies of the items it holds exist in the system. Doing this on
a tuple level is however clearly impractical, as it will require
a random walk per tuple and very long walks in order to
obtain a good estimation with high probability. However, as
tuples are retained at nodes according to the sieve function,
obtaining an estimate of how many nodes have a given sieve
(which corresponds being responsible for a given portion
of the key space) suffices. This drastically reduces random
walk length and the number of random walks needed as
many tuples may be checked at once. To further improve
the reliability of the redundancy management it is further
possible to have nodes responsible to the same key space
(discovered by the random walk procedure) check tuple
redundancy directly between them and restore redundancy
as necessary.

Due to the dynamic nature of the target scenario further
considerations may be taken into account. Churn is expected
to be much more dramatic than failures as it is more likely
that nodes suffer from transient faults solved with a reboot
than from permanent failures that imply a definite departure
from the system [11]. This means that redundancy constrains
can be relaxed as the vast majority of nodes are expected to
recover within a small time window. Another aspect to take
into account in the redundancy policy is that the individual
capacity of nodes is despicable when compared to the total
volume of data which makes the effect of churn and failure



of a single node negligible. Nonetheless, a mechanism to
maintain redundancy at acceptable levels is essential to avoid
data loss.

B. Data Performance

Whereas data availability is mainly concerned with how
many nodes need to hold replicas of a given item, data
performance is related to where those items actually are.
There are several strategies to improve performance in such
a system, here we consider the following: i) collocation of
related items and ii) ordering of items.

1) Item collocation: The most straightforward approach
to item co-collocation is by using smarter sieve functions
that, instead of blindingly keep items based on a key, are
able to take advantage of tuple correlation and thus locally
co-locate related items. In fact the use of this strategy at
the soft-state layer already showed that performance can
be significantly improved when tuple correlation is taken
into account [18]. Thus, the soft-state layer can provide
hints on which sieve functions should be used and share
similar performance-wise advantages. An open challenge
with this approach is how to properly disseminate those
custom sieve functions ensuring full coverage of the key
space and adequate load-balancing.

Another interesting approach to explore is to rely exclu-
sively on the inherent data distribution of items through
some value domain. In fact, knowing that the stored data fol-
lows a given distribution enables the construction of effective
sieves that achieve both precise item collocation and load
balancing. For instance, if data follows a normal distribution,
sieves located near the mean + standard deviation need
to be much finer than sieves outside that region due to
the higher item density. Such a simple approach enables a
wide range of performance trade-offs, for instance to load
balance according to disk space or item request popularity
simply by choosing the appropriate metric to generate the
distribution, and thus avoid hotspots. The challenge is then
how to obtain an adequate estimation of item distribution
according to some criteria in a decentralized and scalable
fashion. Recent work on this subject [26], [27] based itself
on epidemic techniques show that it is possible to obtain
accurate estimation of distribution for a given parameter in
a scalable and lightweight fashion, which can be used as
initial building blocks to our approach. Still, our scenario has
particular characteristics that may affect the effectiveness of
those protocols, namely a large number of duplicates [27]
due to the redundancy, and high churn rates [26], [28] due
to large scale, which require further investigation.

2) Item ordering: The other essential issue to improve
performance is the ordering of items which would enable
efficient range scans of items and the construction of ad-
vanced abstractions such as indexes, an essential perfor-
mance feature of traditional relational database management
systems that is still lacking on new generation data stores.

This problem becomes more evident when data needs to be
drawn from several nodes which is, at first, beneficial due
to the ability to perform parallel reads but raises several
interesting challenges as node organization is essential to
obtain adequate performance.

To attain such ordering, as nodes cannot store locally all
the data, the natural approach is to order nodes such that
each node knows the next node from which data needs to
be retrieved/processed. In an overlay network this reduces to
establishing the appropriate neighbor relations among nodes
taking into account the values they store. This semantic
organization of nodes clearly calls to an approach based on
content-based systems which are precisely suited to arrange
nodes taking into account the values of items they hold[29],
[30], [31]. While attractive this rigid approach may not be
suitable to an environment subject to churn as a precise
organization of nodes is not feasible. On the other hand the
approach to deal with item collocation by generating item
distribution seems remarkably suited to serve as a basis for
item (node) ordering. Assuming that nodes locally possess
an estimation of the data distribution and as they know the
position of the locally stored items in such distribution it
is straightforward to assess how close in the data space
their actual neighbors are. With this knowledge it is possible
to establish a partial order among nodes and have them
converge to the proper neighborhood using well-known
methods [32].

Naturally, such an organization only makes sense from the
point of view of a single attribute/value. Thus it is necessary
to support several contending such organizations in order to
offer range scans and indexes on several attributes. A first
naive approach could be to maintain several independent
overlays to support distinct ordering but this is not scalable
as it imposes an high overhead that grows linearly with the
number of nodes. This can be addressed by more complex
approaches that are able to cope with such contending orga-
nizations in a scalable, albeit sensitive to churn, fashion [33].
Alternatively, recent work was shown that it is possible
to support several independent such organizations in an
efficient and scalable fashion without ever compromising the
resilience of the underlying protocol to faults and churn [34].

C. Data Processing

Another active area of research is the offering of pro-
cessing capabilities in the new generation data stores [35],
[36]. This processing increases the applicability of existing
systems by enabling the extraction of structured knowledge
from existing data ranging from simple summaries such
as counts or maximums, to more complex and elaborate
relational joins providing table materialization.

Interestingly, due to the simple composed approach pro-
posed so far, it is straightforward to offer simple aggrega-
tions to clients with minimal overhead. In fact, basic dis-
tributed computations are already done in order to estimate



the data distribution of a given parameter, and thus it is
simply a matter of exposing such results to the soft-state
layer. This is attractive as those computations are likely
to be required for attributes where an index or range scan
is already built and thus can be obtained at no cost. For
other attributes a first approach can consist of relying on
existing aggregation protocols [37] to continuous compute
a given result over the data. Nonetheless some of the
challenges pointed above, such as robust aggregation within
the dynamic environment and how to cope with multiple
instances of data due to redundancy still remain.

The most interesting challenge seems to be to offer
relational properties based on a join operator. Effective joins
in such an environment are known to be hard to achieve due
to the distributed and dynamic nature of the system but at the
same time of major relevance to offer functionality closer to
the relational model.
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