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Abstract. Distributed aggregation allows the derivation of a given global
aggregate property from many individual local values in nodes of an inter-
connected network system. Simple aggregates such as minima/maxima,
counts, sums and averages have been thoroughly studied in the past and
are important tools for distributed algorithms and network coordination.
Nonetheless, this kind of aggregates may not be comprehensive enough
to characterize biased data distributions or when in presence of outliers,
making the case for richer estimates of the values on the network.
This work presents Spectra, a distributed algorithm for the estimation of
distribution functions over large scale networks. The estimate is available
at all nodes and the technique depicts important properties, namely: ro-
bust when exposed to high levels of message loss, fast convergence speed
and fine precision in the estimate. It can also dynamically cope with
changes of the sampled local property, not requiring algorithm restarts,
and is highly resilient to node churn.
The proposed approach is experimentally evaluated and contrasted to a
competing state of the art distribution aggregation technique.

1 Introduction

The ability to aggregate data is a fundamental feature in the design of scalable
information systems, which allows the estimation of relevant global properties
in a decentralized way in order to coordinate distributed applications, or for
monitoring purposes. Usual aggregates include environment sensor data, such
as temperature and humidity, and system properties, such as load and available
storage.

Simple aggregates such as minima/maxima, counts, sums and averages have
been thoroughly studied in the past. Nonetheless, this kind of aggregates may
not be comprehensive enough to characterize biased distributions or in the pres-
ence of outliers, making the case for richer estimates of the values on the net-
work (e.g. probability density functions, histograms, cumulative distributed func-
tions), since statistical ordinary moments hide in many cases changes in the
property that are relevant to control decisions.

The amount of scientific work is relatively scarce in what concerns more
expressive aggregation metrics. A recent proposal within this domain [22] claims



to obtain estimates with a better precision than in previous approaches. It is an
algorithm for the estimation of discrete cumulative distribution functions.

Despite the contribution, the proposal mentioned above is not fault tolerant
and is also not sensible to the continuous variation of the sampled properties,
for it demands the protocol to be restarted frequently in order to achieve quasi-
continuous monitoring. Besides, the approach does not admit loss or duplication
of messages.

Having this scenario as a starting point, this work presents Spectra, a dis-
tributed algorithm for the estimation of distribution functions over large scale
networks. Its core advantages are resilience to message loss, high convergence
speed and high precision of the estimate. It also supports changes of the sam-
pled property and churn. All this is achieved without requiring the protocol to
be restarted.

In detail, Spectra enables the estimation of the cumulative distribution func-
tion (CDF) of a given property at all nodes. This allows nodes to take advantage
of having a broader view of the property on the network: they may exclude out-
liers or monitor particular quantiles of a property. Also, each node of the network
has a local vision of the global state of the property, thus allowing them to make
decisions based on local knowledge.

This work includes simulation results that support and validate the proposed
approach along with a comparison with the Adam2 [22] algorithm.

In the next section we make a short overview of the state of the art work on
the context of distribution aggregation. In Section 3 we briefly state the system
model used on this work. The next section presents the Spectra algorithm and
after we show the evaluation results, contrasting with Adam2. Last section draws
conclusions on the work and presents a few perspectives about future research
directions.

2 Related Work

In the last decade, several distributed aggregation algorithms have been proposed
to estimate the value of scalar properties (e.g. network size). Existing techniques
can be divided in different classes, providing different characteristics in terms of
performance (time and message load) and robustness, mainly as: hierarchy-based
(or tree-based), averaging (or gossip-based), sketches and sampling approaches.
A wide and comprehensive overview of the current state of the art on distributed
aggregation algorithms is provided in [15].

Hierarchy-based approaches [18,20,3] rely on a convergecast process to ag-
gregate data along a pre-established hierarchical routing structure (commonly
a tree), producing the result at the root. This kind of technique is usually ap-
plied to Wireless Sensor Networks (WSN) due to its energy efficiency, despite
being highly sensitive to failures. at a single point). Some algorithms [8,5,19] are
found collecting samples and applying an estimation method to obtain a rough
approximation of the size of a membership. This type of scheme is lightweight
in terms of message load, as only a partial number of nodes might be asked



to participate in the sampling process, but is also inaccurate and produce the
result at a single node. Moreover, several rounds might be required to collect a
single sample, especially when sampling is performed through random walks like
in [8,19], thus being slow. A more robust alternative is provided by algorithms
that aggregate data through multiple paths, such as those based on the use of
sketches [6,21,7,2], enabling all nodes to produce a result. These algorithms are
fast (i.e. obtaining an estimate in a number of rounds close to the diameter
value of the network graph), but not accurate. Another interesting alternative
is provided by averaging techniques [16,12,4,14,1], which can reach an arbitrary
accuracy, with the estimate at all nodes converging to the correct result over
time.

Most of the existing approaches allow the distributed computation of ag-
gregation functions, such as count, average, sum, max/min, and therefore
the calculation of many scalar values that can result from the combination of
those functions. However, they are unable to compute more complex aggregates
which provide a richer information about some property, such as the frequency
distribution of an attribute. In fact, few approaches are found in the literature
that allow the distributed estimation of statistical distributions [9,23,10,22], and
those found exhibit robustness and accuracy issues.

Algorithms like [23] and [9] require a tree routing structure to produce an
approximation of the distribution at the root, operating similarly to common
tree-based aggregation techniques. In particular, each node computes a quantile
summary (i.e. digest) holding the data from its sub-tree (e.g. range of values and
corresponding counts) which are built in a bottom-up fashion toward the root.
Like in classic tree-based approaches, a single failure may affect the aggregation
process, leading to the loss of the data from a subtree.

A first gossip-based distribution estimation approach was proposed in [10],
randomly exchanging and merging finite lists of bins (i.e. pairs with value and
respective counter) between nodes. Initially, the list of bins at each node is
set with the initial input value, and after several rounds all will produce an
approximation of the distribution of values (i.e. histogram). Different merging
techniques were considered by the authors, the one referred to as equi-depth
showed to be the one with the best results (accuracy vs storage) compared to
the others. The equi-depth method intends to minimize the counting disparity
between bins. In particular, upon reception, received and local pairs are ordered
and the pairs of consecutive values with the smallest combined count are merged
(i.e. counts are added and the new value results from the weighted average)
repeatedly until the desired number of bins is obtained. This approach allows
data to reach all nodes through multiple paths (in this sense improving the
robustness), but also gives rise to the occurrence of duplicates that will bias the
produced estimate. This problem was acknowledged by the authors, arguing that
it was better (i.e. simpler and efficient) not to try to solve it.

Adam2 [22] is a more recent gossip based approach to approximate distribu-
tions, more precisely CDF. This approach is based on the application of a classic
averaging technique, namely Push-Pull Gossiping [12], and at a high abstrac-



tion level it can be simply described as the simultaneous execution of multiple
instances of this protocol. In more detail, Adam2 considers a fixed list of k pairs
(sk, ek), where sk is an interpolation point and ek is the fraction of nodes with
a value x less or equal than sk. Each node i that starts participating in the
protocol initializes its list of pairs setting ek = 1 if xi ≤ sk and ek = 0 otherwise.
Then, the Push-Pull Gossiping process is applied, each node randomly picking a
neighbor to exchange their list of pairs and individually averaging the fractions
corresponding to each interpolation point. Over time, the fractions will (be ex-
pected to) converge at all nodes to the correct value in each pair. Adam2 solves
the duplication problem of the previous equi-depth method, considerably out-
performing it according to the provided evaluation results. Nevertheless, as will
be showed in Section 5, Adam2 inherits the “mass loss” problems of Push-Pull
Gossiping, not converging to the correct result even in fault-free scenarios [13].

This work proposes a truly fault-tolerant and more accurate alternative, with
the fractions of each interpolation point effectively converging at all nodes over
time and simultaneously supporting dynamic changes.

3 System Model

Our model assumes the existence of a large number of distributed processes or
nodes. Our goal is to estimate an accurate distribution of an attribute over the
network of processes with a robust aggregation strategy.

The network of distributed nodes is modeled as a connected undirected graph
G(V, E), with the set V representing processes and the set E being bidirectional
communication links between processes. We represent the set of adjacent nodes
of node i by Di.

The algorithm is executed synchronously as described in [17](Chapter 2).
Each node executes two procedures in lockstep each round: they begin execution
by generating messages to deliver to neighbors and sending them. Afterwards,
nodes compute their new state as a function of its current state, the observed
value and received messages from neighbors. Nodes do not have global Ids and
have only to distinguish the members of the set of neighbors.

Message loss are taken into consideration and modeled as follows: per round,
each sent message can be dropped according to a predefined uniform random
probability. In terms of dynamic changes (input values and churn), it is assumed
that they occur at the beginning of each round (i.e. before the message generation
procedure). Departing nodes are chosen uniformly at random, and it is assumed
that they do not return to the network (i.e. leave forever). Arriving nodes connect
to random points of the network (according to the considered topology) and
establish a number of links matching the network properties (i.e. degree).

4 Spectra – Robust Distribution Estimation

In this section we describe a novel distributed algorithm, Spectra, to estimate the
distribution of a global attribute, more specifically its Cumulative Distribution



Function (CDF). A CDF can be approximated by a mapping from points to the
frequencies of the values that are less than or equal to each point. More precisely,
considering n nodes and an input value xi at each node i, the CDF of x can be
approximated by a set of k pairs (s, e), where s is an interpolation point and e
is the fraction of values less or equal than s (i.e., e = |{xi | xi ≤ s}| /n).

Considering each pair (s, e) in the CDF, it is possible to estimate e through
an averaging algorithm as follows: setting 1 as the input value of each node i that
satisfies the condition xi ≤ s and 0 otherwise, the average of these input values
will be the fraction of nodes that fulfill the previous condition, i.e. it will be e.
This means that e can be computed as result of the execution of a distributed
averaging algorithm.

The main idea of the proposed algorithm is the combination of this obser-
vation with the adaptation of a robust distributed averaging algorithm, Flow
Updating [14] (FU), to work with vectors instead of scalars, one component of
the vector for each point of the CDF. Simultaneously, whilst the algorithm is
converging, a distributed computation of the global minimum and maximum of
the values is performed to determine the interval in which the k points of the
CDF are estimated.

This new algorithm is referred to as Spectra, and its core is based on the
application of FU to estimate a CDF. The computation performed at each node
i is detailed by Algorithm 1. The algorithm adapts FU averaging to use vectors
instead of scalars. Namely, the flows Fi map for each neighbor a vector of flows
(one for each point in the CDF); vi is a vector which contains the contribution
of the node according to the input value xi, being used as the input to the FU
algorithm; and the estimation function yields a vector of estimates, the k points
of the CDF.

The algorithm does not assume knowledge of the global minimum and max-
imum values. Instead, each node keeps a local knowledge of the minimum of
maximum known so far in the interpolation interval state variable (Ii). The in-
terval is sent in messages to neighbors, which merge the received intervals. After
d rounds, where d is the network diameter, each node i will have the the global
minimum and maximum values in the Ii variable.

The present algorithm computes an equi-width approximation of the CDF at
k equi-distant points in the interval between the global minimum and maximum
(although other variants are possible). We use a notation where an interval
I = (l, u) is indexed, i.e., I(j), with j from 0 to k − 1, resulting in the k equi-
distant points of interest from the lower to the upper value (line 29). In this paper
we assume that the number of points, k, is fixed and known to all nodes. It is
possible to relax this assumption and derive a system where k can be adapted
in execution time.

Before global minimum and maximum convergence, the vectors calculated at
each node or in different rounds refer to different points. At each iteration, as a
new interval is computed by merging intervals in messages, the algorithm needs
to transform both the received vectors as well as the vectors from the previous
iteration, so that they are meaningful for the new (and potentially different) set



Algorithm 1: Spectra: Algorithm to estimate CDF in distributed networks.

1 inputs:
2 xi, value to aggregate
3 Di, set of neighbors
4 k, number of interpolation points

5 state variables:
6 flows: initially, Fi = {} /* mapping from neighbors to flow vectors */

7 base frequency vector: initially, vi = [1 | 0 ≤ j < k]
8 interpolation interval: initially, Ii = (xi, xi)

9 message-generation function:
10 msgi(Fi,vi, Ii, j) = (i, Ii,f , est(vi, Fi));

11 with f =

{
Fi(j) if (j, ) ∈ Fi

0 otherwise

12 state-transition function:
13 transi(Fi,vi, Ii,Mi) = (F ′

i ,vi
′, I ′i)

14 with

15 I ′i = merge(Ii ∪ {I | ( , I, , ) ∈Mi})
16 v′

i = [if xi ≤ I ′i(j) then 1 else 0 | 0 ≤ j < k]
17 F = {j 7→ − transform(f , I, I ′i) | j ∈ Di ∧ (j, I,f , ) ∈Mi} ∪
18 {j 7→ transform(f , Ii, I

′
i) | j ∈ Di ∧ (j, , , ) 6∈Mi ∧ (j,f) ∈ Fi}

19 E = {i 7→ est(v′
i, F )} ∪

20 {j 7→ transform(e, I, I ′i) | j ∈ Di ∧ (j, I, , e) ∈Mi} ∪
21 {j 7→ transform(est(vi, Fi), Ii, I

′
i) | j ∈ Di ∧ (j, , , ) 6∈Mi}

22 a = (
∑
{e | ( , e) ∈ E})/ |E|

23 F ′
i = {j 7→ f + a− E(j) | (j,f) ∈ F}

24 estimation function:
25 est(v, F ) = v −

∑
{f | ( ,f) ∈ F}

26 interval merging:
27 merge(S) = (min({l | (l, ) ∈ S}),max({u | ( , u) ∈ S}))
28 interval interpolation:
29 (l, u)(j) = l + j × (u− l)/(k − 1)

30 vector transformation function:
31 transform(u, I, I ′) = [u(max({0}∪{l | 0 ≤ l < k∧I(l) ≤ I ′(j)})) | 0 ≤ j < k]

of k points. For that all vectors involved in the execution of the algorithm are
transformed from their old to the new interval through the vector transformation
function (line 31). This function implements a simple heuristic to obtain the new
vector, using the value corresponding to the largest point not greater than the
new point (or the first in the vector if no such point exists). Also, the vector of
input values to FU, vi, is calculated at each round according to the new interval
(line 16).



At each round, in the message generation function (lines 9–11), a single type
of message is sent, containing the self id i, its interpolation interval Ii, the flows
vector f for each current neighbor j. Sent flows are set according to the current
state and otherwise (initially or when a node is added) to 0.

The state-transition function (lines 12–23) takes state (i.e., flows Fi, the
node’s base frequency vector vi, interpolation interval Ii) and the set of mes-
sages Mi received by the node and returns a new state (i.e., flows F ′

i , base
frequency vector v′

i and interpolation interval I ′i). It computes the new interpo-
lation interval setting the lower bound with the minimum of the received minima
and does the upper bound with the maximum (line 27). Base frequency vector
v′
i is computed from the new interpolation interval I ′i and the initial value xi.

Then, the averaging steps are executed according to FU taking care to trans-
form the involved vectors in order to apply the averaging process to matching
interpolation points. These steps result in the creation of the new flows.

The self-adapting nature of the core averaging algorithm, Flow-Updating,
on Spectra enables it to cope with the dynamic adjustment of all involved vec-
tors. In particular, Spectra supports dynamic network changes (i.e., nodes arriv-
ing/leaving), simply by adding/removing the flow data associated to neighbors.
Moreover, it is also able to seamlessly adapt to changes of the input value xi – in
this case simply by recomputing the vector vi. This is sufficient to allow Spectra
to operate in settings where the global maximum and minimum do not change.

If the extreme values change due to dynamism, especially if the maximum
decreases and the minimum increases, the algorithm as it is will not produce
wrong results, but over an overly wide interval. To tighten the interval to the
interesting range between the new minimum and maximum additional modifica-
tions must to be made. This dynamic adjustment of the global extreme values
(i.e., maximum and minimum) is left for future work.

At each node i, the estimated CDF at the k equi-distant points in the in-
terval Ii is obtained by the estimation function (i.e., est(vi, Fi)). Over time, the
estimated frequency associated to each point converges to the correct value. This
is confirmed by the results obtained from evaluation (see Section 5).

5 Evaluation

The results presented in this work have been obtained using a custom made
simulator that implements the model defined in section 3.

We used two error metrics to quantify the fitness of the estimate to the
underlying distribution. They are computed at every round.

The basis of these metrics is the Kolmogorov–Smirnov statistic, that calcu-
lates the maximum label-wise difference between the estimate and the distribu-
tion, as presented in Equation 1. The metric is computed at every round r, for
each node n. For every label l, the measure is given by the difference between
the cumulative value of the real distribution and the cumulative value of the
estimated distribution on node n at round r.



KSnr = max
l∈Labels

| P (X ≤ l)r − ̂P (X ≤ l)nr | (1)

We use global metrics for the whole network: one to reflect the worst node
(see Equation 2) and another to reflect the average error (see Equation 3). Both
equations are computed every round r.

KSmaxr = max
n∈N

(KSnr ) (2)

KSµr =
1

| N |
∑
n∈N

KSnr (3)

5.1 Comparison with an existing approach

To the best of our knowledge, this work is pioneer in the estimation of statistical
distributions with fault tolerant and robustness properties.

In Adam2 [22], whose protocol is based on the Push-Pull gossiping averag-
ing algorithm [11], presents a few drawbacks stemming from the fact that it
behaves poorly under message loss and also because the simulator used on the
above-cited work (PeerSim) does not emulate synchronous message exchange
correctly, assuming atomic state changes - this behavior is, from our point of
view, unrealistic when considering real systems.

Adam2 partitions the range of the monitored property in a set of interpola-
tion points. Nodes start the algorithm with a pre-known minimum and maximum
and with equally spaced interpolation points. Probabilistically, new instances are
created every few rounds. These new instances re-compute those points based
on the previous instance’s points set, using re-sampling heuristics that aim to
minimize interpolation errors, i.e., it aims to concentrate interpolation points in
the areas where frequency counts are more prevalent.

In order to compare our approach with the strategy used on Adam2, we
assume that both minimum and maximum are previously known to all nodes
and the sampling points are evenly distributed between minimum and maximum.
These assumptions do not invalidate the usefulness of the re-sampling heuristics
presented, but help us compare the performance of both approaches in a common
frame of reference. Also, these heuristics are also applicable to Spectra in a
scenario with multiple instances, but that falls out of the scope of the present
work.

We’ve simulated the following scenarios using a 1000 nodes random network
with an average connectivity of 3, unless stated otherwise. The underlying initial
values follow a Gaussian distribution rNorm(10, 2), mean 10 and variance 2.
Results were averaged from 30 trials for each scenario.

Figure 1 presents a graph with the average Kolmogorov-Smirnov distance to
the real distribution on the nodes (as per 3). It shows the performance of both
algorithms. One can observe that Adam2 converges asymptotically to a non-
zero value with a continuous offset error while Spectra converges indefinitely to



zero. Also, the convergence speed is notoriously higher in Spectra, with orders of
magnitude smaller error.
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Fig. 1. Average KS error rate on a 1000 nodes random network comparing Spectra and
Adam2

5.2 Fault tolerance

In this scenario we have simulated message loss rates of 5%, 10% and 20% in
each round. Results are presented in 2.

Regarding Spectra, we notice a slower overall convergence rate with 5% mes-
sage loss when compared to the other loss reates. This indicates that the algo-
rithm is not only resilient to message loss but also that with a message loss rate
of up to 20%, the convergence rate improves. This result is coherent with results
obtained in [14].

This emergent behavior is in a way contradictory with the intuition that
convergence performance should degrade with message loss increase. Simulation
results suggest the opposite. This behavior may be understood if we look at
message loss as momentary changes in the network topology (a lost message is
equivalent to the extinction of an edge during a round). This effect is justified by
the fact that the number of cycles in the network topology tend to deteriorate
the convergence performance in the underlying averaging algorithm [14].

We have also applied Adam2 to the same rates of message loss. Loss of
messages seem to introduce a systematic offset error.
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Fig. 2. Average KS error rate on a 1000 nodes random network comparing message
loss effect on Spectra and Adam2.

5.3 Dynamic adaptation to changes

In order to evaluate the algorithm’s behavior under dynamics in the sampled
value, we have conducted a simulation that introduces a disturbance on 20%
of the nodes chosen uniformly random at round 75. The disturbance increased
sampled values in 10%, with care not to change the minimum nor maximum of
the network. The issues concerning changes in minimum and maximum and the
way it affects the estimate will be addressed in future work.

The obtained results illustrate the adaptive nature of the proposed algorithm
(see 3). Without need to restart the protocol, the error in the estimate increases
at the moment of the disturbance and quickly converges to error rates similar to
pre-disturbance values. This behavior stems from the averaging protocol used un-
derneath and to the way each node preserves its own sampled value and relative
position. Iteratively, as rounds progress, all nodes adjust their estimates taking
into account the perceived value changes and the consequent flow adjustments.

In order to test the resilience of Spectra to churn, we have submitted the
algorithm to the departure and arrival of new nodes. In particular, it starts with
a network of 1000 nodes and at round 50, the number of nodes starts to linearly
increase (a 1% increase per round), up to 1250 nodes at round 75. Then, after
50 rounds of stability, nodes randomly leave the network at the same rate until
it reaches again 1000 nodes. Node departure is equivalent to nodes crashing, as
they leave silently without notifying any neighbors. In order to prevent network
partitioning, the average node degree has been increased to 7 (i.e. ≈ ln(1000)),
following what has been done in [14]. Data presented in Figure 4 depicts the
average KS (as per Equation 3) and maximum KS error (as per Equation 2)
for the whole procedure. It also depicts a profile with the number of nodes that



 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  20  40  60  80  100  120  140  160

K
S

 e
rr

o
r

Rounds

Spectra performance under changes on initial value

Averake KS error
Disturbance input
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turbance on initial values.
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constitute the network throughout the rounds. The arrival of nodes introduces
new values to the distribution. The estimation has to be adjusted and thus
the surge in the error levels. As soon as the node number stabilizes, the error
levels decrease. Node departure introduces a similar effect. These results show
the algorithm’s adaptability to high churn rates and how quickly it converges
to near zero error. The estimates are computed uninterruptedly, without any



need to restart the algorithm - this property makes it highly adaptable and fault
tolerant.

6 Conclusions and Future Work

We’ve presented a distributed algorithm that computes the estimate of cumula-
tive distributed functions over a large scale network. The proposed algorithm,
Spectra, overcomes the problems that previous approaches exhibited. Our so-
lution converges to the correct distribution, even when facing high levels of
message loss and churn in the network membership and topology. It also allows
dynamic adaptation to changes in the monitored values (and their distribution),
and avoids the need to re-start the algorithm and loose progress.

All the nodes have access to a high precision estimate of the CDF, and can
infer the associated distribution function. This data, being richer than more
simple statistics (e.g. average) allows a precise characterization of the target
network property and permits more accurate control decisions in the presence
of outliers and skewed distributions.

As future work we intend to evolve the technique in order to allow for vari-
ations in the minimum and maximum of the target property, since currently we
only adapt to growing maxima and decreasing minima. Another improvement
is in allowing an adaptive growth in the number of sampled intervals, k, that is
fixed at present. Finally we plan to address strategies for consistent placement of
the sample points, that will be no longer uniform across the min-max range, as
this will permit increased sampling in areas where the changes in the property
are more expressive, and further increase precision.
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