
Reducing the Cost of Group Communication with

Semantic View Synchrony ∗

José Pereira

Univ. do Minho

jop@di.uminho.pt

Luı́s Rodrigues

Univ. de Lisboa

ler@di.fc.ul.pt

Rui Oliveira

Univ. do Minho

rco@di.uminho.pt

Abstract

View Synchrony (VS) is a powerful abstraction in the design and implementation of de-

pendable distributed systems. By ensuring that processes deliver the same set of messages

in each view, it allows them to maintain consistency across membership changes. However,

experience indicates that it is hard to combine strong reliability guarantees as offered by VS

with stable high performance.

In this paper we propose a novel abstraction, Semantic View Synchrony (SVS), that

exploits the application’s semantics to cope with high throughput applications. This is

achieved by allowing some messages to be dropped while still preserving consistency when

new views are installed. Thus, SVS inherits the elegance of view synchronous communi-

cation. The paper describes how SVS can be implemented and illustrates its usefulness in

the context of distributed multi-player games.

∗Sections of this report will be published in Proceedings of the Proceedings of the IEEE International Confer-

ence on Distributed Systems and Networks, Bethesda, USA, June, 2002. These sections have IEEE Copyright.

Personal use of this material is permitted. However, permission to reprint/republish this material for advertising

or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager,

Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331,

USA. Telephone: + Intl. 732-562-3966.

1

1 Introduction

There is an increasing range of distributed applications that must balance reliability require-

ments with a good performance under a high load of requests. An example of such applications

are distributed multi-player games. These are typically implemented today around a centralized,

non-replicated, server. Since the failure of the server may affect a large number of clients, it is

interesting to replicate it without loss of efficiency. Note that it is now common that commer-

cial companies exploit long lived games whose state needs to be preserved in face of failures,

ideally without service interruption. Another example are distributed control and monitoring

applications which exhibit also a highly interactive behavior [4].

In such applications, the state of the server can be modeled as a relatively small collection

of data items. The values of these items are frequently updated while handling requests from

clients. A form of primary-backup replication can be used to replicate the server: In each system

configuration, one of the servers is chosen to execute the requests from clients and to dissemi-

nate updated state to other replicas using multicast operations. Group communication [3] offers

a convenient paradigm to program such applications [13]. Under this model, dynamic group

membership keeps track of new members that join the group and of current members that leave,

facilitating the choice of the primary. With View Synchrony (VS), all members receive exactly

the same set of messages between view changes thus ensuring the consistency of replicas upon

the crash of the primary.

Unfortunately, experience indicates that it is hard to sustain high message loads with strong

reliability guarantees [23]. This is inherent to reliability itself and not an artifact of a specific

implementation: Reliable protocols are required to store messages until delivered and then until

they have been acknowledged by all group members. Under high loads, a single slow member

may prevent messages from being delivered or acknowledged at the same pace they are being

produced. This quickly leads to buffer space shortages and to global performance degradation

due to flow control. View synchrony allows expelling perturbed members from the group,

but unfortunately, transient performance perturbations may result in excessive reconfigurations

which themselves threaten high throughput.

To tackle this problem, we propose in this paper a novel abstraction called Semantic View

Synchrony (SVS). SVS uses semantic knowledge about the data exchanged by the application

such that messages with obsolete content may be discarded in the presence of overload condi-

tions. By allowing some messages to be discarded, the system tolerates better the occurrence

of performance perturbations without demanding the allocation of additional resources. Never-

theless, these processes are guaranteed to receive sufficient messages to remain consistent, thus

preserving the elegance of view synchrony. SVS makes it possible to avoid group reconfigu-

rations at the cost of delivering less detailed information to processes suffering performance

perturbations. If purging of obsolete messages is not enough to overcome the perturbation,

2

reconfiguration can still happen as the dynamic nature of membership is preserved.

This paper builds on our previous work on semantic reliability. In [21] we have introduced

the concept of semantic reliability based on message obsolescence and shown which factors af-

fect its effectiveness without considering inter-replica consistency constraints. In [22] we have

introduced the specification and implementation of a semantically reliable broadcast protocol

but we consider only the restricted setting of a static membership. This paper makes the fol-

lowing contributions: It introduces the Semantic View Synchrony abstraction, provides a spec-

ification of this service and an algorithm to implement it; it shows how obsolescence can be

characterized in distributed multi-user applications and represented efficiently; finally it shows

the impact of SVS in a concrete application scenario.

The rest of the paper is organized as follows. Section 2 motivates our work by examining the

obstacles to stable high throughput and the intuition underlying semantic reliability. Section 3

defines Semantic View Synchrony and presents an algorithm to implement it. Section 4 shows

how to apply SVS by describing usage scenarios and how the obsolescence relation is repre-

sented. The performance of SVS in the context of distributed multi-user games is analyzed in

Section 5. Finally, Section 6 compares our approach with related work and Section 7 concludes

the paper.

2 Motivation

2.1 Performance Perturbations and Throughput

The low cost and high performance of off-the-shelf computer systems makes them attractive

for high throughput services. However, it has been documented that the performance of group

communication in such systems is frequently disappointing [23]. This is not an artifact of any

specific implementation: To ensure reliability, messages have to be buffered until reception

is acknowledged by all participants. If a performance perturbation delays transmission or ac-

knowledgment, garbage collection is delayed. Eventually buffer space is exhausted and the

sender blocks, thus affecting the whole group.

Performance perturbations occur in disk subsystems, scheduling, virtual memory, interfer-

ence by background applications and system tasks, and network operation. These happen even

in local area networks and in closely controlled environments and seem to be unavoidable given

the complexity of current computer systems [1]. Their impact can be observed in several stages

of reliable protocols:

• A message is stored in buffers until it is ready for delivery. This might require the mes-

sage to be delayed for ordering or for acknowledgments by a majority of receivers to be

collected in order to ensure uniformity [11]. In either case, spurious delays or dropped

messages in the network result in messages being stored for longer periods of time.

3

• Messages can be delivered only as fast as the application can consume them. Depending

on the resources used by the application, message delivery may be affected by the perfor-

mance of CPU, scheduling, memory and disk subsystems [1]. Performance perturbations

that are likely to happen in any of them result in messages being stored for longer in

protocol buffers.

• With a View Synchronous protocol, the message might have to remain buffered even

after local delivery, as agreement on delivered messages upon view change might require

retransmissions to be performed by processes other than the original sender. Therefore

the space occupied by a message can only be freed after it is known to be stable, i.e.

received by all processes. Again, stability tracking is sensitive to perturbations of the

network and thus might also lead to increased buffer occupancy.

Although flow control makes it possible to reduce the offered load until the perturbed

member recovers, different group members may suffer transient performance faults in differ-

ent points in time resulting in a performance loss that is unacceptable for high throughput

applications. Although the correctness of algorithms developed for the asynchronous system

model is not affected by these perturbations, the performance is seriously affected. This pa-

per is concerned with the performance of group communication in systems where these sort

of perturbations may occur without impact in correctness. Our approach is complementary to

mechanisms that detect timing failures affecting correctness in real-time systems [9, 27].

2.2 Design Alternatives

We can identify different alternative approaches to address the problems caused by the occur-

rence of transient performance perturbations and to avoid degradation of group throughput by

flow control:

• Exclude a process from the group as soon as it suffers a performance perturbation [23].

This allows the throughput to be preserved at the cost of reducing the resilience of the

system. Eventually a new replica needs to be added to the group in order to replace

the excluded replica, and this typically requires the execution of an expensive integration

procedure. The excessive number of group reconfigurations represent also an impediment

to sustain high throughput.

• To configure large enough buffer space such that it is able to mask sufficiently large per-

formance perturbations. However, this alternative is not resource efficient. Additionally,

the use of large buffers has also the negative effect of increasing the latency of view

changes (e.g. when crashes occur) due to the large number of messages that have to be

processed during view installation, being itself an obstacle to throughput stability.

4

• To sacrifice the reliability of group communication in perturbed group members [5]. How-

ever, doing so forces the application to deal directly with most of the complexity of dis-

tributed programming; the same complexity that is supposed to be dealt by view syn-

chrony.

The abstraction proposed in this paper offers a new, precise and meaningful reliability cri-

terion that allows to conciliate the following goals: i) preserve the ability to exclude from the

group processes that have crashed; ii) enforce a consistency criterion that is strong enough to

simplify the development of dependable applications; iii) accommodate transient performance

perturbations without degrading the system throughput and without forcing excessive group re-

configurations; iv) be resource efficient, in the sense that processing and memory capacity can

be configured for the stable case.

2.3 Message Obsolescence

Our proposal to address these goals is motivated by the observation that when the system is

congested, buffers in the path to the bottleneck are full and thus are likely to contain messages

that have been produced in different points in time. In many applications, recent messages im-

plicitly convey the content or overwrite the effect of previous messages, which thereby become

obsolete prior to their delivery to slow processes.

If obsolete messages can be recognized within protocol buffers and then purged, the appli-

cation is relieved from processing some of the outdated messages and resources are freed to

process further messages. Therefore, a recipient that suffers a performance perturbation does

not prevent messages from stabilizing and can then be accommodated within the group without

disturbing the remaining members. Purging of obsolete messages is not observed by fast mem-

bers, which quickly deliver messages before becoming obsolete. This means that only slow

processes omit deliveries: They do not receive all the messages but they still receive enough

messages to be allowed to remain in the group.

On the other hand, to benefit from message obsolescence the traffic pattern must exhibit

some obsolescence, i.e., our solution is not a panacea. However, it can be observed that a

large class of high throughput applications, such as distributed multi-player games, allow high

purging rates (this issue is addressed in Section 5). The application must then provide the

obsolescence relation to the protocol in the multicast request as discussed in Section 4. Before

addressing these two issues, we show how Semantic View Synchrony can be implemented.

5

3 Semantic View Synchrony

3.1 System Model

We consider an asynchronous message passing system model augmented with a failure detec-

tor [7]. In detail, the distributed system is modeled as a set of sequential processes which can:

send a message; receive a message; perform a local computation; and crash. We do not make

any assumption on process relative speeds but assume crash-stop failures of at most a minority

of processes.

Processes are fully connected by a network of point-to-point message passing channels.

Channels are used through primitives send i(m, j) and receive i(m, j) and we assume that are

reliable and FIFO ordered. These assumptions are actually not strictly required, but used to

simplify the presentation of the protocol. We do not assume any bound on the time that a

message takes to be transmitted.

A consensus protocol is assumed to be available1 and modeled as a procedure which takes

as an input parameter a proposed value and returns a decided value. Consensus ensures that

all correct processes eventually decide the same value and that the decided value is one of the

proposed values.

3.2 Definition

The multicast service is used through a pair of primitives: multicast(m) and deliver(m). Multi-

cast(m) initiates the transmission of a message. Deliver(m) is used by the application to obtain

a message from the delivery queue, when available. We use a down-call style of interface to

ensure that messages not being processed are kept in the protocol buffers (this simplifies the

purging of obsolete messages). View changes are signaled to the application by delivering a

special control message. Each view notification includes the identification of the view and of

the set of processes which constitute the current membership of the group.

The set of events that may lead to a view change are not relevant to the definition of Se-

mantic View Synchrony, as we are concerned only with safety. Examples of possible causes

for triggering a view change to remove a process from the group are the occurrence of failure

suspicions [18], the lack of available buffer space at one or more processes [8] and simply the

existence of processes that voluntarily want to leave.

The definition of semantic reliability is based on obsolescence information encapsulated as

a relation on messages. This relation is encoded by the application using techniques that will

be described in Section 4. This makes the SVS protocol independent of concrete applications.

We assume that messages are uniquely identified. Let m and m′ be any two messages. The fact

that m is obsoleted by m′ is expressed as m @ m′. Also, m v m′ is used as a shorthand for

1Notice that consensus can also be solved without the reliable channels assumption [12].

6

m = m′∨m @ m′. The obsolescence relation is an irreflexive partial order (i.e., anti-symmetric

and transitive). The intuitive meaning of this relation is that if m @ m′ and m′ is delivered, the

correctness of the application is not affected by omitting the delivery of m.

The safety properties required to enforce strong consistency are:2

Semantic View Synchrony (SVS): If a process p installs two consecutive views vi and vi+1

and delivers a message m in view vi, then all other processes installing both vi and vi+1

deliver some m′, such that m v m′, before installing view vi+1.

FIFO Semantically Reliable: For all pairs of messages m, m′ such that some process mul-

ticasts m before m′: (i) no process delivers m after m′; (ii) if a process p installs two

consecutive views vi and vi+1, and delivers message m′ in view vi, then p delivers some

m′′, such that m v m′′, before installing view vi+1.

Integrity : If a message m is delivered to a process in vi, then m has been previously sent by

some process (no-creation). No message m is delivered to a process p more than once

(no-duplication).

Notice that SVS property relaxes View Synchrony [28], as every pair of processes installing

two consecutive views vi and vi+1 will not necessarily deliver the same set of messages but they

are ensured to deliver (at least) the same set of messages that have not been made obsolete by

subsequent messages up to view vi+1. For instance, process p1 may deliver in view vi messages

m1 and m2, such that m1 @ m2, and process p2 may deliver only m2 in the same view. If no

messages m, m′ exist such that m @ m′, SVS reduces to conventional VS. This makes SVS

more general as different concrete semantics, including VS, can be obtained by defining an

appropriate obsolescence relation.

The FIFO Semantically Reliable property relaxes the traditional FIFO Reliable proper-

ties [28]. Given a sequence of messages multicast by a process, this ensures that upon view

installation only obsolete predecessors of the last message delivered can be omitted.

3.3 View Change Protocol

In this section, we present a protocol that allows purging to be applied in the delivery queues as

well as during view changes. The protocol offers performance improvements when accommo-

dating a slower receiver. Additionally, the protocol also reduces the latency of the view change

operation, as shown in Section 5. Techniques to address the impact of slower network links are

described in [22].

2A previous report describes the implementation of a primitive satisfying the FIFO Semantically Reliable

broadcast primitive [22] for systems with fixed membership. The interested reader can find there a comprehen-

sive discussion on the topic of ensuring liveness of semantic reliability (e.g. a suitable definition of Validity).

7

declare
View cv = (Integer id, SetOfProcessIds memb); // current view
Boolean blocked;
OrderdedSetOfMessages delivered;
OrderdedSetOfMessages to-deliver;
SetOfMessages global-pred[]; // one instance for each view
SetOfProcessIds pred-received[]; // one instance for each view
SetOfProcessIds leave[]; // one instance for each view

function purge (OrderdedSetOfMessages S) do

while ∃m = [DATA,v, d], m′ = [DATA,v’, d’] ∈ S :

(v = v′) ∧ (m @ m′) do remove (S, m);

t1 : upon deliver ∧ (to-deliver 6= ∅) do
m := removeFirst (to-deliver);
addToTail (delivered, m);

t2 : upon multicast data ∧ ¬ blocked ∧ self ∈ memb(cv) do
addToTail (to-deliver, [DATA, cv, data]);
forall p ∈ memb(cv): p 6= self do send [DATA, cv, data] to p;
purge (to-deliver);

t3 : upon receive m = [DATA, v, d] from p: (v = cv) ∧¬ blocked do
if 6 ∃m′ ∈ (to-deliver ∪ delivered): m v m′ do

addToTail (to-deliver, [DATA, v, d]);
purge (to-deliver);

t4 : upon trigger-view-change (l) do
forall p ∈ memb(cv) do send [INIT, cv, l] to p;

t5 : upon receive [INIT, v, l] from p: (v = cv) ∧¬ blocked do
if p 6= self do forall p ∈ memb(cv) do send [INIT, v, l] to p;
blocked := true;
leave(cv) := l ∩ cv;
local-pred(cv) := {[DATA,v, d] ∈ (delivered ∪ to-deliver): v = cv};
forall p ∈ memb(cv) do send [PRED, cv, local-pred(cv)] to p;

t6 : upon receive [PRED, v, P] from p: (v = cv) do
global-pred(cv) := global-pred(cv) ∪ P;
pred-received(cv) := pred-received(cv)∪ p;

t7 : upon ∀p∈memb(cv):¬suspects(p) : p ∈ pred-received(cv)∧
|pred-received(cv)| > |memb(cv)|

2 do
proposal := (id(cv) + 1, pred-received(cv)\ leave(cv));
(next-view, pred-view) := consensus(cv, (proposal, global-pred(cv)));
if self ∈memb(next-view) do

forall m ∈ pred-view: m 6∈ (to-deliver ∪ delivered) do
addToTail (to-deliver, m);

addToTail (to-deliver, [VIEW, next-view]);
purge (to-deliver);

cv = next-view;
blocked := false;

Figure 1: Semantic View Synchrony.

8

Interestingly, SVS can easily be obtained by adapting an existing view synchronous protocol

to include purging of obsolete messages at the appropriate steps. It is hence possible to derive

SVS implementations to different systems models, by adapting different view synchronous im-

plementations. The purpose of this section is not to re-invent view synchronous protocols, since

these have been extensively studied in the literature [15]. However, we do want to illustrate

what changes are needed to accommodate SVS. In order to do so, we opted to adapt a protocol

designed to run on asynchronous systems augmented with a failure detector, which allows only

processes to leave the group and that uses consensus as a building block [14]. The algorithm is

depicted in Figure 1. The parts that have been added to accommodate SVS are highlighted in

the figure (the changes are in gray). For self-containment, we provide a brief description of the

complete algorithm.

Each process in the group keeps a variable cv with the most recent view, a boolean variable

blocked that is used to prevent the reception and transmission of new messages during the

view change protocol, and two FIFO ordered queues of messages: to-deliver and delivered.

When messages are received they are inserted in the to-deliver queue where they wait for the

application to consume them using the deliver operation. A message m in the to-deliver queue

may be purged if a message m′ : m @ m′ is received in the same view. This is modeled by the

purge function. Delivery of a message m is simply modeled by removing m from the head of

to-deliver and adding it to the tail of the delivered queue (t1). Delivery of views is modeled by

the delivery of a control message. Two types of messages can be inserted in the to-deliver and

delivered queues: data messages and view messages. A data message, denoted [DATA, v, d],

is always tagged with the view v in which it is sent. A view message is denoted [VIEW, v].

The protocol uses two additional control messages whose purpose is explained in the following

paragraphs.

Data messages can only be multicast if the group is not blocked (t2). A multicast message is

tagged with the current view and sent to all the other processes in the view. The message is also

inserted in the to-deliver queue of the sender. This will ensure that if the sender participates in

the next view, all the messages it has sent will be delivered in the current view. Data messages

are only accepted if the recipient is still in the view they were sent and if the group is not blocked

(t3). As before, received messages are added to the to-deliver queue of the recipient.

The installation of a new view is triggered by an external event. In response to this event, the

initiator of the view change simply disseminates a INIT control message to all group members

(t4). Upon the reception of the first INIT message, a process forwards the INIT to all other mem-

bers, ensuring that all correct processes initiate the view change (t5). Additionally, each process

computes the sequence of messages it has accepted to deliver in the current view and sends this

sequence to all other processes in a PREC control message. These sets are accumulated by all

correct processes in the global-prec set (t6). The set of processes from which the PREC mes-

sage has been received for the current view is maintained in the variable pred-received. When

9

pred-received includes all processes from the current view that are not suspected, and this set

contains a majority of processes, a new view as well as the sequence of messages to be deliv-

ered in the current view are proposed for consensus (t6). The proposed view corresponds to

the pred-received set (minus the l processes that is given as input parameter to the view change

procedure).

The view installation procedure is concluded after consensus returns. The agreed sequence

of messages to be delivered in the current view is added to the to-delivered queue, followed by

the agreed next view. Finally, the current view is updated and the group is unblocked.

3.4 Correctness Argument

When addressing the correctness of the algorithm we focus on Semantic View Synchrony and

the second clause of FIFO Semantically Reliable. The reason for this is that these are the

properties that differ from those found on VS algorithms and thus reflect the impact of purging

obsolete messages.

The original VS algorithm, obtained from Figure 1 without the shaded lines or with an

empty obsolescence relation, implements conventional VS [14]. From this we can derive the

correctness of the implementation of SVS considering the following fact: the purge operation

never discards maximal elements by the obsolescence relation @ of the set of messages deliv-

ered by some process prior to installing a given view. If a process participates in view vi+1 and

purges some message m, then there is some m′ in to-deliver ∪ delivered such that m @ m′ that

would be included in the pred-view set decided for vi+1 and thus m would not be maximal.

The correctness SVS follows from that. For any message m delivered by some process

installing both vi and vi+1, either (i) m is maximal in the set of messages and thus is never

purged and as in the original algorithm delivered by all processes before installing vi+1 or (ii)

m is not maximal and there is some m′ such that m @ m′ which is maximal.

The argument for the second clause of FIFO Semantically Reliable is similar. As chan-

nels are reliable and FIFO, it can easily be shown that without ever purging messages, to-

deliver ∪ delivered contain always complete prefixes of sequences of messages multicast by

each sender. The subset of maximal elements (as by the obsolescence relation @), which is

guaranteed to be maintained by purging is sufficient to ensure the desired property.

4 Capturing Message Obsolescence

For SVS to be applied in practice, one needs to develop efficient techniques to represent the

obsolescence relation such that the protocol can recognize and purge obsolete messages. In this

paper, we concentrate on applications that use reliable multicast to disseminate values of data

items to a group of replicas. Other application scenarios are discussed in [20].

10

In detail, we assume that all group members maintain a collection of data items. The values

of these items are continuously updated by one process upon handling requests from external

client processes and then disseminated to other members of the group. Each multicast contains

the updated value of one or more items in the collection. The role of SVS is to ensure that

all members in the view receive the most up-to-date value of each item. Additionally, if the

group needs to be reconfigured, SVS guarantees that all group members have the same state

when a new view is installed. This behavior captures a fundamental issue in primary-backup

replication, where a primary server executes requests from clients and forwards state updates to

backup replicas. The equivalence of state ensures that on fail-over, any surviving replica can be

selected for the role of the primary.

4.1 Types of Multicast Operations

We distinguish two relevant types of multicast messages: single-item and multi-item messages.

Single-item Message Each message contains the value of a single modified item. The defini-

tion of the obsolescence relation is here fairly simple: Messages containing values for the same

item are related and all but the last can be considered obsolete.

Multi-item Messages A single message updates more than one item. The reason for updating

several items with a single message is that this is a simple way of ensuring the atomicity of a

composite update. When the message is delivered all items are updated, if the message is lost,

none of the items is changed.

It is very hard to establish useful obsolescence relations among messages containing com-

posite updates: if m and m′ are two composite updates, we only have m v m′ if the set of

items updated by m′ is a super-set of the items updated by m. Therefore, one needs a technique

that allows the protocol to apply the obsolescence to individual updates within a composite

multicast, while at the same time preserving the atomicity of the composite update.

The solution for this is to split an update into a batch of independent messages, where each

message updates an individual item. The batch is terminated by a commit control message.

Messages from a given batch are only applied when the correspondent commit message is

received. Since FIFO order is used, the commit message is guaranteed to be only delivered

after all the messages from batch have been delivered. Note that the role of the commit message

can be performed by the last message in each update, thus eliminating the need for an extra

message. In fact, all the updates from the same batch are easily piggybacked by the protocol

in a single transport-level message. Therefore, this technique does not increase the number of

transport-level messages exchanged by the protocol.

Since individual updates from a given batch can only applied when the commit message

11

U(a,1) U(b,1)
hh

�

C(1) U(b,2) U(c,2) C(2)
�� _ _ _ _ _ _ _ _ _ _ ��
�
�

�
�

��
_ _ _ _ _ _ _ _ _ _

��

�� _ _ _ _ _ _ _ _ _ _ ��
�
�

�
�

��
_ _ _ _ _ _ _ _ _ _

��

Figure 2: Preserving atomicity of updates in a multi-item operation.

arrives, obsolescence should also be only applied at that point. This restriction can be captured

by ensuring that only the commit messages, and not the individual updates, can make messages

from previous batches obsolete. For instance, in the example of Figure 2, it is C(2) the commit

from the second batch, and not the second update to item b, U(b,2), that makes U(b,1) the first

update to item b obsolete.

4.2 Representing Obsolescence

The obsolescence relation has be to encoded by the application before being conveyed to the

protocol. We are interested in general purpose techniques that can be applied to a wide range

of systems in an efficient manner. Therefore, we exclude solutions such as making the protocol

aware of the contents of messages [6] or enriching the messages with code [26]. Instead, we

prefer to let the application supply this information to the protocol as an extra parameter of the

multicast operation. Upon multicast of a message m, the protocol is informed of all messages

m′ such that m′
@ m. In the following paragraphs we propose and discuss three different

representation techniques: item tagging, message enumeration and k−enumeration.

Item Tagging The simplest representation technique consists in associating a unique integer

tag to each data item managed by the application. This is particularly effective for systems that

use single-item updates. In this case, each message is tagged with the identifier of the data item

it is updating. Tags are added to the message headers and used in combination with the sender

identification and sequence numbers generated by the protocol: if two messages from the same

sender carry the same tag, the one with the highest sequence number makes the other obsolete.

Although simple, this technique cannot be easily extended to applications that use multi-item

composite updates. In fact, using this technique it is difficult to express that a message makes

obsolete several other unrelated messages.

Message Enumeration A more general alternative consists in having each message explic-

itly enumerate which preceding messages it makes obsolete. This approach is clearly more

expressive than the item tagging approach. On the other hand, it is not compact and burdens

the protocol with the task of determining the transitive closure of the relation. Consider three

12

messages such that m1 @ m2 @ m3. The representation of obsolescence should allow to verify

that m1 @ m3 without requiring m2 to be available.

To ensure that the transitivity of the obsolescence is preserved in the message enumeration

technique, a message must enumerate not only its direct predecessors, but all the (transitive)

predecessors. In practice, only the recent messages from the enumeration need to be carried

by each message without any significant impact on the purging efficiency. This optimization is

possible because it is very unlikely that two messages far apart in the message stream can be

found simultaneously in the same buffer.

k-Enumeration The k-enumeration technique combines the efficiency and simplicity of the

tagging approach with the expressiveness of the message enumeration approach. The technique

exploits the fact that purging is mainly applied to pairs of messages that are close to each other

in the message stream.

The technique works as follows. Each message explicitly enumerates which of the k pre-

ceding messages it makes obsolete. This information can be stored in a bitmap of k size. If the

nth position of the bitmap is set to true, the message makes obsolete the nth preceding mes-

sage. Each messages carries the k-enumeration bitmap as a representation of the obsolescence

relation. More precisely, let m.sn and m.bm represent respectively the sequence number and

the bitmap associated with message m. Given two messages m and m′ the protocol considers

that m v m′ if m′.sn − k ≤ m.sn < m′.sn and m′.bm[m′.sn − m.sn].

The k-enumeration is not only extremely compact to be stored and transmitted over the

network but also makes it very easy to compute the representation of transitive obsolescence

relations using only shift and binary “or” operators. This favors time and space efficient algo-

rithms and data structures to manipulate protocol buffers and determine obsolete messages. It

also makes it very easy to compute, using the same efficient operators, the representation of

composite updates, as required for the commit messages used to support multi-item multicast.

5 Performance Evaluation

5.1 Application

Although we try to keep the discussion of semantic reliability as generic as possible, perfor-

mance evaluation depends on concrete data about the actual obsolescence relation. As such,

to present meaningful performance numbers we have to choose an application: a distributed

multi-player game. This is an interesting example it typically is not supported by group com-

munication services:

• High availability of servers has not been high in the list of priorities of game developers,

as in the past games were normally short-lived, and servers managed on a best-effort basis

13

frequently by players themselves.

• Off-the-shelf group communication services have traditionally been geared toward appli-

cations without the stringent throughput requirements of highly interactive applications.

However, this scenario is bound to change as the number of multi-player games hosted by

commercial services is growing. As a result of this trend, long lived games have been appearing

in an attempt to keep players loyal to a server. In such systems, the need to preserve the server

state and offer continuous service becomes an important concern. Therefore, it is extremely

relevant to ease the task of replicating this type of servers in an efficient manner.

5.2 Update Patterns

We have inspected the code of QuakeTM [16], an open-source multi-player game, to extract

concrete obsolescence relations. The state of the game is modeled as a set of items. An item is

any object in the game with which players can interact. The background is described separately

as it is immutable. Each item is represented by a data structure that stores its current position

and velocity in the 3D space. The same data structure may also hold additional type specific

attributes, such as the players remaining strength.

The game advances in rounds which correspond to frames that are displayed in players

screens. Although the server tries to calculate 30 frames each second, this number can be

reduced without loss of correctness. However, this degrades the perceived performance of the

game hence the need to sustain a stable throughput. During each round the server gathers input

from clients and re-calculates the state of the game. In each round, besides being updated, items

can be created and destroyed. For instance, when a bullet is fired an item has to be created to

represent it, and if a player is later hit, both the items of the bullet and the player have to be

removed. The transmission of the updated state includes:

• Updated values of items, for instance, as their position is altered. These make previous

values of updates obsolete as they convey newer values.

• Destruction and creation of items. These must be reliably delivered in order to ensure that

items are kept consistent.

This application closely matches the multi-item message scenario described in Section 4.

Therefore, we use the k-enumeration representation technique that we have described before

with k equal to twice the buffer size.

We have instrumented the server of Quake to obtain experimentally the obsolescence pat-

terns from real gaming sessions. We detect which items are changed at each round by moni-

toring internal functions used to update the system state and to disseminate changes to clients.

14

0

5

10

15

20

25

10 20 30 40 50

%
 o

f r
ou

nd
s

Item rank

(a) Frequency of item modifications.

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20

%
 o

f m
es

sa
ge

s

Distance to closest related message

(b) Obsolescence distance.

Figure 3: Characterization of access to application state.

The results presented on this paper have been observed during a session with 5 players lasting

for approximately 6 minutes and allowing us to record a total of 11696 rounds. This particular

run was selected due to its length with a constant number of players.

From the traffic generated it was observed that a share of 41.88% of the messages never

became obsolete. The obsolescence pattern of the remaining messages is related to the item

update pattern. Although an average of 42.33 items were recorded active in each round, only

an average of 1.39 items are modified. In addition, the results of Figure 3(a) show that a small

number of items is modified frequently, while some items have not been modified at all during

the measurement period. Therefore, consecutive updates of the same item are likely to be found

close in the message stream. This is confirmed by Figure 3(b), which shows the distribution of

distance between related messages. Notice that related pairs are usually close together (often

within 10 messages of each other).

We have also collected data with other numbers of players. It can be observed that when

more players join the game that the message rate increases, the share of messages that never

become obsolete decreases, but the distance between related messages increases. This suggests

that higher purging rates would be possible that those presented here, although at the expense

of larger buffer sizes.

5.3 Simulation Model

In evaluating of the impact of purging we have used a high-level discrete event simulation. The

use of simulation instead of a real protocol allows us to isolate performance degradation due to

a slower receiver from other aspects of group performance. The network is modeled as n × n

queues fully connecting all processes and it was configured with unlimited bandwidth in order

not to be a limiting factor of system performance.

15

0

20

40

60

80

100

20406080100120

P
ro

du
ce

r
id

le
 (

%
)

Consumer (msg/s)

reliable
semantic

(a) Impact in the producer.

0

2

4

6

8

10

12

14

16

20406080100120140

B
uf

fe
r

oc
cu

pa
nc

y
(m

sg
)

Consumer (msg/s)

reliable
semantic

(b) Impact in buffer occupancy.

Figure 4: Sample runs of the simulation with a buffer holding 10 messages and increasingly

slow consumer.

A producer injects traffic in one of the nodes according to the item update pattern recorded

experimentally. Consumers are attached to all nodes. In the simulations, we show the impact

of a single slow receiver in the group. Therefore, all processes except the slow one consume

messages instantly; the time it takes for the slower process to consume each messages can be

varied.

Each node implements the SVS protocol by managing local bounded buffers. When its

delivery queue fills up, a node ceases to accept further messages from the network. Eventually,

this will cause the outgoing buffers of the sender to be exhausted which, in turn, prevents further

messages from the application from being accepted. At this point, throughput can only be

sustained by expelling the slow member from the group. Note that the protocol must always

reserve separate buffer space for control information and to allow group management function

to operate, in particular to execute the view change procedure.

5.4 Simulation Results

Given a traffic profile and a buffer size, we can determine the minimum rate at which messages

have to be consumed in order not to disturb the source. For instance, by selecting a buffer size

of 15 messages, running the simulation with an increasingly slower consumer and measuring

the amount of time the producer is blocked due to flow-control we obtain Figure 4(a). Notice

that when using a reliable protocol the receiver has to be able to consume 73 msg/s in order not

to disturb the sender more than 5%. When a semantically reliable protocol is used, the traffic

profile and system configuration allow enough purging to leave the producer undisturbed until

a receiver is limited to consume only 28 msg/s.

We also study the impact of SVS in the number of messages that need to be flushed in order

16

0

50

100

4 8 12 16 20 24 28

T
hr

es
ho

ld
 (

m
sg

/s
)

Buffer size (msg)

reliable
semantic

(a) Threshold value.

0

500

1000

4 8 12 16 20 24 28

P
er

tu
rb

at
io

n
(m

s)

Buffer size (msg)

reliable
semantic

(b) Tolerated perturbation length.

Figure 5: Impact of purging in the performance of SVS.

to install a new view. This is related to buffer occupancy when a view change is triggered.

Figure 4(b) presents the results of observing the amount of buffer used. Notice that between 73

to 28 msg/s, when purging is enough to prevent throughput degradation, this is achieved without

buffers filling up. This is important as the amount of used buffer space impacts on the latency

of the view change protocol, which must wait for all pending messages to be stable.

Of particular interest in such results are the points of inflexion of the curves of Figure 4(a).

Figure 5(a) shows what is the lowest threshold value, for the degradation of a receiver, that can

be tolerated (with less that 5% impact on the sender) as a function of the buffer size. The hor-

izontal line shows which is the average rate of input traffic. In the presence of periodic traffic,

a receiver could process messages at the average rate without affecting the group throughput.

However, as it can be seen from the figure, due to the bursty nature of the game traffic pattern,

when a reliable protocol is used, the receiver has to process messages at a faster pace (to accom-

modate the excess of messages during the bursts). As expected, it can be observed that larger

buffers allow the reliable protocol to better accommodate message bursts. In any case, with a

reliable protocol, the receiver’s rate can never be lower than the average input rate, otherwise it

eventually slows down the system no matter how large the buffers are. On the other hand, with

SVS, slower receivers can be accommodated by increasing the buffer size which enables purg-

ing to be done. Notice that SVS is not effective for very small buffer sizes due to the distance

among related messages.

The difference between the two lines of Figure 5(a) indicates the purging rate achieved by

the protocol for each buffer size. The difference between the messages being produced and

the messages being purged indicates the rate at which buffers fill-up for a given configuration.

From this rate, we can also estimate the maximum length of the perturbation period that can be

tolerated before the buffers are exhausted. As a function of the buffer size, Figure 5(b) shows for

how long can be tolerated a receiver that completely stops to process messages. For instance,

17

with a buffer size of 24 messages, a reliable protocol can only tolerate a perturbation of 342 ms

while the SVS protocol can tolerate a perturbation of 857 ms. We conclude that SVS allows

longer perturbations to be tolerated with the same amount of allocated buffer space. Since this

is achieved at the cost of purging obsolete information, and not at the cost of storing additional

messages, SVS as no negative impact on the latency of the view change protocol.

6 Related Work

The difficulty of ensuring stable high throughput with group communication systems has been

pointed out in the context of stock exchange applications [23] and then further generalized to a

larger class of applications [4]. This led to the introduction of a probabilistic reliable broadcast

protocol which addresses throughput stability by dropping messages on processes that fail to

meet performance assumptions [5]. The use of a probabilistic protocol results in an application

programming model which, unlike ours, differs significantly from conventional view synchrony.

Although message semantics is here used to relax reliability, it has often been used for re-

laxing the ordering of messages. For instance lazy replication [17] relies on message semantics

to relax causal order. Generic broadcast [19] is a relaxation of total order based on message se-

mantics captured as a binary relation. The work on Optimistic Virtual Synchrony [25] also uses

semantic information to alleviate the cost of view changes but, unlike our approach, does not

address the issue of limiting the number of these changes. It would be interesting to combine

these approaches with our proposal.

The Bayou [26] replication system is sensitive to semantics of update messages. However,

it relies on programs embedded in the updates which makes the implementation much more

complex. In contrast, our proposal uses a simple mechanism that fits general purpose protocols.

In the context of synchronous systems, the notion of time has been used to define obso-

lescence relations in the ∆-causal [2] and deadline constrained [24] causal protocols. These

protocols allow timing constraints to be met at the cost of discarding delayed messages. Our

protocol allows to express obsolescence relations that are not merely based on the passage of

time. As described in the previous section, this makes it useful for applications other than

strictly periodic traffic.

A primary-backup protocol which discards messages and provides real-time guarantees has

also been proposed [29], although offering only a weak consistency model. In contrast, our

proposal provides strong consistency and a generic multicast primitive which can be used for

purposes other than primary-backup replication.

18

7 Conclusions

In this paper we have addressed the problem of sustaining high throughput in group commu-

nication systems in the presence of processes that may suffer performance perturbations. We

have introduced a novel abstraction, called Semantic View Synchrony (SVS) and shown how it

can be easily implemented by modifying existing implementations of View Synchrony (VS).

SVS exploits the notion of message obsolescence to accommodate performance perturba-

tions without incurring in the disadvantages of previous approaches which relax reliability.

Namely, our solution does not require the offered load to be limited due to a single slow process,

it does not require the slow process to be immediately excluded when it exhibits transient de-

lays, and avoids resources to be over-allocated to accommodate overload periods. On the other

hand, SVS still retains the machinery that allows processes that have crashed to be expelled

from the group while ensuring that group members have a consistent state when a new view

is installed. Additionally, by not requiring buffer sizes to be over-dimensioned, SVS does not

have a negative impact on the latency of view changes.

SVS is a key element in the design of a full group communication toolkit offering semantic

reliable multicast services. Besides SVS, this encompasses also causally and totally ordered

multicast [20]. Semantic reliability based on message obsolescence is also being considered as

a generally desirable feature of multicast transport protocols [10].

To illustrate the advantages of SVS we have applied it to replicate the server of a distributed

multi-user game. We have proposed efficient techniques to encode the obsolescence relation in

this type of applications. Finally, we have collected experimentally data from a running applica-

tion to obtain a realistic characterization of obsolescence for a concrete game. This information

was used to feed simulations and allowed us to discuss the impact of relevant configuration

parameters, such has the buffer size, on the performance of SVS.

References

[1] R. Arpaci-Dusseau and A. Arpaci-Dusseau. Fail-stutter fault tolerance. In Hot Topics in

Operating Systems (HotOS 8), May 2001.

[2] R. Baldoni, R. Prakash, M. Raynal, and M. Singhal. Efficient ∆-causal broadcasting. Intl.

Journal of Computer Systems Science and Engineering, 13(5):263–269, September 1998.

[3] K. Birman. The process group approach to reliable distributed computing. Communica-

tions of the ACM, 36(12):37–53, December 1993.

[4] K. Birman. A review of experiences with reliable multicast. Software Practice and Expe-

rience, 29(9):741–774, July 1999.

19

[5] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multi-

cast. ACM Transactions on Computer Systems, 17(2):41–88, 1999.

[6] A. Carzaniga, D. Rosenblum, and A. Wolf. Content-based addressing and routing: A

general model and its application. Technical Report CU-CS-902-00, Dept. of Computer

Science, Univ. of Colorado, January 2000.

[7] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Journal of the ACM, 43(2):225–267, March 1996.

[8] B. Charron-Bost, X. Défago, and A. Schiper. Time vs. space in fault-tolerant distributed

systems. In Proc. of the 6th IEEE Intl. Workshop on Object-oriented Real-time Depend-

able Systems (WORDS’01), Rome, Italy, January 2001. IEEE Computer Society.

[9] F. Cristian and C. Fetzer. The timed asynchronous distributed system model. IEEE Trans-

actions on Parallel and Distributed Systems, pages 642–657, June 1999.

[10] S. Elf and P. Parnes. A literature review of recent developments in reliable multicast error

handling. Technical report, CDT, Lulea Univ. of Tech., 2001.

[11] A. Gopal and S. Toueg. Inconsistency and contamination. In Luigi Logrippo, editor, Proc.

10th ACM Symp. on Principles of Distributed Computing (PODC’91), pages 257–272.

ACM Press, August 1991.

[12] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn communication channels. Technical

Report 98-278, Département d’Informatique, École Polytechnique Fédérale de Lausanne,

1998.

[13] R. Guerraoui and A. Schiper. Software-based replication for fault tolerance. IEEE Com-

puter, 30(4):68–74, April 1997.

[14] R. Guerraoui and A. Schiper. The generic consensus service. IEEE Transactions on

Software Engineering, 27(1):29–41, January 2001.

[15] M. Hiltunen and R. Schlichting. Properties of membership services. In Proc. 2nd. Intl.

Symp. on Autonomous Decentralized Systems, pages 200–207, April 1995.

[16] Id Software Inc. Quake Homepage. http://www.quake.com.

[17] R. Ladin, B. Liskov, and L. Shrira. Lazy replication: Exploiting the semantics of dis-

tributed services. ACM SIGOPS Operating Systems Review, 25(1):49–54, January 1991.

[18] K. Lin and V. Hadzilacos. Asynchronous group membership with oracles. In DISC’1999,

pages 79–93, 1999.

20

[19] F. Pedone and A. Schiper. Generic broadcast. In Proc. of the 13th Intl. Symp. on Dis-

tributed Computing (DISC’99, formerly WDAG), September 1999.

[20] J. Pereira. Semantically Reliable Group Communication. PhD thesis, Univ. of Minho,

2002. (to appear).

[21] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable multicast protocols. In

Proc. of the Nineteenth IEEE Symp. on Reliable Distributed Systems, pages 60–69, Octo-

ber 2000.

[22] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable broadcast: Sustaining high

throughput in reliable distributed systems. In P. Ezhilchelvan and A. Romanovsky, editors,

Concurrency in Dependable Computing, chapter 10. Kluwer, 2002. (to appear).

[23] R. Piantoni and C. Stancescu. Implementing the Swiss Exchange Trading System. In

Proc. of The Twenty-Seventh Annual Intl. Symp. on Fault-Tolerant Computing (FTCS’97),

pages 309–313. IEEE, June 1997.

[24] L. Rodrigues, R. Baldoni, E. Anceaume, and M. Raynal. Deadline-constrained causal

order. In The Proc. of the 3rd IEEE Intl. Symp. on Object-oriented Real-time distributed

Computing, March 2000.

[25] J. Sussman, I. Keidar, and K. Marzullo. Optimistic virtual synchrony. In Proc. of the

Nineteenth IEEE Symp. on Reliable Distributed Systems, pages 42–51, October 2000.

[26] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Managing

update conflicts in Bayou, a weakly connected replicated storage system. In Proc. of the

15th Symp. on Operating Systems Principles (SOSP-15), December 1995.

[27] P. Verı́ssimo, A. Casimiro, and C. Fetzer. The timely computing base: Timely actions

in the presence of uncertain timeliness. In Proc. Intl. Conf. on Dependable Systems and

Networks (DSN’00), pages 533–542, New York City, USA, June 2000. IEEE Computer

Society Press.

[28] R. Vitenberg, I. Keidar, G. Chockler, and D. Dolev. Group communication specifica-

tions: A comprehensive study. Technical Report MIT-LCS-TR-790, The Hebrew Univ. of

Jerusalem and MIT, September 1999.

[29] H. Zou and F. Jahanian. Real-time primary-backup replication with temporal consistency

guarantees. In Proc. IEEE Intl. Conf. on Distributed Computing Systems (ICDCS’98),

June 1998.

21

