Group-based Replication of On-line Transaction
Processing Servers*

A. CorreialJr. A.Sousa L. Soares J.Pereira F. Moura R. Oliveira

Computer Science and Technology Center
Computer Science Department
University of Minho

Abstract

Several techniques for database replication using group communication
have recently been proposed, namely, the Database State Machine, Postgres-
R, and the NODO protocol. Although all rely on a totally ordered multicast
for consistency, they differ substantially on how multicast is used. This re-
sults in different performance trade-offs which are hard to compare as each
protocol is presented using a different load scenario and evaluation method.

In this paper we evaluate the suitability of such protocols for replication
of On-Line Transaction Processing (OLTP) applications in clusters of servers
and over wide area networks. This is achieved by implementing them using
a common infra-structure and by using a standard workload. The results
allows us to select the best protocol regarding performance and scalability in
a demanding but realistic usage scenario.

1 Introduction

Synchronous database replication provides both transparent distribution and fault
tolerance. By keeping data strictly up-to-date in all replicas, application program-
mers do not have to manage complex reconciliation procedures and fail-over can
happen without causing any committed updates to be lost. Recently, replication
techniques based on group communication have been proposed as a means to over-
come performance bottlenecks and make synchronous replication cost-effective [1,
12,11, 17, 15, 20].

In contrast with replication based on distributed locking and atomic commit
protocols, group communication based protocols minimize interaction between
replicas and the resulting synchronization overhead by relying on total order mul-
ticast to ensure consistency. Generically, the approach builds on the classical repli-
cated state machine [19]: The exact same sequence of update operations is applied

*Supported by FCT, project STRONGREP (POSI/CHS/41285/2001).

to the same initial state, thus producing a consistent replicated output and final
state. The problem is then to ensure deterministic processing without overly re-
stricting concurrent execution, which would dramatically reduce throughput, and
avoid re-execution in all replicas.

These concerns have been addressed by several proposals based on group com-
munication [14, 15, 17, 13]. Although all rely on a totally ordered multicast for
consistency, they differ mainly in whether transactions are executed conserva-
tively [14, 15] or optimistically [17, 13]. In the former, by a priori coordination
among the replicas, it is assured that when a transaction executes there is no con-
current conflicting transaction being executed remotely and therefore its success
depends entirely on the local database engine. In the latter ones, execution is op-
timistic, each replica independently executes its locally submitted transactions and
only then, just before committing, sites coordinate and check for conflicts between
concurrent transactions.

This difference results in multiple and often subtle performance and resiliency
trade-offs. Namely, how does each protocol cope with a large share of update
transactions, conflicting updates, high latency in wide area networks, and sym-
metric load to multiple replicas. Unfortunately, each protocol is presented using a
different load scenario and evaluation method which makes it very hard to clearly
highlight the main consequences of the approach.

In this paper we evaluate the suitability of group based replication protocols
for replication of On-Line Transaction Processing (OLTP) applications in clusters
of servers and over wide area networks (WAN). This evaluation compares the pro-
tocols using a common infrastructure which rests on a novel common database
interface suitable for the implementation of group based replication protocols. Us-
ing the same settings for all protocols and the workload of the industry standard
TPC-C benchmark [23] it is possible to establish relative strengths and select the
best protocol for each scenario.

The rest of the paper is structured as follows. In Sect. 2, we briefly review the
main group-based database replication approaches. Section 3 introduces the com-
mon implementation and evaluation framework. Section 4 presents and discusses
performance measurements. Finally, Sect. 5 concludes the paper.

2 Replication Protocols

In this study, we consider three replication protocols: CONS, a protocol that imple-
ments the conservative execution approach (similar to those proposed in [14, 15])
and two protocols that exploit optimistic execution, Postgres-R (PGR) [13] and the
Database State Machine (DBSM) [17]. All of these protocols are multi-master,
transactions can be submitted to and executed by several replicas, and follow the
passive replication paradigm [4, 8], each transaction is executed by one of the repli-
cas and its state changes propagated to the other replicas.

At the core of these protocols is a total order (or atomic) multicast primi-

tive [10]. Some of the proposed algorithms [16, 14, 15, 20] have been presented
using total order primitives with optimistic delivery. The goal is to compensate the
inherent ordering latency by allowing tentative processing in parallel with the or-
dering protocol. If the final order of the messages matches the predicted order then
the replication protocol can proceed, otherwise the results obtained tentatively are
discarded. We opted, however, not to consider such optimization. In a local area
network (LAN), the small message delays discourage any optimistic processing
and, in WAN, an algorithm such as the one presented in [21] is required to com-
pensate the large differences and variability of point-to-point latencies. The use of
such an algorithm would evenly benefit all of the replication protocols under study
but would not contribute to expose the key factors that differentiate them.

The database engine considered implements a multi-version concurrency con-
trol mechanism [3]. While locally, the database engine does not provide serializ-
ability as its correctness criterion, globally the replication protocols under study
are able to do so. In our tests, we will consider and compare both the global 1-
copy-serializability [3] and the snapshot-isolation [2] versions of the protocols.

Only update transactions are handled by the replication protocol. Queries are
simply executed locally at the database to which they are submitted and do not
require any distributed coordination.

In the following, we describe the conservative and optimistic execution ap-
proaches and the required interfaces with the database engine.

2.1 Conservative Execution

T X Classification Execution reply
L L\) A\\‘ =
N\ N e
atomic mcast reliable mcast

& -
Update

Figure 1: Conservative replication protocols: CONS

In the conservative approach, data is a priori partitioned in conflict classes, not
necessarily disjoint. Each transaction has an associated set of conflict classes (the
data partitions it accesses) which are assumed to be known in advance. While the
conflict classes for a transaction could be determined at runtime, this would require
to know the whole transaction before its execution precluding the processing of
interactive transactions.

When a transaction is submitted (Figure 1), its id and conflict classes are atom-
ically multicast to all replicas obtaining a total order position. Each replica has a
queue associated with each conflict class and, once delivered, a transaction is clas-
sified according to its conflict classes and enqueued in all corresponding queues.

As soon as a transaction reaches the head of all of its conflict class queues it is
executed. Transactions are executed by the replica to which they are submitted.!

Conflicting transactions are executed sequentially. Clearly, the conflict classes
have a direct impact on the performance. The fewer the number of transactions
with overlapping conflict classes, the better the interleave among transactions. As
we shall discuss in Sect. 2.3, conflict classes are usually defined at the table level
but can have a finer grain at the expense of a non-trivial validation process to ensure
that a transaction does not access conflict classes that were not previously specified.

When the commit request is received, the outcome of the transaction is reli-
ably multicast to all replicas along with the replica’s state changes and a reply is
sent to the client. Each replica applies the remote transaction’s updates with the
parallelism allowed by the initially established total order of the transaction.

It is worth noting that, despite the use of a multi-version database engine, since
conflicting transactions are totally ordered and executed sequentially, the protocol
ensures 1-copy-serializability as long as transactions are classified by the appli-
cation taking into account read/write conflicts. Relaxing the correctness criterion
to snapshot-isolation would simple require the reclassification of the transactions
taking into account just write/write conflicts.

2.2 Optimistic Execution

In the optimistic approach, transactions are immediately executed by the replicas to
which they are submitted without any a priori coordination. Locally, transactions
are synchronized according to the specific concurrency control mechanism of the
database engine.

Upon receiving the commit request, a successful transaction is not readily com-
mitted. Instead, the tuples read (read-set) and written (write-set) are gathered and a
termination protocol initiated. The goal of the termination protocol is to decide the
order and the outcome of the transaction such that the global correctness criteria is
satisfied. This is achieved by establishing a total order position for the transaction
and certifying it (i.e., checking for conflicts) against concurrently executed transac-
tions. The certification of a transaction is done by evaluating the intersection of its
read-set and write-set (or just write-set in case of the snapshot-isolation criterion)
with the write-sets of concurrent, previously ordered transactions.> The fate of a
transaction is therefore determined by the termination protocol and a transaction
that would locally commit may end up aborted.

The two optimistic protocols, PGR and DBSM (Figure 2), ensure global se-
rializability, but differ in their termination protocols. Both use the transaction’s
read-sets for the certification procedure. Basically, in PGR the transaction’s read-
set is not propagated and thus only the replica executing the transaction is able

"When isolated conflict classes exist, dedicating a distinguished replica to the execution of all
transactions of such classes, results in a faster processing of those transactions [15].

2The formal definition and detailed explanation of the certification procedures can be found in [13,
16, 24].

to certify it. In the DBSM, the transaction’s read-set is propagated allowing each
replica to autonomously certify the transaction.

In detail, upon the reception of the commit request for a transaction ¢, in PGR
the executing replica atomically multicasts ¢’s id and ¢’s write-set and write-values
(the values of the tuples in the write-set). As soon as ¢ is ordered, the executing
replica certifies ¢ and reliably multicasts the outcome to all replicas. The certifica-
tion procedure consists in checking t’s read-set and write-set against the write-sets
of all transactions committed locally since ¢’s commit request.> The executing
replica then commits or aborts ¢ locally and replies to the client. Upon the re-
ception of the remote transaction’s commit outcome each replica applies ¢’s state
changes through the execution of a high priority transaction consisting of updates,
inserts and deletes according to ¢’s previously multicast write-values. The high pri-
ority of the transaction means that it must be assured of acquiring all the required
write locks, possibly aborting any locally executing transactions.

The termination protocol in the DBSM is significantly different and works as
follows. Upon the reception of the commit request for a transaction ¢, the executing
replica atomically multicasts ¢’s id, the version of the database on which ¢ was
executed,* and t’s read-set, write-set and write-values. As soon as ¢ is ordered,
each replica is able to certify ¢ on its own.

For the certification procedure, in the DBSM each replica compares its database
version with that of ¢: if they match ¢ commits, otherwise t’s read-set and write-
set are checked against the write-sets of all transactions committed locally since
t’s database version. If they do not intersect, ¢ commits, otherwise ¢ aborts. If ¢
commits then its state changes are applied through the execution of a high priority
transaction consisting of updates, inserts and deletes according to ¢’s previously
multicast write-values. Again, the high priority of the transaction means that it
must be assured of acquiring all the required write locks, possibly aborting any
locally executing transactions. The executing replica replies to the client at the end
of the transaction.

Of particular relevance for the performance of these two protocols is the defini-
tion and representation of the transaction’s read-sets. First, read-sets determine the
outcome of a transaction certification. If the considered read-set is larger than the
set of tuples actually read by the transaction then spurious aborts may arise. On the
contrary, if the read-set does not contain the tuples actually read, then serializabil-
ity may be compromised. Second, in the DBSM protocol the size of the read set
may have a serious impact on the network bandwidth. PGR avoids the propagation
of the transaction’s read-set at the expense of an additional communication step.

When considering the snapshot-isolation correctness criterion, then both pro-

3In the original protocol [13], a locking concurrency control mechanism was considered for the
database engine which allowed to carry the certification process inside the database as part of the
normal execution of the transaction. The read-set was not actually extracted and it consisted of the
read locks granted to the transaction.

“The database version is a counter maintained by the replication protocol that is incremented
every time a transaction commits.

Executton Certification Z reply
] m% {A

RAS—>
atomic mcast reliable mcast\
3 RAF >
Update
(a) PGR
T reply
LV am YV J

S —GAsS————— >

3 s —Gis—»

(b) DBSM

Figure 2: Optimistic replication protocols

tocols can be simplified and end up being the same. To satisfy snapshot-isolation,
certification does not need to check read-write conflicts and thus the transactions’
read-sets are not required. As such, the PGR protocol can be simplified by en-
abling a simpler write-write certification at all the replicas and eliminating the
second communication step conveying the outcome of the transaction [24]. The
DBSM protocol can also be simplified by not propagating the read-sets and using
the simpler certification procedure.

2.3 Database Interface

The replication protocols just described require specific interactions with the adopted
database engine. Despite their differences, their interaction with the database en-
gine is similar and the interface can be generalized.

Replication DBMS

|

Protocol

| =z

Figure 3: Interface between the replication protocol and the database engine

Transactions are submitted to the database engine and evolve through three
different phases (Figure 3): the pre-execute phase which includes the “begin trans-
action” command and extends up to the transaction’s first statement, the execute
phase encompassing the whole transaction execution up to the “commit transac-
tion” command, and the commit phase from the "commit transaction” command
until the reply to the client application. Interactions between the database engine
and the replication protocol happen between these three phases and require ex-
tended functionality from the database engine.

In the CONS protocol, at the pre-execute phase the database engine needs to
be informed about the conflict classes of the transaction. Usually, such classes are
defined at the table level to ease the validation process that occurs at the execution
phase to ensure that no other classes beyond those specified at the pre-execute
phase are accessed. For finer grains, the process would be more complicated. If
instead of whole tables, conflict classes were defined using table partitioning such
as filters over attributes, guaranteeing that the accessed items are a sub-set of the
conflict classes would ultimately lead to a satisfiability problem [9].

In the optimistic protocols, just before entering the execution phase, a remote
transaction is assigned high priority allowing it to break any locks currently granted
to other transactions. This interaction is required to ensure the successful execution
of the updates of remote transactions. Thus, the concurrency control mechanism of
the database engine needs to be extended to distinguish these high priority transac-
tions.

After the local execution of the transaction, before the commit phase, the
database engine is required to provide the read-set, write-set and write-values (RWV
sets). The write-set and write-values are easily extracted from any database engine
but the extraction of the read-set requires close coupling with it. While for simple
SPJ statements (i.e., statements that involve Select, Project and Join operations) one
extraction step is sufficient, more complex queries require the analysis of the opti-
mizers execution plan, multiple extraction points and further read sets combination.
Both PGR and the DBSM protocols rely on the transaction’s read-set. A judicious
characterization and extraction of the read-set is due to avoid unnecessarily large
read-sets and consequent spurious aborts, and to reduce network consumption in
the case of the DBSM protocol.

Finally, while naturally the outcome of a transaction is decided inside the
database engine, with the optimistic replication protocols the fate of a local trans-
action ultimately depends on the certification procedure. Therefore, it is required
that the database engine allow the replication protocol to determine the commit or
abort of the transaction.

With respect to the implementation of the necessary functionality of the database
engine most of it needs to be done in core. While one could be tempted to imple-
ment these interfaces using a middleware approach through the use of triggers,
some, such as the pre-execute and commit interfaces, are not possible with current
database engines, and others, such as the extraction of the read-sets would lead to
unbearable performance hits.

3 Experimental Procedure

This section presents the simulation environment used to evaluate the protocols.
We use a centralized simulation model that combines real software components
with simulated hardware, software and environment components to model a dis-
tributed system. This allows us to setup and run multiple realistic tests with slight
variations of configuration parameters that would otherwise be impractical to per-
form, specially if one considers a large number of replicas and wide-area networks.
The centralized nature of the system allows for global observation of distributed
computations with minimal intrusion as well as for control and manipulation of
the experiment. All tests are conducted under an implementation that mimics the
industry standard on-line transaction processing benchmark TPC-C [23].

3.1 Simulation Infrastructure

To evaluate the protocols we use a hybrid simulation environment that combines
simulated and real components [22]. The key components, the replication and the
group communication protocols, are real implementations while both the database
engine and the network are simulated.

In detail, we use a centralized simulation runtime based on the standard Scal-
able Simulation Framework (SSF) [6], which provides a simple yet effective infras-
tructure for discrete-event simulation. Simulation models are built as libraries that
can be reused. This is the case of the SSFNet [7] framework, which models network
components (e.g. network interface cards and links), operating system components
(e.g. protocol stacks), and applications (e.g. traffic analyzers). Complex network
models can be configured using these components, mimicking existing networks
or exploring particularly large or interesting topologies.

To combine the simulated components with the real implementations the exe-
cution of the real software components is timed with a profiling timer [18] and the
result is used to mark the simulated CPU busy during the corresponding period,
thus preventing other jobs, real or simulated, to be attributed simultaneously to the
same CPU. The simulated components are configured according to the equipment
and scenarios chosen for testing (Sect. 3.2).

The database server handles multiple clients and is modeled as a scheduler and
a collection of resources, such as storage and CPUs, and a concurrency control
module. The database provides the interfaces described in Sect. 2.3 (Fig. 3) and
implements multi-version concurrency control.

Each transaction is modeled as a sequence of operations: i) fetch a data item;
ii) do some processing; iii) write back a data item. Upon receiving a transac-
tion request each operation is scheduled to execute on the corresponding resource.
The processing time of each operation is previously obtained by profiling a real
database server (Sect. 3.2).

A database client is attached to a database server and produces a stream of
transaction requests. After each request is issued, the client blocks until the server

replies, thus modeling a single threaded client process. After receiving a reply, the
client is then paused for some amount of time (thinking time) before issuing the
next transaction request.

To determine the read-set and write-set of a transaction’s execution, the database
is modeled as a set of histograms [S]. The transactions’ statements are executed
against this model and the read-set, write-set and write-values are extracted to
build the transaction model that is injected into the database server. In our case,
this modeling is rather straightforward as the database is very well defined by the
TPC-C [23] workload that we use for all tests. Moreover, as all the transactions
specified by TPC-C can be reduced to SPJ queries, the read-set extraction is quite
simple.

3.2 Test Parameters

Each database request is generated according to the TPC-C benchmark [23]. TPC-
C is the industry standard on-line transaction processing benchmark. It mimics a
wholesale supplier with a number of geographically distributed sales districts and
associated warehouses. TPC-C specifies a precise set of relations (Warehouse, Dis-
trict, Customer, Item, Stock, Orders, OrderLine, NewOrder and History) and the
size of the database as a function of the number of desired clients. The bench-
mark determines 10 clients per warehouse and, as an example, for 2000 clients, the
database contains around 10 tuples, each ranging from 8 to 655 bytes. The traffic
is a mixture of read-only and update intensive transactions. A client can request
transactions of five different types: NewOrder, adds a new order into the system
(with 44% of the occurrences); Payment, updates the customer’s balance, district
and warehouse statistics (44%); OrderStatus, returns a given customer latest or-
der (4%); Delivery, records the delivery of products (4%); StockLevel, determines
the number of recently sold items that have a stock level below a specified thresh-
old (4%). The NewOrder, Payment and Delivery are update transactions while the
others are read-only.

The database model has been configured using the transactions’ processing
time of a profiled version of PostgreSQL 7.4.6 under the TPC-C workload. From
the TPC-C benchmark we only use the specified workload, the constraints on
throughput, performance, screen load and background execution of transactions
are not taken into account.

We consider a LAN and a WAN scenarios, both with 9 replicas. In the LAN
configuration the replicas are connected by a network with a bandwidth of 1Gbps
and a latency of 120us. The WAN configuration consists of 3 LANs (with 1Gbps
and 120us as before) each with 3 replicas, connected by a network with a band-
width of 100Mbps and a latency of 60ms. Each replica corresponds to a dual pro-
cessor AMD Opteron at 2.4GHz with 4GB of memory, running the Linux Fedora
Core 3 Distribution with kernel version 2.6.10. For storage we used a fiber-channel
attached box with 4, 36GB SCSI disks in a RAID-5 configuration and the Ext3 file
system.

Serializable
Class./Trans || New Order | Payment | Delivery
Warehouse X X
District X X
Customer X X X
Item X
Stock X
Orders X X
OrderLine X X
NewOrder X X
History X
Snapshot Isolation Level
New Order | Payment | Delivery
X
X X
X X
X
X X
X X
X X
X

Table 1: Definition of conflict classes for each transaction type in TPC-C.

For all the experiments that follow, we varied the total of clients from 270 to
3960 and distributed them evenly among the replicas.

4 Experimental Results

4.1 Simple Configuration

The first scenario evaluates the conservative and the DBSM approaches without
exploiting any application specific details and thus in a configuration that can easily
be automated. In the conservative approach, we use the simple definition of a
conflict class for each table, which can actually be easily extracted from the SQL
code. The resulting conflict classes and conflict relations among transactions types
are shown in the “Serializable” column of Table 1. Regarding the DBSM, we need
to pay special attention to read-set sizes since the propagation of large read-sets
may be impractical. An immediate workaround to this problem is to set a limit for
the read-set size over which the whole table is used. In the TPC-C, this results in
transactions of type Delivery always being marked as reading the entire OrderLine
table. All others access only a small number of items.

10

12000 ‘
— 15! 4
(2]
8000 £ j
z g 10f f/—//
= 8
©
4000 3 5L i
0 1 1 1 0 1 1 1
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Clients Clients
(a) Throughput (b) Latency
100 T T
DBSM G —+—
— . 80 i
* *
2 & 60 b
@ ©
o o
£ < 40 | -
o o
2 2
20 | E
0 1 IN 1 1 1 1
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Clients Clients
(c) Abort rate (d) Delivery abort rate

Figure 4: Performance measurements in a LAN with coarse granularity.

Figure 4 presents performance measurements in the LAN scenario. It can be
observed in Fig. 4(a) that the DBSM protocol with optimistic execution apparently
scales much better to a large number of clients than the conservative protocol. As
shown by Fig. 4(b) the bottleneck in the conservative protocol translates in very
large queueing latencies.

However, as seen in Fig. 4(c), the good throughput of the DBSM is achieved at
the expense of a number of aborted transactions. This is especially worrisome since
the 4% of transactions being aborted overall are in fact all Delivery transactions as
shown in Fig. 4(d). Therefore, even if such transactions can be resubmitted, there
is a very low probability of ever being executed. These results show that neither
of the approaches scale to a large number of clients with an OLTP load, even with
plenty of resources in a LAN.

4.2 Fine Granularity

To reduce the number of conflicts, we resort to a finer granularity when defining
conflict classes for the conservative approach and the read-set extraction in the
DBSM. Fine grained conflict classes are obtained by taking advantage of the fact
that all tables except Ifem have references to the Warehouse table and that clients
connected to the same node have high locality regarding a specific subset of ware-
houses.

Although this may seem to easily translate in a definition of conflict classes

11

12000

8000

TPM
Latency (ms)

4000

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Clients Clients
(a) Throughput (b) Latency
5 T T T
DBSMg ——
4 | Consg ——x—- i
9 PGR ---%---
2 3 1
©
o«
£ 2F b
o
2
1k .
o s

e
2000 3000 4000
Clients

(c) Abort rate

0 1000

Figure 5: Performance measurements in a LAN with fine granularity.

for the conservative protocol, in practice it is not possible because transactions
Payment and NewOrder, which account for a large majority of traffic, may ac-
cess multiple warehouses. Despite the suitability of this assumption to the TPC-C
workload, it must not be generalized since most of the time one cannot be cer-
tain of which subset of a table a transaction will access, rendering the approach
impractical.

In the optimistic protocol, one uses the same observation to avoid a huge read
set without escalating to table level by using only the warehouse attribute and then
encoding it as part of the table identifier.

We compare also these optimizations with the PGR protocol which can use
the exact read-set by centralizing certification of each transaction. The results are
presented in Fig. 5. It can be observed that all approaches produce approximate
results with minimal differences in latency and abort rate. Network usage is also
very close, showing that the overhead incurred by the DBSM when sending the
read-set is offset by requiring only a single communication step. These results
show that with an appropriate granularity, all these group communication based
protocols are equally appropriate for an OLTP load in a cluster.

4.3 Snapshot Isolation

An alternative approach to avoid synchronization conflicts is to relax the correct-
ness criterion to snapshot isolation [2] which only considers write-write conflicts.
In the DBSM approach, all the concerns previously discussed about the size of

12

DBSM S ——
Cons Sl ---x---

DBSM'S| ———
12000 | Cons SI —--x-—-

8000

TPM

Latency (ms)
=
T
\X :
1 1

4000

1 1 1
0
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Clients Clients
(a) Throughput (b) Latency

5

DBSM S| —+—
4k Cons S| ---x---

Abort Rate (%)

1+ .

o M— " |
0 1000 2000 3000 4000

Clients

(c) Abort rate

Figure 6: Performance measurements in a LAN with snapshot isolation.

the read-set are avoided. As Fig. 6 shows, it turns out that this alternative has also
a benign impact on the performance of the DBSM approach, reducing the number
of aborted transactions. Moreover, this is a very appealing alternative, as it avoids
all configuration issues. As explained in Sect. 2.2, under snapshot isolation the
DBSM and PGR protocols become the same.

Unlike the DBSM, the conservative approach does not benefit from the snap-
shot isolation criterion, exhibiting the same latency as before. In the “Snapshot
Isolation Level” column of Table 1 the new conflict relations among the transac-
tions are depicted. Regardless of their type, all update transactions still conflict and
thus have to be sequentially executed.

4.4 Wide Area

Finally, we are interested in observing how the proposed approaches scale also
to interconnected clusters in WAN. The best performers in the previous scenarios
were chosen and their performance in this environment is presented Fig. 7. Al-
though Fig. 7(a) shows that throughput scales equally well, Fig. 7(b) shows that
the additional communication step, incurred by PGR, when centralizing certifica-
tion results in a large increase in latency. This has also an impact in the overall
abort rate in Fig. 7(c), which is higher than with other optimistic approaches. Note
however that, in contrast with the results of Fig. 4, Fig. 7(d) shows that no single
transaction type exhibits high abort rates, hence, if one chooses to resubmit the
aborted transactions there is a high probability of a successful execution.

13

T T T 500 T T T
DBSMg —+— DBSMg —+—
12000 |- DBSM SI ---x-—- 400 |-DBSM ST ——-x-— i
Cons g ---%--- — Cons g ---*--
PGR - 2 PGR & I
s 8000 | 4 T 800 g 7
e 2 e
= & 200 F R
4000 |- 4 3 —
100 q
0 1 1 1 O 1 1 1
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Clients Clients
(a) Throughput (b) Latency
15 T T T 100 T T T
DBSMg —+— DBSMg —+—
DBSM S| ---x--- g0 | DBSM SI ——x-— |
3 Cons g ---%-- < Cons g ---%--
£ 10} PGR -8 . s PGR —8
2 - b & 60 b
B BB &
© B © 40 | 4
g Spe—+— 1 3
< <<
Hmmmmmmm B e ! 20 -
0 1 1, 1 O m’—I’m"__mkﬁolﬁ‘
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Clients Clients
(c) Abort rate (d) Delivery abort rate

Figure 7: Performance measurements in a WAN.

4.5 Discussion

The key issue in obtaining close to linear scalability of a distributed system is
reducing synchronization overhead. In practice, one can measure this overhead by
the time the computation in a node is suspended waiting for interaction with remote
nodes. In a traditional protocol based on distributed locking, this can potentially
be very large, if a node has to wait that all other nodes enter and leave a critical
section plus the time it takes to pass the authorization around.

In contrast, when using active replication [19, 8], the only overhead is encap-
sulated in the total order multicast protocol and no additional synchronization is
required. Ideally, a database replication protocol based on total order multicast
would be able to achieve the same goal. We now examine in turn each of the
protocols to determine how this goal is achieved.

Figure 8 depicts the conservative and optimistic protocols handling the ex-
ecution of two concurrent non-conflicting transactions. In the CONS protocol
(Fig. 8(a)), once the transactions are ordered all steps of the protocol are executed
concurrently therefore corresponding to the desired behavior.

Regarding the optimistic approaches, we can see that in the DBSM (Fig. 8(b))
the transactions’ execution can always be carried in parallel while the certification
procedure needs to be done sequentially. Once the certification is finished, since
the transactions do not conflict, the updates may be incorporated concurrently. The
DBSM therefore incurs in the certification procedure overhead. However, the cer-

14

reply

: /‘ EXB&ID:
ﬁ—élrﬂ~m—%én N »

(a) CONS

reply

r
r
»

rp.

7ﬂm =

, YA .
méw—m .

(b) DBSM

reply
s

. / I o
"ij’é—ﬁ

(c) PGR

St e L —

(—>

Figure 8: Handling concurrent transactions

tification execution time is usually negligible though.

In contrast, the PGR protocol is penalized by the supplemental reliable mul-
ticast. Although the transactions’ execution can be done in parallel too, the cer-
tification of 7" (ordered after T') can only be done once r3 knows the outcome
of T'. That is, the latency of the reliable multicast of T" is incorporated in the re-
sponse time of 7”. This problem can further suffer a cascading effect caused by the
expected system parallelism.

5 Conclusions

Database replication protocols based on group communication have been previ-
ously evaluated with a variety of implementation or simulation techniques and
also a variety of, often non-representative, loads or system models. When an in-
dustry standard database benchmark is used, it is often TPC-W, which provides
a read-intensive load which does not stress synchronization mechanisms. This
makes it difficult to compare their relative trade-offs and performance regarding
non-replicated databases.

In contrast, in this paper, we use the realistic write-intensive OLTP load from
the TPC-C benchmark and in Sect. 4 we show that high performance and close to
linear scalability can be achieved with several configurations. In detail, we show
that when snapshot isolation suffices for the application requirements, as happens
with TPC-C itself, the DBSM-SI protocol is the best option, requiring little effort
to configure and offering excellent performance in LAN and WAN. When serial-
izability is required, there are two possible options. When adequately fine grained
conflict classes can be defined, predicted beforehand for each transaction, and the

15

source modified to convey them, a conservative protocol provides excellent perfor-
mance without introducing transaction aborts. If adequately fine-grained conflict
classes cannot be predicted or the source modified to tag transactions or cope with
snapshot isolation, as happens when supporting large third party legacy applica-
tions, the DBSM protocol provides the same performance when given an adequate
definition of read-set granularity. Notice that this can be achieved by a database
administrator with no modification of sources and with no impact on correctness,
which provides maximum flexibility and safety.

In short, group communication based database replication protocols provide a
spectrum of configurability, generality and performance trade-offs that fit the most
demanding applications. The wide availability of such protocols therefore demands
improved database interfaces that efficiently provide the functionality identified in
Sect. 2 of this paper.

References

[1] D. Agrawal, A. El Abbadi, and R. C. Steinke. Epidemic algorithms in
replicated databases (extended abstract). In Proc. ACM Symp. Principles of
Database Systems (PODS), 1997.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A
critique of ANSI SQL isolation levels, 1995.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[4] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. The primary-backup
approach. In S. Mullender, editor, Distributed Systems, chapter 8. Addison
Wesley, 1993.

[5] A.Correia, A. Menezes, and R. Oliveira. Off-line test automation for database
replication based on group communication. Technical report, Universidade
do Minho, 2005.

[6] J. Cowie. Scalable Simulation Framework API Reference Manual, March
1999.

[7] J. Cowie, H. Liu, J. Liu, D. Nicol, and Andy Ogielski. Towards realistic
million-node internet simulation. In Proc. Int’l Conf. Parallel and Distributed
Processing Techniques and Applications (PDPTA’99), 1999.

[8] R. Guerraoui and A. Schiper. Software-based replication for fault tolerance.
IEEE Computer, 30(4), April 1997.

[9] S. Guo, W. Sun, and M. Weiss. Solving Satisfiability and Implication Prob-
lems in Database Systems. ACM Transactions on Database Systems (TODS),
1996.

16

[10] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts
and related problems. Technical Report TR94-1425, Cornell Univ., Computer
Science Dept., May 1994.

[11] J. Holliday, D. Agrawal, and A. El Abbadi. The performance of database
replication with group multicast. In Proc. IEEE Int’l Symp. Fault-Tolerant
Computing Systems (FTCS), 1999.

[12] B. Kemme and G. Alonso. A suite of database replication protocols based on
communication primitives. In Proc. IEEE Int’l Conf. Distributed Computing
Systems (ICDCS), 1998.

[13] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a new
way to implement database replication. In VLDB ’00: Proceedings of the
26th International Conference on Very Large Data Bases, pages 134—143,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[14] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing transactions
over optimistic atomic broadcast protocols. In Proc. IEEE Int’l Conf. Dis-
tributed Computing Systems (ICDCS), 1999.

[15] M. Patifio-Martinez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scalable
replication in database clusters. In DISC’00: Proceedings of the 14th Interna-
tional Conference on Distributed Computing, pages 315-329, London, UK,
2000. Springer-Verlag.

[16] F. Pedone. The Database State Machine and Group Communication Issues.
PhD thesis, Département d’Informatique, Ecole Polytechnique Fédérale de
Lausanne, 1999.

[17] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine ap-
proach. J. Distributed and Parallel Databases and Technology, 2003.

[18] M. Pettersson. Linux performance counters.
http://user.it.uu.se/ mikpe/linux/perfctr/, 2004.

[19] F. Schneider. Replication management using the state-machine approach. In
S. Mullender, editor, Distributed Systems, chapter 7. Addison Wesley, 1993.

[20] A. Sousa, F. Pedone, R. Oliveira, and F. Moura. Partial replication in the
database state machine. In IEEE Int’l Symp. Networking Computing and Ap-
plications, 2001.

[21] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in
wide area networks. In Proc. IEEE Int’l Symp. Reliable Distributed Systems
(SRDS), 2002.

17

[22]

[23]

[24]

A. Sousa, J. Pereira, L. Soares, A. Correia Jr., L. Rocha, R. Oliveira, and
F. Moura. Testing the dependability and performance of group communica-
tion based database replication protocols. In IEEE Intl. Conf. on Dependable
Systems and Networks - Performance and Dependability Symposium (DSN-
PDS’2005), 2005. to appear.

Transaction Processing Performance Council (TPC). TPC Benchmark™ C
standard specification revision 5.0, February 2001.

S. Wu and B. Kemme. Postgres-r(si): Combining replica control with con-
currency control based on snapshot isolation. In Proc. of the IEEE Int. Conf.
on Data Engineering (ICDE), pages 422433, April 2005.

18

