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ABSTRACT
Recently renewed interest in scalable database systems for shared
nothing clusters has been supported by replication protocols based
on group communication that are aimed at seamlessly extending the
native consistency criteria of centralized database management sys-
tems. By using a read-one/write-all-available approach and avoid-
ing the fine-grained synchronization associated with traditional dis-
tributed locking, one needs just a single distributed interaction step
for each update transaction. Therefore the system can easily be
scaled to a large number of replicas, especially, with read intensive
loads typical of Web server support environments.

In this paper we point out that 1-copy equivalence for causal
consistency, which is subsumed by both serializability and snap-
shot isolation criteria, depends on basic session guarantees that are
costly to ensure in clusters, especially in a multi-tier environment.
We then point out a simple solution that guarantees causal con-
sistency in the Database State Machine protocol and evaluate its
performance, thus highlighting the cost of seamlessly providing
common consistency criteria of centralized databases in a clustered
environment.

1. BACKGROUND
A number of group communication based database replication

protocols have been proposed, in particular, considering a read-
one/write-all-available approach and a single interaction for each
update transaction [13, 14, 19, 12]. We focus on protocols that
exploit optimistic execution and in particular the Database State
Machine (DBSM) [14, 7, 20]. These protocols are multi-master,
transactions can be submitted to and executed by several replicas,
and follow the passive replication paradigm [5, 9] in which each
transaction is executed by one of the replicas and its state changes
propagated to the other replicas.

A transaction is immediately executed by the replica to which
it is submitted without any a priori coordination. Locally, transac-
tions are synchronized according to the specific concurrency con-
trol mechanism of the database engine and thus according to the
centralized consistency criteria implemented.

Read-only transactions are simply executed locally at the database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

to which they are submitted and thus controlled strictly by the local
concurrency control mechanism. In contrast, update transactions
are not readily committed upon receiving the commit request. In-
stead, the tuples read (read-set) and written (write-set) are gathered
and a termination protocol initiated. The goal of the termination
protocol is to decide the order and the outcome of the transaction
such that the global correctness criteria is satisfied. This is achieved
by establishing a total order position for the transaction and certi-
fying it (i.e., checking for conflicts) against concurrently executed
transactions. The certification of a transaction is done by evaluating
the intersection of its read-set and write-set (or just its write-set in
case of the snapshot-isolation criterion) with the write-sets of con-
current, previously ordered transactions. The fate of a transaction is
therefore determined by the termination protocol and a transaction
that would locally commit may end up by aborting.

In detail, upon the reception of the commit request for a transac-
tion t, the executing replica atomically multicastst’s id, the version
of the database on whicht was executed, andt’s read-set, write-set
and write-values. As soon ast is ordered, each replica is able to
certify t on its own. The database version is a counter maintained
by the replication protocol that is incremented every time a trans-
action commits.

To ensure conflict serializability [18], during certification each
replica compares its database version with that oft: if they match
t commits, otherwiset’s read-set and write-set are checked against
the write-sets of all transactions committed locally sincet’s database
version. If they do not intersect,t commits, otherwiset aborts. If
t commits then its state changes are applied through the execu-
tion of a high priority transaction consisting of updates, inserts and
deletes according tot’s previously multicast write-set and write-
values. The high priority of the transaction means that it must be
assured of acquiring all the required write locks, possibly aborting
any locally executing transactions. The executing replica replies to
the client at the end of the transaction.

When considering the snapshot-isolation correctness criterion [3,
1], certification does not need to check read-write conflicts and thus
the transactions’ read-sets are not required. The DBSM protocol is
thus simplified by not propagating the read-sets and using a simpler
certification procedure.

At the core of these protocols is a total order (or atomic) multi-
cast primitive provided by a group communication system [6]. This
ensures that replicas that remain operational deliver the exact same
sequence of messages, and thus, that the deterministic certification
procedure produces at all replicas the exact same sequence of out-
comes.

2. PROBLEM STATEMENT
Existing proposals adopt the read-one/write-all-available approach
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for availability and scalability purposes [13, 14, 11, 19, 12, 7, 20].
It offers minimal overhead for read operations and outperforms any
other quorum settings in most of the cases [10]. To further improve
performance, read-only transactions are not handled by the repli-
cation protocol and are not subject to any global synchronization.
From a data-centric perspective, the intuition supporting the un-
coordinated handling of read-only transactions is that, as long as
replica control is done on the transactions’ boundaries, reordering
a read-only transaction does not impair the serializability of the ex-
ecution.

However, it can be readily seen that this reordering cannot be
applied in general as it might easily contradict the users’ local, ob-
servable, order of events and violate causal consistency [2] which
is subsumed by stronger consistency criteria such as serializability
and snapshot-isolation [1].

Roughly, causal consistency means that any two causally related
write operations must be seen by all server replicas in the same
order. As demonstrated by Brzeziński et al. [4] causal consistency
requires four basic session guarantees [16] to be preserved:read
your writes, monotonic reads, monotonic writesandwrites follow
reads. From these, the first two are endangered by the uncoor-
dinated handling of read-only transactions. Theread your writes
condition ensures that a read operation is executed by a database
replica that has performed all writes previously issued by the re-
questing client.Monotonic readsensures that read operations are
executed by database replicas that have performed all writes seen
by previous reads of the requesting client.

To see how the DBSM protocol fails to guarantee both condi-
tions above consider the following examples. Letdb1 anddb2 be
two database replicas initially synchronized. LetTw = w(x)v be
a transaction executing at replicadb1. If the same user ofTw after-
wards issues transactionTra = r(x) andTra is handled bydb2 it
is not guaranteed thatTra returnsv. The reason is that sinceTra

is read-only and thus was handled at replicadb2 without any prior
synchronization withdb1, it may happen that when it is executed
atdb2 the replica is still not updated and therefore not in sync with
db1. The user therefore misses her writes.

Suppose now thatTw andTra, not necessarily from the same
user, are handled in this order by the same replicadb1. Clearly,Tra

returnsv as the value ofx. If the user ofTra afterwards issues a
transactionTrb = r(x) that happens to be handled by replicadb2,
it is not guaranteed thatTrb returnsv. The reason is the same as
above but now also themonotonic readscondition is not guaran-
teed.

Notice that the above phenomena is of the sole responsibility
of the replica control protocol and independent of the centralized
consistency criteria of the replicas. Since the problem may only
occur when transactions from the same client are handled by dif-
ferent replicas, a general workaround, would be to simply have all
requests of a client being sent to the same replica. This could ei-
ther be done by the replication protocol itself or, even more sim-
ply, delegating it to a load-balancing layer preserving client/replica
affinity.

Unfortunately the assumption of client/replica affinity is increas-
ingly harder to ensure in the typical usage scenario for database
clusters which are multi-tier systems. In contrast with traditional
systems in which each user maintains a private session and a pri-
vate database connection, it is now common that clients connect
to an application server which maintains a pool of database con-
nections and dynamically dispatches requests on behalf of mul-
tiple clients. To optimize performance, such connections should
have been evenly distributed across available replicas by a load
balancer. Additionally, a caching layer maintained within the ap-

plication server can be used by multiple clients. Finally, the same
end-user might even use multiple concurrent connections to the ap-
plication server that cannot be easily tracked to a single entity. It is
therefore unfeasible to assume that connections to different replicas
are unrelated.

3. PROPOSED SOLUTION
We modified the DBSM replication protocol [14] so that read-

only transactions receive appropriate synchronization to preserve
the 1-copy equivalence of causal consistency. We explored two
different approaches. In the first, the protocol simply handles read-
only and update transactions in the same way. Read-only trans-
actions, upon the reception of the commit request, are now also
totally ordered with respect to all other transactions and subject to
certification. Nevertheless, a read-only transaction is only certified
at its executing replica. Since such a transaction does not change
the database and has no influence on the certification of subsequent
transactions, there is no point in certifying it at the other replicas. In
this approach, with the optimistic execution and later certification
of read-only transactions, the examples of Sect. 2 are prevented by
aborting the read-only transactionTra in the former andTrb in the
latter. From the first example,Tra is ordered afterTw. WhenTra

is requested to commit, it is certified against the write-sets of trans-
actions that commited afterTra started executing. IfTra executed
after the local commit ofTw thenTra commits, otherwise since its
read-set intersects withTw ’s write-set,Tra aborts. The reasoning
for themonotonic readsexample is similar.

Our second approach handles read-only transactions differently,
their execution is not optimistic. As soon a read-only transaction
begins its id is atomically multicast to be totally ordered. It is then
executed when all update transactions ordered before it are com-
mited at the executing replica. Considering again the examples of
Sect. 2, in this variation of the DBSM protocol, the read-only trans-
actionsTra andTrb would be both ordered afterTw in both cases.
Tra in first example (Trb in the second) would be executed atdb2

only after the commit ofTw atdb2.
The need to totally order all read-only transactions translates, as

expected, into increased latency in both protocols. The two ap-
proaches offer however a trade-off between response time at the
expense of some aborts (leaving to the user the decision of re-
submitting the transaction) and abort-free executions of read-only
transactions with increased latency.

4. EVALUATION
To evaluate the cost of the changes made to the DBSM proto-

col we tested both variations under the workload specified by the
TPC-C benchmark [17]. We used a centralized, hybrid simulation
environment that combines real software components with simu-
lated hardware, software and environment components to model a
distributed system [15]. This allows us to set up and run multiple
realistic tests with slight variations of configuration parameters that
would otherwise be impractical to perform, specially if one consid-
ers a large number of replicas. The key components, the replication
and the group communication protocols, are real implementations
while both the database engine and the network are simulated.

The simulated database server handles multiple clients and is
modeled as a scheduler and a collection of resources, such as stor-
age and CPUs, and a concurrency control module. The database
implements a multi-version concurrency control. Each transaction
is modeled as a sequence of operations: i) fetch a data item; ii)
do some processing; iii) write back a data item. Upon receiving a
transaction request each operation is scheduled to execute on the
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Figure 1: Overall performance measurements.

corresponding resource. The processing time of each operation is
previously obtained by profiling a real database server.1 A database
client is attached to a database server and produces a stream of
transaction requests. There are five different types of transactions:
NewOrder, adds a new order into the system (with 44% of the oc-
currences);Payment, updates the customer’s balance, district and
warehouse statistics (44%);OrderStatus, returns a given customer
latest order (4%);Delivery, records the delivery of products (4%);
StockLevel, determines the number of recently sold items that have
a stock level below a specified threshold (4%). TheNewOrder,
PaymentandDeliveryare update transactions while the others are
read-only. After each request is issued, the client blocks until the
server replies, thus modeling a single threaded client process. After
receiving a reply, the client is then paused for some amount of time
(thinking time) before issuing the next transaction request.

We consider a database cluster with 9 replicas connected by a
network with a bandwidth of 1Gbps and a latency of 120µs. Each
replica corresponds to a dual processor AMD Opteron at 2.4GHz
with 4GB of memory, running Linux. For all the experiments that
follow, we varied the total of clients from 270 to 3960 and dis-

1We used a profiled version of PostgreSQL 7.4.6 under the TPC-C
workload.
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Figure 2: Performance of read-only transactions.

tributed them evenly among the replicas.
Fig. 1 shows the overall performance of the original DBSM pro-

tocol (i.e. without certifying read-only transactions) — DBSM, the
variation that certifies read-only transactions executed optimisti-
cally — DBSM-RO-opt, and the one that executes read-only trans-
actions conservatively — DBSM-RO-cons. Fig. 2 shows the la-
tency and abort rate of the read-only transactions according to these
protocols. Fig. 3 shows specifically the stock level transactions’ be-
havior.

According to Fig. 1(a) and 1(c), the impact on throughput and
latency imposed by the DBSM-RO-opt and the DBSM-RO-cons is
negligible. However, Fig. 1(b) shows that the DBSM-RO-opt for
3960 clients increases the abort rate from approximately 6% to 9%.

However, the apparently modest increase in abort rate with the
DBSM-RO-opt algorithm hides an unacceptable abort rate of 37%
for the read-only transactions (Fig. 2(a)). Regarding read-only trans-
actions’ latency, Fig. 2(b) shows that it is increased by an average
of approximately0.5 ms in the DBSM-RO-opt and0.6 ms in the
DBSM-RO-cons. Although, as expected, the DBSM-RO-cons im-
poses a higher overhead in terms of latency when compared to the
DBSM-RO-opt, the difference is almost negligible.

Examining aborted transactions in more detail, the new aborts
are due to the serialization of the stock level transaction, which
has a high probability of conflicts when compared to the order sta-
tus transaction. Basically, the former access tables that have a low
number of tuples when compared to the latter thus increasing the
likelihood of conflicts. Fig. 3(a) shows that for 3960 clients ap-
proximately 74% of the stock level transactions are aborted in the
DBMS-RO-opts. The latency, as shown in Fig. 3(b), follows the
same pattern presented in the later set of figures. The latency of the
stock level is approximately increased by0.5 ms in the DBSM-RO-
opt and0.6 ms in DBSM-RO-cons.
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Figure 3: Performance of stock-level transactions (read-only).

5. DISCUSSION
Besides being inherently fault-tolerant, database replication pro-

tocols based on group communication have been pointed out as a
good choice as the basis for clustered database systems due to their
performance and scalability as well as the ability to seamlessly pro-
vide the 1-copy equivalence for the consistency criteria of central-
ized databases.

In this paper we point out that an often unspoken assumption
required for 1-copy equivalence, that clients issue requests strictly
to a single replica and do not otherwise share information, strongly
contradicts the actual usage of database clustering for performance.
In detail, in common multi-tier applications multiple clients share
cached information in application server tiers and share a connec-
tion pool to database servers. Such connections must be directed
to multiple database replicas to take advantage of parallel process-
ing. In this setting, the replicated system can violate even the weak
causal consistency criteria.

Although we use the Database State Machine [14] protocol as
an example, the same problem exists in all optimistic approaches,
whether providing conflict serializability or snapshot isolation, and
even on conservative approaches that serialize transactions prior to
execution [13]. This follows from all such protocols allowing de-
ferred updates and at the same time not ordering read-only transac-
tions.

The proposed solution is thus to order read-only transactions, ei-
ther after executing them optimistically or conservatively, prior to
their execution. By using the industry standard TPC-C benchmark
workload, we show that conservative ordering is preferable in a
cluster in which the small latency increase offsets the large number
of transactions aborted due to certification in the optimistic pro-
tocol. Alternatively, adopting a relaxed consistency criteria such
as Generalized Snapshot Isolation [8] that encompasses the use of
stale snapshots would obviate the synchronization of read-only trans-
actions.
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