
An Object Mapping for the
Cassandra Distributed Database?

Pedro Gomes, José Pereira, Rui Oliveira

Universidade do Minho

Abstract. New data management systems aimed at huge amounts of data, such
as those pioneered by Google, Amazon, and Yahoo, have recently motivated a
profound revolution in database management. These systems are characterized by
simple data and query models and by their relaxed consistency, that contrasts with
the ubiquitous and widely known relational and ACID model. These changes, in
combination with the absence of a high level language for query and manipu-
lation, make it harder for developers to port applications or to leverage existing
know-how. In fact, the major proponents of such technologies are precisely those
companies that can employ highly skilled developers.
This paper bridges this gap between the common programmer and the increas-
ingly popular Apache Cassandra distributed database by providing an object map-
ping for the Java language in the style of object-relational mappers that are com-
monly used with SQL databases. In detail, we describe how the object-relational
paradigm can be mapped to the new data model and experimentally evaluate the
result with a combination of the standard TPC-W benchmark and a representative
application from the telecom industry.

Keywords: Non Relational Databases, Cassandra, Object Mapping

1 Introduction and Motivation

The current trend in a wide variety of applications, ranging from the Web and social
networking to telecommunications, is to collect and process very large and fast grow-
ing amounts of information leading to a common set of problems known collectively as
“Big Data”. This reality caused a shift away from relational database management sys-
tems (RDBMS), a mainstay for more than 40 years, to multiple new data management
methods and tools. In fact, when scaling traditional relational database management
systems the user can only chose between the expensive and limited vertical scale-up
or the non-straightforward horizontal scale-out, where many of the niceties that make
these solutions valuable like strong consistency guarantees and transactional support are
rendered unusable [4]. To face these challenges, it is now widely accepted in industry
and academia that a new paradigm is needed, leading to the NoSQL movement. This
moniker encompasses a large variety of data and consistency models, programming
interfaces, and target areas from small web development oriented databases to large

? Partially funded by FCT through project ReD (PDTC/EIA-EIA/109044/2008) and by
PT Inovação.

scale solutions. In this paper we focus in the later, that include Amazon’s Dynamo [2],
Google’s BigTable [1], and Facebook’s Cassandra [5] that is today an Apache open
source project.

These databases were designed from scratch to scale horizontally with the help of
mechanisms such as consistent hashing and quorum-based operations [2] where new
nodes can be added and removed in a much more straightforward way than with a typi-
cal sharded relational database. Highly available hardware and its associated costs can
thus be avoided, as one can create a cluster with commodity hardware that can easily
scale up and down and exhibit high reliability. As consistency, availability and partition
tolerance cannot be achieved at the same time [3], these databases are built on the as-
sumption that a trade-off must be accepted. They thus allow some data inconsistency
to guarantee availability at all moments, mainly, and by offering the user the choice
of defining the number of nodes involved in each operation. This ensures that the sys-
tem stays on-line even when some nodes fail or become isolated, but is a considerable
challenge to porting existing applications.

A second challenge is the data model presented to developers. The multi-level
sparse map model introduced in BigTable and then adopted by HBase and Cassandra
has been been the preferred so far, as it has no fixed columns and allows the storage
of the data in ways that enable a limited set of queries to run very efficiently. But this
model, with its multiple levels of storage and associated nuances, represents a major
mind shift for many programmers. Moreover, typical application programming inter-
face (API) don’t include a high level languages for data extraction like SQL. In fact
these interfaces can sometimes cut the language impendence and speed up the devel-
opment, but they can also be painful to handle as they forece the user to master a set
of new concepts and routines and to deal explicitly with consistency. For instance, by
having to provide time stamps to order requests.

In this paper we address this second challenge by introducing a Java object mapping
for Cassandra, giving the programmers a tool that allows them to use this database much
in the same way they have been using relational databases by means of object-relational
mappers like Hibernate1 and Datanucleus2. This should provide a bridge between the
familiar object oriented paradigm, including different relation types, and the Cassandra
data model, allowing the developer to abstract the persistence layer and focus on the
application code.

This has been tried by several small projects that appeared previous to this work like
the HelenaORM 3 or the OCM4. However, these projects still lacked several features
like relation mapping and did not support a standard accepted interface that is a vital
point in this work. A standard interface like JPA or JDO is in fact many times important
for integration, and was been already implemented in other large scale databases like
Hbase 5.

1 http://www.hibernate.org
2 www.datanucleus.org/
3 github.com/marcust/HelenaORM
4 github.com/charliem/OCM
5 www.datanucleus.org/products/accessplatform 2 1/hbase/support.html

To qualitatively evaluate our proposal we first ported the well known TPC-W database
benchmark [6] to Cassandra with and without the object mapper. This industry standard
benchmark highlights difficulties in using Cassandra directly and then to what extent
these difficulties are masked by the object mapping. In a second phase we then adapted
a representative application from the telecom industry that proves that an existing sys-
tem can easily be ported to Cassandra. Finally, we quantitatively evaluate the impact of
the additional middleware layer in the performance of both these applications.

The rest of the paper is structured as follows. Section 2 briefly describes the Cas-
sandra distributed database and its data model. The object mapping is then introduced
in Section 3. Section 4 describes the application of our proposal to a case study and
Section 5 concludes the paper.

2 Background

There are nowadays several open source databases that aim at high scalability and
present themselves as solutions to the challenges of “big data” . Among these solu-
tions that include also HBase or Riak, Cassandra is one of most representative of the
NoSQL movement and establishes an interesting bridge between the scalable architec-
ture of Amazon’s Dynamo and the flexible data model from Google’s Big Table. With a
straightforward deployment in one or more nodes, this solution allows to have a cluster
of several machines ready and running in a matter of minutes, providing a highly avail-
able service with no single point of failure. Initially developed at Facebook, Cassandra
was open sourced and is today an Apache top level project used at large web names like
Digg, Reedit and Twitter.

On the other hand, when coming from a relational data model with static tables and
foreign keys, the hybrid column model can be difficult to understand. This model is
based in a sparse multidimensional map indexed by key in what we call a keyspace. In
practice, a keyspace defines a collection of keys that can be sorted (lexicographically or
by their bytes) or randomly distributed by a hash function through all the nodes of the
database.

Inside a keyspace the data is then divided in Column Families. These are in some
aspects equivalent to relational tables, as they usually contain data related to similar
entities, like for instance the Book family or the User family. These units map, for each
of the keys in the database, a collection of Columns, the base storage unit in the system.
A column is a triplet that contains a name, a value and a timestamp, that is ordered in
the row by the first of these elements in a user defined way. One important difference to
the traditional relational model is that for each one of these rows mapped to a column
family there is no theoretical limit in number or name for the columns that it can contain,
bringing dynamism to the schema.

Column Families can also assume a different form, where instead of containing
a single list, each key is associated to several lists of columns, each one mapped by
a binary name. These structures are suitable to map information that is accessed as a
whole, as sub columns under these structures are not indexed, and the retrieval of one of
these elements implies the deserialization of all others. An example of such structures
can be seen on Figure 1.

Peter

Joseph

Keys

Super Column Family :
Services

Voice Default
Type

20
Balance

SMS Default
Type

10
Amount

Enterprise
Type

60
BalanceVoice

Peter...
Name

234786459
Number

Joseph
Name

234786459
Number

Peter

Joseph

994398909
Mobile Phone

Columns

Column Family :
Users

Keys Super Columns

Fig. 1. Example of column and super column families.

But the data model is not the only issue where Cassandra diverges from the main-
stream relational paradigm. Indeed, the base API supported in Cassandra is far from
the high level interaction offered by SQL in a common RDBMS. Based on the Apache
Thrift framework, it offers just basic get and put operations that can be executed indi-
vidually or grouped in a single database request. Besides these basic operations, ranges
are also available, but operations such as “get range from A to B” return meaningful
results only when the keys are logically ordered in the database. All these instructions
are executed atomically for each row, regardless the number of columns involved. No
multi row guarantees are given though.

Extra complexity is also introduced by the consistency and conflict resolution mech-
anism that is associated to each one of these database operations. In fact, these are two
main traits of this database that seem highly strange and confusing to new users. Each
piece of data inserted with a timestamp in the database is usually replicated in N nodes
and for each operation the user will define how many of these N shall guarantee its
success. Asking for the Quorum nodes is usually the advised strategy, as it guarantees
that when reading, at least one of the nodes has the last written data, getting strong
consistency and fault tolerance for a reasonable price.

In the end, being a valuable option in a large scale scenario, the adoption of Cassan-
dra as a solution presents three many problems that we address:

New concepts: Several are the concepts and mechanism that are completely new to most
users when adopting Cassandra. Understanding the model, its characteristics and how
to take part of it in the operations can sometimes be overwhelming. With our approach
this layer is invisible to the user, that focuses only on the object model.

The consistency model also brings complexity with its levels and timestamps, but
this is however something that we do not intend to address here. Even if we simplify the
use of such parameters we do not present here any consistency mechanism whatsoever
and we advise every user to fully understand the drawbacks of using such a solution
before choosing it.

Code: The use of low level libraries such as the ones offered by Thrift gives the user an
opportunity to choose the development language and tools unconstrained. Nevertheless
these libraries have their own drawbacks, like code verbosity and poor readability. This
is aggravated by the programming paradigm inherent to Cassandra’s simple API. As

the data is only accessed through its primary key or indexed columns and operations
like group by or order by are not available, most of the code that was expressed
in SQL queries is now done in the client side.

As expected, higher level libraries are available for various languages allowing an
easier integration. Even so, these libraries often fail to hide many of the low level im-
plementation details in a friendly way. In order to alleviate this problem our approach
eases the processes of data persistence and retrieval, allowing the user to stay focused
on the object model.

Integration: The last challenge faced is moving existing applications and the associated
knowledge to this new paradigm. With a complete change in the development paradigm
and no common ground between the old and the new applications, the code has then to
be rewritten. This is often an unacceptable scenario due to the implied costs.

The recent introduction of the CQL language6 is an important addition to the Cas-
sandra project, and although immature and prone to change, it allows the relational-
minded users an easier integration with the project with its SQL inspired syntax. But
they are two different paradigms and besides the many operators that are missing in one
or the other, the high level application code still needs to be rewritten.

Being based on a standard and widely known persistence interface, our proposal
aims at an easy migration of existing ORM code with the advantage that it can be done
in a progressive way and can be only partial. Going back to the consistency issue, this
approach allows in the same code base to redirect the objects and related code that needs
consistency guarantees to a database that provides ACID transactions while maintaining
the rest of the model in a large scale data store. Other main advantage is that existing
programming knowledge is also preserved.

3 Object mapping

We now present our approach for a Java object mapping tool for Cassandra. For this
purpose and to leverage the existing work in the area, we build our mapper over the
DataNucleus platform. This allows us to reuse many components, such as the parsing
of Java classes and mapping files, and maintain the focus on the mapping to Cassandra’s
model. In fact, the DataNucleus platform offers a great advantage as it based in a set
of extension points that allows the user to progressively implement different features
when developing a new backend plug-in.

3.1 Object model

The main challenge when developing a object mapper is to find the most efficient way
to store and retrieve the mapped entities while maintaining intact the relations among
them. For this purpose and in the context of the Java language there are today two
common specifications: the Java Data Objects (JDO) API and the Java Persistence API
(JPA). These specifications, both supported by the DataNucleus platform, bear a set of

6 www.datastax.com/docs/0.8/api/cql_ref#cql-reference

www.datastax.com/docs/0.8/api/cql_ref#cql-reference

rules related to class mapping, persistence and querying. In the lower layers of the plat-
form, the different implementations such as the one presented here are then responsible
for the persistence, retrieval and deletion of objects from the database.

This process does involve more than a few writes or reads though, as it is also the
platform’s responsibility to establish how will the objects and their relations be mapped
in the database. These relations, characterized in direction as being unidirectional or
bidirectional and in terms of cardinality as one-to-one, one-to-many and many-to-many,
depending in number of connections that an entity has, have then to be adapted to the
database schema and characteristics. This is done as follows:

Class mapping Similar to the relational solutions, the base ground for the mapping
process is that each class is persisted to a separated column family being the associ-
ated fields stored in individual columns. This approach besides being straightforward
to implement has also the advantage of allowing the easy extraction of data by other
processes in a later phase, as the data is clearly mapped by the name of its class and
fields.

One to one/Many to one relations In one-to-one relations, objects of a class have an
associated object of another class (only one associated object). Again this is fairly easy
to do, being the associated object stored in its corresponding column family, and its key
is then stored in the field column. There are, however, two main differences between this
and relational approaches. The first relates to deletions where in the absence of foreign
keys and referential integrity, deleting a object will not cascade to associated objects.
To guarantee their deletion, the object should then be marked as dependent. The other
difference is that its not possible to map a bidirectional relation with only one column
family holding the reference as seen in relational solutions. This type of relation can
only be achieved with both sides having a reference to its associate.

The same approach is used in one to many relations where an object of a class has an
associated object of another class (only one associated object) like an account that has a
connection to a user. The difference here is that the same user can have several accounts
and they all have a link to it. As the scenario is identical, the same implementation and
considerations about deletions are maintained. Bidirectional relations imply a different
implementation though, similar to the one to many relations described below.

One to many/Many to many relations In one to many relations and in many to many
relations, an object of a class A has several associated objects of a class B, being that in
the second case, each instance of the class B refers also multiple objects of the class A.
In order to map such relations we need a way to store the several connections that each
one of the instances contain.

Several approaches were devised was shown on Figure 2. The first one is the storage
of all the information in an extra column family. This column family would then contain
for each one of the instances of the original object the keys to all the associated objects.
This approach is straightforward but requires, a retrieval of all the associated keys and
objects in two separated phases every time such field is fetched. For this reason this
option is discarded.

Keys

Peter...
Name

234786459
Number

Joseph
Name

234786459
Number

Peter

Joseph

Columns

Users

Keys

Voice_12

SMS_12

Columns

Services

Keys

Peter

Joseph

Super columns

Keys

Peter...

Name

234786459

Number

Joseph
Name

234786459
Number

Peter

Joseph

Columns

Keys

Voice_12
1

SMS_12
2

Voice_13
1

Peter

Joseph

Columns

Users_services

Voice_13

20
Balance

20
Balance

20
Balance

_fields 234786459
Number

services Voice_12
1

SMS_12
2

_fields Joseph
Name

234786459
Number

services

Peter...
Name

Voice_13
1

{Voice_12,
SMS_12}

Services

{Voice_13}

Services

Fig. 2. Mapping strategies.

The second option is having all the information for the class stored in one super
column family. In this option for each object/key, all the base fields are stored in one
super column with a distinct name and the others are then used to store the keys to the
associated objects. This presents a good way to store the relations in a clear way and
when reading this field there is no additional fetch to an external mapping column fam-
ily. However, this approach has no major advantages in performance when compared to
the third solution and introduces a lot more complexity to the platform.

So the chosen approach is the third one where the mapping information is first
constructed using the keys to the associated objects and its then serialized and stored in
the column correspondent to that field. This approach as the same advantage on reads
as the above, but even if the stored data is more obscure, the associated code is simpler
and faster. In relation to the deletions the above considerations are maintained here.

4 Other implementation topics

Besides the mapping problem, the platform has also to deal with other subjects such as
connection management, consistency levels and the querying mechanism. Starting with
the connection management, this is a relevant part of the platform due to the distributed
nature of the Cassandra database. In fact, many clusters can have dozens of nodes and
for that purpose we included a node discovery mechanism that can be activated by the
user in the configuration file. With just one node, the platform can then discover the rest
of the cluster and distribute the load within it.

The other point that was approached was the consistency level parameter that must
be included in most database operations. In a basic approach we use quorum reads and
writes by default, parameter that can be changed during the execution but always in a
global fashion. A simple enhancement to the JDO API though, will in the future allow
the use of transaction isolation properties to define such consistency levels. In a similar
manner, the timestamps must also be included in most write or deletion operations being
this process automated by the platform.

Finally, a limited subset of JDOQL query language was implemented. JDOQL aims
at capturing the power of expression contained in SQL queries and apply it to the Java
object model. Range query capabilities were then implemented in the database allow-
ing the user to get all keys within an entity, or just a range with defined start and end.
Naturally, the range option is only useful when keyspace keys are ordered as otherwise
it will return a random set of keys. Related to this point index support was also added in
a posterior phase to enhance the querying capabilities of the platform. In a first phase,
when indexes were not implemented in Cassandra, our approach consisted in the cre-
ation of extra column families that stored all the associated keys to that field value. This
allows the user to query with a single non primary field. In later versions the index im-
plementation was moved to Cassandra and it is now possible to query information using
more than one indexed field.

5 Case study

In order to test and evaluate the overall impact of our approach we first implemented
a subset of the TPC-W benchmark over Cassandra using the native interface, and then
using the object mapper. This well known benchmark was chosen as it represents a
typical Web application, representative of an area that is nowadays opening to new
NoSQL solutions and where these solutions are increasingly being used. Although other
options such as the OO7 benchmark 7 could be more fit to evaluate the raw performance
of Cassandra, this is not our goal here. With a small description of the implementation
and few snippets of code we intend here to describe the advantages of the adoption
of such a solution. Latency measures are also shown to measure the drawbacks of this
solution.

In a second phase we show how an existing telecom application, that simulates
an real industrial problem of scale, can be ported to large scale database like Cassandra
with this solution. With a small description of the system and its associated problems we
describe how it was migrated. We then present results in terms of latency and throughput
in the system, evaluating the performance of the object mapper in a real world scenario.

5.1 TPC-W

The Cassandra lower level API, currently over Thrift, offers to developers a multi lan-
guage interface containing read, write and range operations among others. To be generic
and include several cases of use, this interface requires from the user the knowledge
about a set of API related concepts and structures, operational details, and also how
to manage the consistency levels. When new to the system, the developer thus faces a
steep learning curve. Even if the same applies to object-mapping solutions, these were
by design intended for code simplicity and corresponding know-how to them associated
is almost ubiquitous.

The first step that separates implementations is the coding of the entities and related
meta-information that includes the identification of primary key fields and possible re-
lations in the non native solution. With the use of JDO annotations, or with the XML

7 pages.cs.wisc.edu/˜{}dewitt/includes/benchmarking/oo7.pdf

pages.cs.wisc.edu/~{}dewitt/includes/benchmarking/oo7.pdf

mapping file, the coding of meta-data information is relative easy, as the basic settings
are simple to learn and use. In fact, this first phase when we model the classes to be
persisted is fundamentally different from the development paradigm connected to the
NoSQL movement that favours the construction of data models that optimize the ex-
pected queries in the system. Even so, the development of this mapper over a mature
platform as the one being used, allows the use of such optimizations as the fetching
groups that allow to extract only some of the fields in a object.

When coding the persistence of entities, the simplicity introduced by the platform
is also visible, as the user only has to invoke the platform persistence method with
the target object as parameter. Loading methods also makes it easy to fetch entities
based only on their identifications. In the native platform such simple operations would
require the conversion of the key object and the value itself in a byte buffer in order to
store it, not forgetting the various parameters to add such as the consistency levels and
timestamps.

Indeed small operations, such as the item information extraction, can be easily
mapped into Cassandra, but the implementation of complex operations like the best
sellers list or the item searches by an author’s name or category introduce here sev-
eral changes the typical TPC-W implementations. What was in the relational model a
relative simple query that fetched an item by a non key field, or that filtered all the
customer orders in order to discover the most bought item, now implies the creation
of indexes and the extraction of thousands of objects to do a client side selection. The
mapper presents again an advantage with the automation of the index construction and
the JDOQL implementation that, not avoiding the load of thousands of orders, allows
to make it with a few lines of code. Due to space limitations we can’t show here the
difference between the implementations, but they are available on the project page. 8

Results To run this benchmark we used seven HP Intel(R) Core(TM)2 CPU 6400 -
2.13GHz processor machines, each one with 2 GByte of RAM and a SATA disk drive.
The operating system used is Linux, and the Cassandra version is 0.6 that implied client
side maintained indexes. Referring to the benchmark parameters, the typical TPC-W
load scale value is set to 10 and the number of items is 10000. To run the tests we then
use 100 parallel clients with the standard think time.

Figure 3 shows that for small read and write operations the results are similar in
both approaches. We than see that either the a) extraction of information for a item or
the b) storage of a order after a sale present low values of latencies.

We can see however the price of using a higher level solution such as this one when
we move to complex instructions like the ones seen in Figure 4. In 4(a) we can see the
results for the search operation where the mapper presents a double behaviour that is
associated to the type of this operation. In fact, in this operation that uses indexes, we
see many low values in the mapper results that correspond to searches to an author name
or book title that has few associated items. On the other hand, when fetching thousands
of objects due to an item search by type or the best sellers option shown on 4(b), the
loading of fields and relations take its toll when compared to the optimized native so-
lution. These results can be improved though. With the use of fetch plans we can avoid

8 Available at github.com/PedroGomes/TPCw-benchmark.

github.com/PedroGomes/TPCw-benchmark

b)a)

Fig. 3. Latencies for the (a) Item info (b) Buy Confirm operations in TPC-W.

b)a)

Fig. 4. Latencies for the (a) Item search (b) Best Sellers operations in TPC-W.

the loading of some of the fields and a improvement in the algorithm is schedule for
future work.

5.2 A telecom benchmark

Telecom companies have been recently challenged as more and more mobile devices
become on-line every day, and consequently more data is added to their data centers.
These systems that seem at first sight easy to partition due to the nature of the client data
that is self contained, are in fact hard to scale. This affects for example the activation
process that all calls must pass to determine if they are valid. This process, that we
evaluate here, consists in a series of validation steps that checks the services that the
calling client has and its balances, and has then to validate them one by one until a
valid is found. This validation processes is where the scale problems begin as they can
require access to the list of services of the call receiver to see if they both share the same
service, for example.

Indeed, companies find themselves with information about millions of customers
that are many times related among themselves. These unpredictable connections among
the clients destroy any chance of a clean partition schema in the data that then raises
a storage problem. In this context, the Cassandra database was then chosen as possible
solution to provide a fast and elastic platform for storing and query the user data. But
this proposal raises some problems. The first is that some of the information can’t be

a) b)

Fig. 5. Throughput with the telecom application for a a) day b) goal scenario.

migrated, as for instance, the client’s balance that needs to be consistent at all times, or
the company may face complains and/or monetary losses. The other problem refers to
the costs and dangers of rewriting the code from scratch, even more when only one part
of it can be mapped to Cassandra.

This is the ideal scenario for using our mapper. Even if the original code base is not
based in a object mapping solution, the higher level code can probably be adapted and
the developer can then work at the object level and have at the same time two persistence
sources: one that grants scale and the other consistency.

Results To evaluate this approach, we use a benchmarking tool especially designed to
test this kind of system with several kinds of databases. Adapted in a similar process to
the TPC-W, this platform allows us to test our mapper in a real world problem and load.
Indeed the tests presented here were run over a population of 7 million clients with
two different settings that simulate distinct usage scenarios. These, that were named
“day” and “goal”, represent a typical day of the week with lots of business calls and the
load of calls that the users of a service cause in a sports event respectively. These tests
were run with a 24 core machine with 128 GB de RAM and RAID1 disks. The client
machine was run in a 8 core machine with 16 GB of RAM. The operating system used
is Linux, and the Cassandra version is 0.7 meaning that the indexes are now handled
by the database. In terms of load, the tests were run with a total of 20 concurrent client
request threads.

Looking to the results we see that the native solution that has a specially designed
model to run this benchmark preforms better than the mapper by almost 1500 calls
per 30 second period. Even so the average of 2300 calls per each 30 second period is
reasonable for a solution that exhibits a friendlier API and a more generic model. When
looking at the latency values, we notice that for each call there is a mean latency of 12
milliseconds, that even if greater than the native results is in fact a good value.

6 Conclusion

In this paper we present a new object mapping tool for Cassandra aiming at leveraging
this scalable database in an easy and fast manner. The main challenge addressed was

a) b)

Fig. 6. Latency with the telecom application for a a) day b) goal scenario.

mapping object relations to the data model offered by Cassandra, which was achieved
by persistint their meta-data in the corresponding entities. The resulting object mapping,
developed as a plug-in to the DataNucleus platform, has been published as open source
software. It has since been accepted by both the Cassandra and DataNucleus developer
communities. From the early version of this project there was also a fork that being
developed in a enterprise environment is now used in production9.

References

1. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. In: OSDI
’06: Proceedings of the 7th symposium on Operating systems design and implementation.
pp. 205–218. USENIX Association, Berkeley, CA, USA (2006), http://portal.acm.
org/citation.cfm?id=1298455.1298475

2. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-
subramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value store.
In: SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles. pp. 205–220. ACM, New York, NY, USA (2007), http://s3.amazonaws.
com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf

3. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

4. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In: SIG-
MOD ’96: Proceedings of the 1996 ACM SIGMOD international conference on Management
of data. pp. 173–182. ACM, New York, NY, USA (1996)

5. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS Oper.
Syst. Rev. 44(2), 35–40 (2010)

6. (TPC)., T.P.P.C.: Tpc benchmark w(web commerce) specification version 1.8 (2002)

9 https://github.com/tnine/Datanucleus-Cassandra-Plugin

http://portal.acm.org/citation.cfm?id=1298455.1298475
http://portal.acm.org/citation.cfm?id=1298455.1298475
http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf
http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf
https://github.com/tnine/Datanucleus-Cassandra-Plugin

	An Object Mapping for theCassandra Distributed Database

